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Abstract In this paper, a simple and effective PI con-
troller tuning method is presented. To take both performance
requirements and robustness issues into consideration, the
design technique is based on optimization of load disturbance
rejection with a constraint either on the gain margin or phase
margin. In addition, a simplified form of the resulting tuning
formulae is obtained for first order plus dead time models.
To demonstrate the ability of the proposed tuning technique
in dealing with a wide range of plants, simulation results for
several examples, including integrating, non-minimumphase
and long dead time models, are provided.

Keywords Constrained optimization · Gain margin · Load
disturbance rejection · Phase margin · PI control
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FOPDT First order plus dead time
GM Gain margin
Gc(s) Controller transfer function
Gp(s) Plant transfer function
IAE Integral of absolute error
IE Integral of error
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Kc Proportional gain
Ki Integral gain
Kp Gain of FOPDT model
L(s) Loop transfer function
PID Proportional–integral–derivative
PM Phase margin
φm Desired phase margin
r Reference signal
SGM Specified gain margin
SPM Specified phase margin
T Time constant of FOPDT model
Ti Integral time
τd Time delay of FOPDT model
ω Frequency
y Output signal

1 Introduction

In spite of the recent advances in control theory, PID
controller is the most widespread form of feedback com-
pensation. This is mainly due to its noticeable effectiveness
and simple structure that is conceptually easy to understand.
PID is a simple and useful controller, which gives a powerful
solution to the control of a huge number of industrial plants.
According to the literature, more than 95% of industrial con-
trollers are PID controllers [1–5]. The key reason for this
popularity is that a well-designed PID controller can meet
most control requirements [6]. In fact, most of the industrial
controllers are PI because the derivative action is very often
not used. As a result, good PI tuning methods are extremely
desirable due to their widespread use.

Since the 1940s, a large number of analytical and numer-
ical methods, which are usually different in complexity and
flexibility, have been proposed for tuning of PID controllers
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[7–13]. In addition, several well-known control books have
chapters on tuning PID controllers [14–17].

Generally, an efficient design method should satisfy the
design specifications and be able to deal with a wide range
of plants.A satisfactory load disturbance response is often the
first goal in control applications. This paper presents a PI tun-
ing method resulting in a set of tuning formulae. To consider
performance and robustness requirements, the design objec-
tive is the optimization of load disturbance rejection with a
constraint either on the gain margin (GM) or the phase mar-
gin (PM). As the first order plus dead time (FOPDT) models
can approximately model a huge number of industrial plants,
the resulting tuning formulae are then applied to these plants
to obtain a simple set of tuning formulae.

The paper is organised as follows. In Sect. 2, an analytical
method to determine the optimal parameters of PI controllers
in terms of minimizing an objective function and satisfying
a GM or PM constraint is developed. The method is applied
to FOPDT plants in Sect. 3. In Sect. 4, the simplified tuning
formulae for FOPDT plants are presented, using dimensional
analysis and curve-fitting techniques. In Sect. 5, the resulting
tuning formulae are applied to a variety of control examples.
Moreover, a comparison between the performance of the pro-
posed tuning formulae and that of one of the most prevalent
design methods is given for each example. Finally, the con-
clusions of the whole study are drawn.

2 Theory

The plant,Gp(s), is controlled by the PI controller in Eq. (1).

Gc(s) = Kc + Ki

s
. (1)

where Kc and Ki are proportional and integral gains, respec-
tively. The aim of control is to reject load disturbance signals,
which are themost common andmost important disturbances
in control that drive systems away from their desired operat-
ing points [3]. The output signal of a closed-loop system in
the presence of an input load disturbance signal is given by
Eq. (2).

y = GpGc

1 + GpGc
r + Gp

1 + GpGc
d. (2)

where r , d and y refer to the reference, load disturbance and
output signals, respectively. Step disturbances are applied
at the input to the plant. A commonly chosen performance
metric is the integral of absolute error (IAE). A significant
drawback of this criterion is that it is not suitable for ana-
lytical approaches, as the evaluation requires computation
of time functions [3]. However, the IAE is equivalent to the

integral of error (IE) if the error signal is positive. More-
over, the IE may be a good approximation for the IAE for
well-damped closed-loop systems. The reason for using IE
is that it is appropriate for analytical approaches as its value
is directly related to the integral gain, as shown in Eq. (3) [3].

IE = 1

Ki
. (3)

In addition, robustness is a key issue in control systems. It
is well known that GM and PM are used as measures of
robustness. In order to ensure the robustness of the closed-
loop system, the optimization problem is constrained so that
a desired GM or a required PM is guaranteed. Moreover, the
PM acts as a measure of performance as it is related to the
damping of the system [18]. Therefore, the design objective
is to maximize Ki subject to satisfying the robustness con-
straint.

2.1 Tuning formulae for a constraint on GM

Assume that the model of the plant is given by Eq. (4).

Gp( jω) = α(ω) + jβ(ω). (4)

where α(ω) and β(ω) are real and imaginary parts of the
plant. The loop transfer function is then written as shown in
Eq. (5).

L( jω) = (α(ω) + jβ(ω))

(
Kc − j

Ki

ω

)
. (5)

In order to determine the controller parameters that obtain a
desired GM, Eqs. (6) and (7) should be solved.

Im[L( jω)] = 0. (6)

Re[L( jω)] = −1

Am
. (7)

where Am is the value of the desired GM. Inserting Eq. (5)
in Eqs. (6) and (7) results in the controller parameters given
by Eqs. (8) and (9).

Kc = −α(ω)

Am(α2(ω) + β2(ω))
. (8)

Ki = −ωβ(ω)

Am(α2(ω) + β2(ω))
. (9)

The necessary and sufficient conditions for maximizing Ki

and satisfying the GM constraint are given by Eqs. (10) and
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(11), respectively.

dKi

dω
= 0. (10)

d2Ki

dω2 < 0. (11)

Equation (9) can be written as shown in Eq. (12).

Ki = ω f (ω). (12)

where f (ω) is given by Eq. (13).

f (ω) = −β(ω)

Am(α2(ω) + β2(ω))
. (13)

Inserting Eq. (12) into Eq. (10) gives the necessary condition
shown in Eq. (14).

dKi

dω
= f (ω) + ω f ′(ω) = 0. (14)

where f ′(ω) is the derivative of f (ω) with respect to ω. ω

can be determined by inserting f (ω) fromEq. (13) and f ′(ω)

into Eq. (14), resulting in Eq. (15).

ω = 1

2α(ω)α′(ω)+β(ω)β ′(ω)

α2(ω)+β2(ω)
− β ′(ω)

β(ω)

. (15)

where α′(ω) and β ′(ω) are the derivatives of α(ω) and β(ω)

with respect to ω, respectively. Inserting Eq. (14) into Eq.
(11), the sufficient condition is obtained as shown in Eq.
(16).

d2Ki

dω2 = −2 f (ω) + ω2 f
′′
(ω) < 0. (16)

The maximizing ω is given by Eq. (15) subject to satisfy-
ing Eq. (16). The optimal controller parameters are given by
inserting the maximizing ω into Eqs. (8) and (9). This ana-
lytical tuning method is referred to as specified gain margin
(SGM) because the closed-loop system satisfies a desired
GM. An iterative technique, such as the Newton–Raphson
method, is required to solve Eq. (15).

2.2 Tuning formulae for a constraint on PM

Assuming the loop transfer function in Eq. (5), Eqs. (17) and
(18) should be solved to determine the controller parameters
that obtain a desired PM.

|L( jω)| = 1. (17)

π + � L( jω) = φm . (18)

where φm is the value of the desired PM. Inserting Eq. (5)
into Eqs. (17) and (18) results in Eqs. (19) and (20).

K 2
c + K 2

i

ω2 = 1

α2(ω) + β2(ω)
. (19)

π + tan−1
(

β(ω)

α(ω)

)
− tan−1

(
Ki

ωKc

)
= φm . (20)

Equation (20) can be written as shown in Eq. (21).

ωTi = α(ω) cos(φm) + β(ω) sin(φm)

−α(ω) sin(φm) + β(ω) cos(φm)
. (21)

where Ti is given by Eq. (22).

Ti = Kc

Ki
. (22)

Considering Eqs. (19), (21) and (22), PI parameters can be
written as shown in Eqs. (23) and (24).

Kc = −α(ω) cos(φm) + β(ω) sin(φm)

α2(ω) + β2(ω)
. (23)

Ki = ω
α(ω) sin(φm) − β(ω) cos(φm)

α2(ω) + β2(ω)
. (24)

Writing Eq. (24) in the form of Eq. (12) with f (ω) shown in
Eq. (25)

f (ω) = α(ω) sin(φm) − β(ω) cos(φm)

α2(ω) + β2(ω)
. (25)

and applying the necessary condition for maximizing Ki ,
represented in Eq. (14), to Eq. (25) results in Eq. (26).

ω = 1

2α(ω)α′(ω)+β(ω)β ′(ω)

α2(ω)+β2(ω)
− α′(ω) sin(φm )−β ′(ω) cos(φm )

α(ω) sin(φm )−β(ω) cos(φm )

. (26)

whereas the sufficient condition is again given by Eq. (16).
If the maximizing ω given by Eq. (26) satisfies Eq. (16),
the optimal PI parameters are given by Eqs. (23) and (24).
This tuning method is referred to as specified phase margin
(SPM).

3 Tuning formulae for FOPDT plants

In this section, the SGM and SPM methods are applied to
an important category of industrial plants and simplified ver-
sions of Eqs. (8), (9), (15), (23), (24) and (26) are presented.
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3.1 SGM tuning formulae for FOPDT plants

A huge number of industrial plants can be modelled by a
FOPDT model, shown in Eq. (27).

Gp(s) = Kpe−τd s

T s + 1
. (27)

To design PI controllers for this class of plants, the SGM
design method is applied to the FOPDT models. The real
and imaginary parts of the plant are given by Eqs. (28) and
(29).

α(ω) = Kp

1 + ω2T 2 (cos(ωτd) − ωT sin(ωτd)). (28)

β(ω) = −Kp

1 + ω2T 2 (sin(ωτd) + ωT cos(ωτd)). (29)

Inserting Eqs. (28) and (29) into Eqs. (8), (9) and (13) results
in Eqs. (30)–(32).

Kc = − cos(ωτd) + ωT sin(ωτd)

AmKp
. (30)

Ki = ω(sin(ωτd) + ωT cos(ωτd))

AmKp
. (31)

f (ω) = sin(ωτd) + ωT cos(ωτd)

AmKp
. (32)

Maximizing ω shown in Eq. (33) is given by inserting f (ω)

from Eq. (32) and f ′(ω) into Eq. (14).

ω = sin(ωτd) + ωT cos(ωτd)

−(T + τd) cos(ωτd) + ωT τd sin(ωτd)
. (33)

The sufficient condition for maximizing Ki , shown in
Eq. (34), is determined by inserting f (ω) and f ′′(ω) into
Eq. (16).

A sin(ωτd) + B cos(ωτd) > 0. (34)

where A and B are given by Eqs. (35) and (36).

A = 2 + ω2τd(2T + τd). (35)

B = ωT (2 + ω2τ 2d ). (36)

Finding cos(ωτd) from Eq. (33) and substituting it into Eq.
(34), the sufficient condition is given by Eq. (37).

C sin(ωτd) > 0. (37)

where C is given by Eq. (38).

C = (2 + ω2τ 2d )
τd(1 + ω2T 2) + T

2T + τd
+ 2ω2T τd . (38)

Obviously C > 0 and it can easily be investigated that
ωτd < π holds for the SGM method. As a result, the suffi-
cient condition is always satisfied.

3.2 SPM tuning formulae for FOPDT plants

Substituting Eqs. (28) and (29) into Eqs. (23), (24) and (25)
results in Eqs. (39)–(41).

Kc = − cos(ωτd + φm) + ωT sin(ωτd + φm)

Kp
. (39)

Ki = ω(sin(ωτd + φm) + ωT cos(ωτd + φm))

Kp
. (40)

f (ω) = sin(ωτd + φm) + ωT cos(ωτd + φm)

Kp
. (41)

Maximizing ω shown in Eq. (42) is given by inserting f (ω)

from Eq. (41) and f ′(ω) into Eq. (14).

ω = sin(ωτd + φm) + ωT cos(ωτd + φm)

−(T + τd) cos(ωτd + φm) + ωT τd sin(ωτd + φm)
.

(42)

Inserting f (ω) and f ′′(ω) into Eq. (16), results in the suffi-
cient condition shown in Eq. (43).

C sin(ωτd + φm) > 0. (43)

ωτd + φm < π holds for the SPM method, therefore, the
sufficient condition is always satisfied.

4 Simplified tuning formulae for FOPDT models

Although simpler versions of Eqs. (15) and (26) for FOPDT
plants are presented in Eqs. (33) and (42), an iterativemethod
is still required to solve these nonlinear equations. Using
dimensional analysis and curve-fitting methods, simple PI
tuning formulae are presented in this section.

The PI controller in Eq. (1) can be written as shown in Eq.
(44).

Gc(s) = Kc

(
1 + 1

Ti s

)
. (44)

To obtain the optimal PI tuning formulae for a FOPDTmodel
given in Eq. (27), the PI parameters can be defined based on
the model parameters, as shown in Eqs. (45) and (46).

Kc = f1(Kp, τd , T ). (45)

Ti = f2(Kp, τd , T ). (46)
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Functions f1 and f2 should be determined to optimize the
objective function and satisfy theGMorPMconstraint.Obvi-
ously, it is a challenging task to obtain these functions as each
controller parameter is a function of three model parameters.
To cope with this issue, we use dimensional analysis to sim-
plify the procedure for determining f1 and f2 [19].

To simplify a problem through reducing the number
of its variables to the smallest number of essential vari-
ables, dimensional analysis can be employed [20]. Without
any change in a given physical system behaviour, relations
between variables in the system are defined as relations
between dimensionless numbers, using dimensional analy-
sis. A dimensionless number has no physical unit and is
formed as a product or ratio of quantities that have units.

Consider a system expressed by Eq. (47)

x1 = f (x2, x3, . . . , xn). (47)

with non-zero x1, x2, . . . , xn . According to Buckingham’s
pi-theorem [20], this equation can be substituted with Eq.
(48)

π1 = g(π2, π3, . . . , πn−m). (48)

where π2, . . . , πn−m are independent dimensionless num-
bers and m is the minimum number of x2, x3, . . . , xn , which
includes all the units in x1, x2, . . . , xn

For the model given by Eq. (27), the unit of the dead
time (τd) and the time constant (T) is the second. The unit
of the plant gain (Kp) depends on the nature of the sys-
tem. As the plant gain along with either the dead time or the
time constant cover all the units in Eqs. (45) and (46), m is
equal to 2. Hence, τd

T , named dimensionless dead time, is the
only dimensionless number in the model. In the PI controller
shown in Eq. (44), the unit of integral time (Ti ) is the second.
The unit of controller gain is the inverse of the unit of plant
gain. Therefore, the remaining dimensionless numbers are
dimensionless gain (KpKc) and dimensionless integral time
( Ti
τd

or Ti
T ). According to Buckingham’s pi-theorem, these

dimensionless numbers are functions of the dimensionless
dead time, as shown in Eqs. (49) and (50) [19].

KpKc = g1
(τd

T

)
. (49)

Ti
τd

= g2
(τd

T

)
. (50)

4.1 Simplified SGM tuning formulae for FOPDT models

Having a constraint on GM, the following procedure is pro-
posed for generating formulae for PI controller tuning.

Fig. 1 Optimal values of KpKc Am and the values of KpKc Am given
by Eq. (51) versus τd

T

Fig. 2 Optimal values of Ti
τd

and the values of Ti
τd

given by Eq. (52)
versus τd

T

Step 1. A range of values of τd
T is selected.

Step 2. Using Eq. (33), ω is determined for each selected
value of τd

T .

Step 3. For each value of τd
T , the optimal values of Kc and

Ti are obtained by inserting the resulting ω from step 2 into
Eqs. (30), (31) and (22).

Step 4. The optimal values of KpKc Am and Ti
τd

versus τd
T are

drawn.

Step 5. Functions g1 and g2 in Eqs. (49) and (50) are deter-
mined by using curve-fitting methods.

Assuming the values of τd
T range from 0.1 to 2, Figs. 1

and 2 show the optimal values of KpKc Am and Ti
τd

across the
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selected values of τd
T , respectively. It can be seen from Fig. 1

that KpKc Am is a function of τd
T , as shown in Eq. (51).

KpKc Am = A1 + B1
τd
T

. (51)

Similarly, the values of Ti
τd

are determined from the values of
τd
T , using Eq. (52).

Ti
τd

= A2
τd
T + B2

. (52)

Using the least-squares minimization approach, A1, B1, A2

and B2 are determined for the best match with Figs. 1 and
2. As a result, the optimal values of A1, B1, A2 and B2 are
0.4331, 1.1191, 1.8095 and 0.8344, respectively.

After simplification, the PI parameters can explicitly be
determined using Eqs. (53) and (54).

KpKc = 1

Am

(
10T

9τd
+ 3

7

)
. (53)

Ti
τd

=
9
5

τd
T + 5

6

. (54)

4.2 Simplified SPM tuning formulae for FOPDT models

Having a constraint on PM, the procedure mentioned in
Sect. 4.1 is used when Eq. (33) in step 2 and Eqs. (30) and
(31) in step (3) are substituted by Eqs. (42), (39) and (40),
respectively. Also, KpKc Am in step 4 should be replaced
by KpKc. Having obtained the optimal values of KpKc and
Ti
τd

for each value of τd
T , the dimensionless gain and dimen-

sionless integral time are given by Eqs. (55) and (56), using
cure-fitting techniques.

KpKc = A1(φm) + B1(φm)
τd
T

,

π

6
≤ φm ≤ π

3
. (55)

Ti
τd

= A2(φm)
τd
T + B2(φm)

τd
T + C2(φm)

,

π

6
≤ φm ≤ π

3
. (56)

where

A1(φm) = 2

5
φm + 1

7
. (57)

B1(φm) = −4

7
φm + 22

23
. (58)

A2(φm) = 5

6
φ2
m − 8

11
φm + 3

7
. (59)

Fig. 3 Values of KpKc given by Eq. (55) versus τd
T

Fig. 4 Values of Ti
τd

given by Eq. (56) versus τd
T

B2(φm) = −2

7
φ2
m + 8

11
φm + 3

5
. (60)

C2(φm) = − 3

10
φm + 4

11
. (61)

Figures 3 and 4 show values of KpKc and
Ti
τd

across τd
T .

5 Simulation results

Tuning is a trade-off between conflicting design objectives.
Both robustness and setpoint regulation are design objec-
tives in conflict with load disturbance rejection [8]. In this
section, the SGM and SPM controllers are compared with
the Astrom–Panagopoulos–Hagglund (APH) controller [7].
Like the proposed method, the APH technique aims at opti-
mal load disturbance rejection. Similarly, this is done by
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Fig. 5 Closed-loop step responses for different values of GM

Table 1 Comparison results of the SGM controllers to control G1(s)

GM 3.000 4.000 5.000 6.000

Kc 1.167 0.875 0.700 0.583

Ti 1.556

Ms 2.153 1.783 1.599 1.486

PM 37.45 47.52 54.72 60.01
I E
I AE 0.658 0.783 0.870 0.928

minimizing the IE criterion. Robustness is guaranteed by
requiring that themaximum sensitivity is less than a specified
value.

Example 1

G1(s) = 1

(s + 1)3
.

Inserting s = jω into G1(s) results in

G1( jω) = α(ω) + jβ(ω)

where

α(ω) = 1 − 3ω2

(1 + ω2)3

β(ω) = ω(ω2 − 3)

(1 + ω2)3

For a constraint on GM, optimal PI parameters are deter-
mined by solving Eq. (15) and inserting the resulting ω into
Eqs. (8), (9) and (22). Solving Eq. (15) by a trial and error
method results in ω = 1.225 r

s . Applying Eq. (62)

Table 2 Comparison results of the SPM controllers to control G1(s)

PM 40 45 50 55 60

ω 0.697 0.650 0.606 0.565 0.523

Kc 1.476 1.374 1.287 1.215 1.154

Ti 2.020 2.123 2.241 2.380 2.541

Ms 2.112 1.947 1.818 1.715 1.633

GM 2.963 3.296 3.646 4.006 4.374
d2Ki
dω2 −5.527 −4.949 −4.442 −3.994 −3.599
I E
I AE 0.812 0.894 0.965 1.000 1.000

Fig. 6 Closed-loop step responses for different values of PM

Fig. 7 Closed-loop step responses resulting from the SGM, SPM and
APH design methods

f ′′(ω) = lim
�→0

f (ω + 2�) − 2 f (ω + �) + f (ω)

�2 . (62)

to f (ω) in Eq. (13), Eq. (16) gives d2Ki
dω2 = −14.71. Hence,

the sufficient condition is satisfied. PI parameters are given
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Table 3 Comparison results of the SGM, SPM and APH methods to
control G1(s)

Method SGM SPM APH

Kc 0.700 1.154 0.862

Ti 1.556 2.541 1.870

b 1.000 1.000 0.930

Ms 1.599 1.633 1.600

GM 5.000 4.374 4.789

PM 54.72 60.00 56.90
I E
I AE 0.870 1.000 0.952

by Kc = 3.5
Am

and Ti = 14
9 . Closed-loop step responses for

different values of GM are shown in Fig. 5. The comparison
results are shown in Table 1.

An interesting property of the SGMtuning formulae is that
the value of GM can be indicated as a parameter to compro-
mise between performance and robustness. Figure 5 clearly
shows that a higher value ofGMresults in an inferior load dis-
turbance rejection but a better setpoint regulation. It should
be noted that higher values of I E

I AE are associated with less
oscillatory systems.

For a constraint on PM, optimal PI parameters are deter-
mined by solving Eq. (26) and inserting the resulting ω into
Eqs. (23), (24) and (22). Considering f (ω) in Eq. (25) and
for PM = 40

◦
, the SPM method results in ω = 0.697,

Kc = 1.476 and Ti = 2.02. The sufficient condition in Eq.

(16) is also satisfied as d2Ki
dω2 = −5.527. Table 2 summarizes

the comparison results for different values of PM.
It can be seen from Table 2 that the sufficient condi-

tion is satisfied for the selected values of PM. Closed-loop
step responses for different values of PM are shown in
Fig. 6. Clearly, a better setpoint regulation but an inferior
load disturbance rejection is provided by a higher value
of PM.

To compare the performance of the SGM, SPM and
APH methods, closed-loop step responses are drawn in
Fig. 7. A slightly better setpoint regulation is given by the
SPM due to a higher value of PM. The setpoint response
given by the APH controller is improved using a two-
degree of freedom structure. Table 3 shows the comparison
results.

An advantage of the SGM and SPM methods is that as
soon as ω is determined and subject to satisfying the suffi-
cient condition, the controller parameters are directly given.
However, the APH controller parameters cannot be resulted
from an explicit set of tuning formulae. They should be com-
puted using a procedure, which may lead to complicated
situations [7].

Example 2 In this example, the SGM method is applied to
a non-minimum phase plant, a pure time delay unit, a long
dead time plant and a plant with complex poles.

Fig. 8 Closed-loop step responses for different values of GM
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Table 4 Comparison results of
the SGM controllers Plant ω Kc Ti Ms GM PM d2Ki

dω2
I E
I AE

G2(s) 0.491 0.268 1.319 2.225 2.000 46.18 −3.368 0.571

0.214 1.825 2.500 55.19 0.737

0.179 1.624 3.000 61.12 0.841

0.153 1.502 3.500 65.31 0.888

G3(s) 2.029 0.177 0.243 1.772 2.500 57.84 −5.482 0.856

0.147 1.584 3.000 63.35 0.974

0.126 1.470 3.500 67.23 1.000

0.111 1.394 4.000 70.12 1.000

G4(s) 0.114 0.231 4.486 2.156 2.000 48.94 −4.933 0.641

0.185 1.778 2.500 57.48 0.845

0.154 1.589 3.000 63.05 0.972

0.132 1.474 3.500 66.98 1.000

G5(s), a = 1 2.236 0.056 0.040 2.090 2.000 37.55 −3.192 0.493

0.037 1.649 3.000 48.52 0.721

0.028 1.479 4.000 55.70 0.792

0.022 1.384 5.000 60.86 0.884

G5(s), a = 2 2.345 0.417 0.248 2.221 2.000 37.04 −14.37 0.521

0.278 1.671 3.000 47.77 0.705

0.208 1.489 4.000 54.58 0.799

0.167 1.391 5.000 59.54 0.858

G6(s) 0.707 0.500 4.000 5.115 2.000 11.81 −2.83 0.324

0.400 4.203 2.500 14.24 0.352

0.333 3.788 3.000 15.64 0.357

G7(s) 1.077 0.474 1.726 5.235 2.000 11.19 −3.656 0.223

0.374 4.832 2.500 12.00 0.221

0.316 4.744 3.000 12.15 0.214

Fig. 9 Closed-loop step responses resulting from the SGM and APH methods
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Table 5 Comparison results of the SGM and APH controllers

Plant Method SGM APH

G2(s) Kc 0.214 0.265

Ti 1.319 1.640

b 1.000 0.870

Ms 1.825 1.797

GM 2.500 2.476

PM 55.19 57.93
I E
I AE 0.737 0.798

G3(s) Kc 0.111 0.158

Ti 0.243 0.335

b 1.000 1.000

Ms 1.394 1.400

GM 4.000 3.846

PM 70.12 71.71
I E
I AE 1.000 1.000

G4(s) Kc 0.154 0.208

Ti 4.486 5.870

b 1.000 1.000

Ms 1.589 1.599

GM 3.000 2.888

PM 63.05 64.70
I E
I AE 0.972 1.000

G5(s), a = 1 Kc 0.056 0.090

Ti 0.040 0.065

b 1.000 1.000

Ms 2.090 2.002

GM 2.000 2.005

PM 37.55 39.24
I E
I AE 0.493 0.510

G5(s), a = 2 Kc 0.167 0.313

Ti 0.248 0.373

b 1.000 0.880

Ms 1.391 1.400

GM 5.000 3.843

PM 59.54 59.16
I E
I AE 0.858 0.867

G2(s) = 1 − 2s

(s + 1)3
. G3(s) = e−s .

G4(s) = e−15s

(s + 1)3
. G5(s) = 9

(s + 1)(s2 + as + 9)
.

G2(s) and G5(s) are not common in control, however, they
are included to demonstrate the wide applicability of the
proposed tuning method. Closed-loop step responses for dif-
ferent values of GM are shown in Fig. 8. The comparison
results are shown in Table 4. Figure 9 shows the fairly sim-
ilar closed-loop step responses provided by the SGM and
APH methods.

Table 6 Comparison results of the SPM controllers

G2(s) PM 30 45 60

ω 0.360 0.306 0.258

Kc 0.560 0.594 0.639

Ti 1.951 2.506 3.337

Ms 4.280 3.347 3.090

GM 1.339 1.457 1.500
d2Ki
dω2 −2.797 −2.501 −2.202
I E
I AE 0.319 0.519 0.722

G3(s) PM 30 45 60

ω 1.605 1.404 1.213

Kc 0.529 0.580 0.636

Ti 0.388 0.507 0.680

Ms 5.042 3.945 3.702

GM 1.288 1.373 1.392
d2Ki
dω2 −3.880 −3.234 −2.678
I E
I AE 0.260 0.400 0.541

G4(s) PM 30 45 60

ω 0.090 0.078 0.068

Kc 0.543 0.591 0.644

Ti 7.086 9.211 12.30

Ms 4.904 3.800 3.512

GM 1.284 1.379 1.412
d2Ki
dω2 −4.727 −4.262 −3.624
I E
I AE 0.283 0.425 0.589

G6(s) PM 30 40 50

ω 0.396 0.317 0.246

Kc 0.439 0.338 0.255

Ti 8.372 11.93 18.54

Ms 2.258 1.782 1.505

GM 3.467 4.925 7.005
d2Ki
dω2 −0.902 −0.584 −0.354
I E
I AE 1.000 1.000 1.000

G7(s) PM 30 45 60

ω 0.707 0.528 0.350

Kc 0.667 0.510 0.345

Ti 3.998 7.187 16.30

Ms 2.429 1.742 1.395

GM 2.068 2.899 4.464
d2Ki
dω2 −1.533 −0.845 −0.367
I E
I AE 0.998 1.000 1.000

Results of comparison of the SGM and APH methods are
summarized in Table 5. Results of applying the SPMmethod
to G2(s), G3(s) and G4(s) are shown in Table 6. Comparing
to each SGM controller, the corresponding SPM controller
has a too high gain, resulting in a low gain margin and a high
maximum sensitivity.
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Fig. 10 Closed-loop step
responses for different values of
PM

Fig. 11 Closed-loop step
responses resulting from the
SPM and APH methods

Example 3 In this example, the SPM method is applied to
the following integrating plants.

G6(s) = 1

s(s + 1)2
. G7(s) = e−s

s
.

Closed-loop step responses for different values of PM are
shown in Fig. 10. The comparison results are shown in
Table 6. Figure 11 shows the closed-loop step responses
resulting from the SPM and APH methods. As shown in
Fig. 11, the setpoint response of the SPM controller can eas-
ily be improved using the setpoint weight. For thesemethods,
the comparison results are summarized in Table 7.

The SPM controller for a FOPDT plant is given by solving
Eq. (42) and inserting the resulting ω into Eqs. (39), (40) and
(22). A plant with dead time and a single pole at origin is
a special case of a FOPDT plant when the time constant
becomes infinite. Such a plant can be described by Eq. (63).

G int(s) = lim
T→∞

Kpe−τd s

T s + 1
= K ′

pe
−τd s

s
. (63)

where K ′
p is given by Eq. (64).

K ′
p = Kp

T
. (64)

Table 7 Comparison results of the SPM and APH controllers

Plant Method SPM APH

G6(s) Kc 0.338 0.286

Ti 11.934 9.000

b 1.000 0.570

Ms 1.782 1.801

GM 4.925 5.436

PM 40.00 36.92
I E
I AE 1.000 0.989

G7(s) Kc 0.345 0.282

Ti 16.30 6.746

b 1.000 0.660

Ms 1.395 1.400

GM 4.464 5.218

PM 60.00 46.71
I E
I AE 1.000 0.897

For the plant in Eq. (63), Eq. (42) is simplified to Eq. (65).

ω = 2

τd
cot(ωτd + φm). (65)

Controller parameters are given by inserting the resulting ω

into Eqs. (66) and (67).
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Kc = ω sin(ωτd + φm)

K ′
p

. (66)

Ti = tan(ωτd + φm)

ω
. (67)

Using Eqs. (65)–(67), results shown in Table 6 for G7(s) are
obtained in a simpler manner.

Results of applying the SGMmethod to G6(s) and G7(s)
are shown in Table 4. Comparing to the corresponding SPM
controller, the SGM controller does not have a large enough
integral time, resulting in a low phase margin and a high
maximum sensitivity.

6 Conclusions

To consider both performance and robustness requirements,
this paper presented a PI tuning method for the optimization
of load disturbance rejection with a constraint either on the
GM or on the PM. The design method resulted in the SGM
and SPM tuning formulae that could be adapted for the type
of system required. Using dimensional analysis and curve-
fitting techniques, a simplified form of tuning formulae for
FOPDT models was also determined. Simulation results for
a variety of examples including integrating, non-minimum
phase and long dead time plants showed that the proposed
tuning method was effective in dealing with a wide range of
plants.

For industrial applications, it is often required thatGMand
PM specifications fall into desirable ranges. Future research
will attempt to minimize the IE criterion subject to simulta-
neously satisfying predefined constraints on gain and phase
margins.
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