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Abstract The aim of this work is to investigate the global
dynamical behaviors of two human immunodeficiency virus
infection models with cure of infected cells in eclipse stage
and Cytotoxic T Lymphocytes (CTL) immune response. The
first model is formalized by ordinary differential equations
and the second is described by partial differential equa-
tions. By constructing appropriate Lyapunov functionals, the
global stability of both models is established and character-
ized by two threshold parameters that are the basic reproduc-
tion number R0 and the CTL immune response reproduction
number R1. Furthermore, the models and results presented
in many previous studies are extended and improved.

Keywords HIV infection · CTL immune response ·
Diffusion · Global stability

1 Introduction

During human immunodeficiency virus (HIV) infection, a
part of infected cells in eclipse stage returns to the unin-
fected state. In addition, Cytotoxic T Lymphocytes (CTL)
cells play an important role in antiviral defense by killing
the productive infected cells. Therefore, many mathemati-
cal models has been proposed to model the role of CTL
immune response in HIV infection. One of the earliest of
these models was proposed by Nowak and Bangham [1] in
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order to describe the interaction between susceptible cells,
infected cells, viruses and CTL cells. Further, the model of
[1] was improved by many researchers (see for example, [2–
5]). All the above models have not considered the cure of
infected cells in eclipse stage. For this reason, Rong et al. [6]
constructed an HIV infection model with bilinear incidence
rate and cure of infected cells in eclipse stage, but they not
considered the CTL immune response and they only estab-
lished the local stability of equilibria. The global stability
was investigated by Buonomo and Vargas-De-L?on [7]. To
improve the model [6], Hu et al. [8] replaced the bilinear
incidence rate by a saturated incidence rate and they inves-
tigated the global stability of the improved model. In 2015,
Wang et al. [9] replaced the saturated incidence rate by the
Beddington–Deangelis functional response and they estab-
lished the local and global stability of equilibria. In addition,
Maziane et al. [10] replaced the saturated incidence rate by
the Hattaf’s [11] incidence rate and they extended the ODE
model to a system with partial differential equations in order
to take into account the mobility of the virus. The global
stability of both models is investigated by constructing suit-
able Lyapunov functionals. In [12], Lv et al. replaced the
bilinear incidence rate by the Beddington–DeAngelis func-
tional response and they included the CTL immune response
into the model [6]. By constructing suitable Lyapunov func-
tionals, they investigated the global stability of equilibria in
the terms of the basic reproduction number and the immune
response reproduction number.

To extend themodel of Lv et al. [12] and improve theODE
models presented in [6–10] by considering the effect of CTL
immune response, we propose the following model

dT

dt
= λ − μT T (t) − f (T (t), V (t))V (t) + ρE(t),
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dE

dt
= f (T (t), V (t))V (t) − (μE + ρ + γ )E(t),

d I

dt
= γ E(t) − μI I (t) − pI (t)C(t), (1)

dV

dt
= k I (t) − μV V (t),

dC

dt
= aI (t)C(t) − μCC(t),

where T (t), E(t), I (t), V (t) andC(t) denote the densities of
uninfected CD4+ T cells, infected cells in the eclipse stage
(unproductive infected cells), productive infected cells, free
virus particles andCTL cells at time t , respectively. The para-
meter λ is the production rate of the uninfected cells, μT is
their death rate and f (T, V ) is the rate of uninfected cells
to become infected by virus. The parameters μE , μI and
μV denote the death rates of unproductive infected cells,
productive infected cells and virus, respectively. The con-
stant ρ is the rate at which the unproductive infected cells
return to the uninfected cells. The constant γ is the rate
at which infected cells in the eclipse stage become produc-
tive infected cells and k is the production rate of virions by
infected cells. The productive infected cells are killed by
CTL cells at rate p while a denotes the proliferation rate
of CTL cells. Here, we consider the Hattaf’s [11] incidence
rate of the form f (T, V ) = βT

1+α1T+α2V+α3T V
, where α1,

α2, α3 ≥ 0 are the saturation factors measuring the psy-
chological or inhibitory effect and β > 0 is the infection
coefficient. We recall that this incidence rate includes the
common types such as the bilinear incidence (or mass action
incidence) when α1 = α2 = α3 = 0, the saturated incidence
rate when α1 = α3 = 0 or α2 = α3 = 0, the Beddington-
DeAngelis functional response introduced in [13,14] when
α3 = 0, and Crowley-Martin functional response presented
in [15] and used in [16,17] when α3 = α1α2. It is important
to note that the model of Lv et al. [12] is a special case of
system (1) when α3 = 0. The first aim of this study is the
generalization of the main results presented in [12].

System (1) assumes that cells and viruses are well mixed,
and ignores the mobility of cells and viruses. Motivated by
the works [18–21] and make the model more realistic by
considering the mobility of cells and viruses, we propose the
following diffusive HIV infection model

∂T

∂t
= λ − μT T (x, t) − f (T (x, t), V (x, t))V (x, t)

+ ρE(x, t),
∂E

∂t
= f (T (x, t), V (x, t))V (x, t)

− (μE + ρ + γ )E(x, t), (2)
∂ I

∂t
= γ E(x, t) − μI I (x, t) − pI (x, t)C(x, t),

∂V

∂t
= d�V (x, t) + k I (x, t) − μV V (x, t),

∂C

∂t
= aI (x, t)C(x, t) − μCC(x, t),

where T (x, t), I (x, t), E(x, t), V (x, t) and C(x, t) are the
densities of uninfected CD4+ T cells, infected cells in the
eclipse stage, productive infected cells, free virus particles
and CTL cells at location x and time t , respectively. The
positive constant d is the diffusion coefficient of virus, and
the other positive constant parameters have same meanings
as in ODE model (1).

In this study, we consider our model (2) with homogenous
Neumann boundary condition

∂V

∂ν
= 0 on ∂	 × (0,+∞), (3)

and initial conditions

T (x, 0) = φ1(x) ≥ 0, E(x, 0) = φ2(x) ≥ 0,
I (x, 0) = φ3(x) ≥ 0, V (x, 0) = φ4(x) ≥ 0,
C(x, 0) = φ5(x) ≥ 0, x ∈ 	̄,

(4)

where 	 is a bounded domain in IRn with smooth boundary

∂	, � =
∑n

i=1

∂2

∂x2i
is the Laplacian operator and ∂V

∂ν
is

the outward normal derivative on ∂	. Biologically speaking,
the Neumann boundary condition means that the free virus
particles do not move across the boundary ∂	.

The organization of this paper is as follows. In the next
section, we well first determine the equilibria of our ODE
model and derive two threshold parameters for viral infection
R0 and for CTL immune response R1. After, we establish the
global stability of these equilibria that are the infection-free
equilibrium, the immune-free infection equilibrium and the
chronic infection equilibrium. Further,we focus on the global
dynamics of our PDE model in Sect. 3. In order to validate
our theoretical results, numerical simulations are presented
in Sect. 4. Finally, a brief conclusion and discussion are given
in Sect. 5.

2 Global stability of the ODE model

System (1) has always an infection-free equilibrium of the

form Q0(
λ

μT
, 0, 0, 0, 0).

Hence, the basic reproduction number of (1) is given by

R0 = λβkγ

μIμV (λα1 + μT )(ρ + μE + γ )
. (5)

We recall that R0 represents the number of secondary infec-
tions produced by one productive infected cell during the
period of infection when all cells are uninfected.
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The other equilibria of system (1) are solutions of the
following system

λ − μT T − f (T, V )V + ρE = 0, (6)

f (T, V )V − (μE + ρ + γ )E = 0, (7)

γ E − μI I − pIC = 0, (8)

k I − μV V = 0, (9)

aIC − μCC = 0. (10)

By (5), we get C = 0 or I = μC
a .

If C = 0, using (6)–(4), we obtain E = λ−μT T
μE+γ

, I =
γ (λ−μT T )
μI (μE+γ )

, V = kγ (λ−μT T )
μIμV (μE+γ )

and

f

(
T,

kγ (λ − μT T )

μIμV (μE + γ )

)
= (ρ + μE + γ )μVμI

kγ
.

Since E = λ−μT T
μE+γ

≥ 0, we have T ≤ λ
μT

. So, there is no

biological equilibrium when T > λ
μT

. Define the function

g1 on the interval
[
0, λ

μT

]
by

g1(T ) = f

(
T,

kγ (λ − μT T )

μIμV (μE + γ )

)
− (ρ + μE + γ )μVμI

kγ
.

We have g1(0) = − (ρ+μE+γ )μV μI
kγ < 0, g1(

λ
μT

) =
(ρ+μE+γ )μV μI

kγ (R0 − 1) and

g′
1(T ) = ∂ f

∂T
− kγμT

μIμV (μE + γ )

∂ f

∂V
> 0.

If R0 > 1, there exist an other biological equilibrium
Q1(T1, E1, I1, V1, 0) with T1 ∈ (0, λ

μT
), E1 = λ−μT T1

μE+γ
,

I1 = γ (λ−μT T1)
μI (μE+γ )

and V1 = kγ (λ−μT T1)
μIμV (μE+γ )

. This equilibrium
correspond to positive levels of healthy cells, unproductive
infected cells, productive infected cells and virus, but noCTL
immune response.

If C �= 0, then I = μC
a . Using (6)–(4), we deduce E =

λ−μT T
μE+γ

, V = kμC
aμV

and

f

(
T,

kμC

aμV

)
= aμV (μE + ρ + γ )(λ − μT T )

kμC (μE + γ )
.

Since C = aγ (λ−μT T )−μIμC (μE+γ )
pμC (μE+γ )

≥ 0, we have T ≤ λ
μT

−
μIμC (μE+γ )

aγμT
. Then there exists no equilibrium when T >

λ
μT

− μIμC (μE+γ )
aγμT

or λ
μT

− μIμC (μE+γ )
aγμT

≤ 0.

Define the function g2 on the interval
[
0, λ

μT
− μIμC (μE+γ )

aγμT
]

by

g2(T ) = f

(
T,

kμC

aμV

)
− aμV (μE + ρ + γ )(λ − μT T )

kμC (μE + γ )
.

We have g2(0) = −λaμV (μE+ρ+γ )
kμC (μE+γ )

< 0 and g′
2(T ) = ∂ f

∂T +
μT aμV (μE+ρ+γ )

kμC (μE+γ )
> 0.

In addition to R0, we define the CTL immune response
reproduction number R1 of our ODE model by

R1 = aI1
μC

, (11)

where 1
μC

represents the average life expectancy of CTL
cells, and I1 is the number of productive infected cells at
Q1. Hence, R1 represents the average number of CTL cells
activated by the productive infected cellswhen viral infection
is successful.
If R1 < 1, then I1 <

μC
a , T1 > λ

μT
− μIμC (μE+γ )

aγμT
and

g2

(
λ

μT
− μIμC (μE + γ )

aγμT

)
= f

(
λ

μT

−μIμC (μE + γ )

aγμT
,
kμC

aμV

)
− (ρ + μE + γ )μVμI

kγ

< f (T1, V1) − (ρ + μE + γ )μVμI

kγ
.

Hence, g2( λ
μT

− μIμC (μE+γ )
aγμT

) < 0. Then there is no equilib-
rium when R1 < 1.
If R1 > 1, then I1 >

μC
a , T1 < λ

μT
− μIμC (μE+γ )

aγμT
and

g2(
λ

μT
− μIμC (μE+γ )

aγμT
) > 0. Therefore, if R1 > 1, there

exists an infection equilibrium Q2(T2, E2, I2, V2,C2) with
T2 ∈ (0, λ

μT
− μIμC (μE+γ )

aγμT
), E2 = λ−μT T2

μE+γ
, I2 = μC

a , V2 =
kμC
aμV

and C2 = aγ (λ−μT T2)−μIμC (μE+γ )
pμC (μE+γ )

. This equilibrium
denotes the state inwhich both the virus and theCTL immune
response are present.

Summarizing the above discussions in the following
result.

Theorem 2.1 (i) When R0 ≤ 1, the system (1) has always

an infection-free equilibrium of the form Q0(
λ

μT
, 0, 0,

0, 0).
(ii) When R0 > 1, the system (1) has an immune-free infec-

tion equilibrium of the form Q1(T1, E1, I1, V1, 0) with

T1 ∈ (0,
λ

μT
), E1 = λ−μT T1

μE+γ
, I1 = γ (λ−μT T1)

μI (μE+γ )
and

V1 = kγ (λ−μT T1)
μIμV (μE+γ )

.
(iii) When R1 > 1, the system (1) has an infection equi-

librium of the form Q2(T2, E2, I2, V2,C2) with T2 ∈
(0, λ

μT
− μIμC (μE+γ )

aγμT
), E2 = λ−μT T2

μE+γ
, I2 = μC

a ,

V2 = kμC
aμV

and C2 = aγ (λ−μT T2)−μIμC (μE+γ )
pμC (μE+γ )

.

Now,we focus on the global stability of the three equilibria
of system (1). At first, we have

Theorem 2.2 If R0 ≤ 1, then the infection-free equilibrium
Q0 is globally asymptotically stable.
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Proof Consider the following Lyapunov functional

W0(T, E, I, V,C) = T − T0 −
∫ T

T0

f (T0, 0)

f (S, 0)
dS

+ ρ(T − T0 + E)2

2(1 + α1T0)(μT + μE + γ )T0

+ ρ + μE + γ

γ
I + E + μI (ρ + μE + γ )

kγ
V

+ p(ρ + μE + γ )

aγ
C,

where T0 = λ
μT

.
Calculating the time derivative ofW0 along the positive solu-
tions of system (1), we obtain

dW0

dt
=

(
1 − f (T0, 0)

f (T, 0)

)
Ṫ

+ ρ

(1 + α1T0)(μT + μE + γ )T0
(T − T0 + E)(Ṫ + Ė)

+ ρ + μE + γ

γ
İ + Ė + μI (ρ + μE + γ )

kγ
V̇

+ p(ρ + μE + γ )

aγ
Ċ .

Noting that λ = μT T0, we get

dW0

dt
=

(
1 − f (T0, 0)

f (T, 0)

)
μT (T0 − T ) + f (T0, 0) f (T, V )

f (T, 0)
V

+ ρ

(
1 − f (T0, 0)

f (T, 0)

)
E − ρμT (T − T0)2

(1 + α1T0)(μT + μE + γ )T0

− ρ(μE + γ )E2

(1 + α1T0)(μT + μE + γ )T0

+ ρE

(1 + α1T0)T0

(
T0 − T

) − μIμV (ρ + μE + γ )

kγ
V

− μC p(ρ + μE + γ )

aγ
C

= −
(
1

T
+ ρ

(μT + μE + γ )T0

)
μT (T − T0)2

1 + α1T0

− ρ(μE + γ )E2

(1 + α1T0)(μT + μE + γ )T0

− ρ(T − T0)2E

(1 + α1T0)T T0
+ μIμV (ρ + μE + γ )

kγ
(R0 − 1)V

− (α2 + α3T )V 2

1 + α1T + α2V + α3T V
f (T0, 0)

− μC p(ρ + μE + γ )

aγ
C.

Therefore, dW0
dt ≤ 0 if R0 ≤ 1. Further, dW0

dt = 0 if andonly if
T = λ

μT
, E = 0, I = 0, V = 0 andC = 0.Hence, the largest

compact invariant set in {(T, E, I, V,C)| dW0
dt = 0} is just the

singleton {Q0}. Thus, the global stability of the infection-free
equilibrium Q0 follows from LaSalle’s invariance principle
[22]. 	

Theorem 2.3 The immune-free infection equilibrium Q1 of
system (1) is globally asymptotically stable if R1 ≤ 1 < R0

and

R0 ≤ 1

+ [μTμIμV (μE +γ )+α2μT λkγ ](μE + ρ+γ )+ρα3kγ λ2

ρμIμV (μE+ρ+γ )(μT +α1λ)
.

(12)

Proof Construct a Lyapunov functional W1 as follows

W1(T, E, I, V,C) = T − T1 −
∫ T

T1

f (T1, V1)

f (S, V1)
dS

+ ρ(1 + α2V1)(T − T1 + E − E1)
2

2(1 + α1T1 + α2V1 + α3T1V1)(μT + μE + γ )T1

+ f (T1, V1)V1
γ E1

I1�

(
I

I1

)
+ E1�

(
E

E1

)

+ μI f (T1, V1)V1
kγ E1

V1�

(
V

V1

)
+ p f (T1, V1)V1

aγ E1
C,

where �(x) = x − 1 − ln(x).
The time derivative of W0 along the positive solutions of
system (1) satisfies

dW1

dt
=

(
1 − f (T1, V1)

f (T, V1)

)
Ṫ

+ ρ(1 + α2V1)(T − T1 + E − E1)(Ṫ + Ė)

(1 + α1T1 + α2V1 + α3T1V1)(μT + μE + γ )T1

+ f (T1, V1)V1
γ E1

(
1 − I1

I

)
İ +

(
1 − E1

E

)
Ė

+ μI f (T1, V1)V1
kγ E1

(
1 − V1

V

)
V̇

× p f (T1, V1)V1
aγ E1

Ċ .

By λ = μT T1 + f (T1, V1)V1 − ρE1, we get

dW1

dt
= − (1 + α2V1)(T − T1)2

T T1(1 + α1T1 + α2V1 + α3T1V1)

(
(μT T1

− ρE1) + ρμT T

μT + μE + γ
+ ρE

)

− ρ(E − E1)
2(1 + α2V1)(μE + γ )

T1(1 + α1T1 + α2V1 + α3T1V1)(μT + μE + γ )

+ f (T1, V1)V1

(
5 − f (T1, V1)

f (T, V1)
− I1E

E1 I

− f (T, V )

f (T1, V1)

V E1

V1E
− V1 I

V I1
− f (T, V1)

f (T, V )

)
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− f (T1, V1)(1+α1T )(α2+α3T )(V − V1)2

(1+α1T+α2V1+α3T V1)(1+α1T+α2V+α3T V )

+ pμC f (T1, V1)V1
aγ E1

(R1 − 1)C.

Using the arithmetic-geometric inequality, we get

5 − f (Ti , Vi )

f (T, Vi )
− Ii E

Ei I
− f (T, V )

f (Ti , Vi )

V Ei

Vi E
− Vi I

V Ii

− f (T, Vi )

f (T, V )
≤ 0, for all i = 1, 2. (13)

Therefore, dW1
dt ≤ 0 if R1 ≤ 1 and ρE1 � μT T1.

Obviously, the condition ρE1 � μT T1 is equivalent to

R0 ≤ 1

+[μTμIμV (μE + γ ) + α2μT λkγ ](μE + ρ + γ ) + ρα3kγ λ2

ρμIμV (μE + ρ + γ )(μT + α1λ)
.

In addition, dW1
dt = 0 if and only if T = T1, E = E1, I = I1,

V = V1 and C = 0. Hence, the largest compact invariant
set in {(T, E, I, V,C)| dW1

dt = 0} is the singleton {Q1}. This
proves the global stability of Q1 by using LaSalle invariance
principle. 	


Remark 2.4 If α3 = 0, then the condition (12) becomes

R0 ≤ 1 + [μTμIμV (μE + γ ) + α2μT λkγ ](μE + ρ + γ )

ρμIμV (μE + ρ + γ )(μT + α1λ)
,

which is the condition given by Lv et al. [12] that ensures
the global asymptotic stability of the immune-free infection
equilibrium.

It is important to see that

lim
ρ→0

[μTμIμV (μE + γ ) + α2μT λkγ ](μE + ρ + γ ) + ρα3kγ λ2

ρμIμV (μE + ρ + γ )(μT + α1λ)

= ∞,

lim
γ→∞

[μTμIμV (μE + γ ) + α2μT λkγ ](μE + ρ + γ ) + ρα3kγ λ2

ρμIμV (μE + ρ + γ )(μT + α1λ)

= ∞.

According to theorem 2.3, we get the following result

Corollary 2.5 (i) The immune-free infection equilibrium
Q1 is globally asymptotically stable if R1 ≤ 1 < R0

and ρ sufficiently small.
(ii) The immune-free infection equilibrium Q1 is globally

asymptotically stable if R1 ≤ 1 < R0 and γ sufficiently
large.

Finally,we investigate the global stability of the third equi-
librium Q2.

Theorem 2.6 The chronic infection equilibriumwith immune
response Q2 is globally asymptotically stable if R1 > 1 and

kβμCρ ≤ α1λρaμV + μT (ρ + μE + γ )(α2kμC + aμV )

+α3ρλkμC . (14)

Proof Define a Lyapunov functional W2 as follows

W2(T, E, I, V,C) = T − T2 −
∫ T

T2

f (T2, V2)

f (S, V2)
dS

+ ρ(1 + α2V2)(T − T2 + E − E1)
2

2(1 + α1T2 + α2V2 + α3T2V2)(μT + μE + γ )T2

+ f (T2, V2)V2
γ E2

I2�

(
I

I2

)
+ E2�

(
E

E2

)

+ (μI + pC2) f (T2, V2)V2
kγ E2

V2�

(
V

V2

)

+ p f (T2, V2)V2
aγ E2

C2�

(
C

C2

)
.

Calculating the derivative of W2 along the positive solutions
of the system (1), we have

dW2

dt
=

(
1 − f (T2, V2)

f (T, V2)

)
Ṫ

+ ρ(1 + α2V2)(T − T2 + E − E2)

(1 + α1T2 + α2V2 + α3T2V2)(μT + μE + γ )T2

(
Ṫ + Ė

)

+ f (T2, V2)V2
γ E2

(
1 − I2

I

)
İ +

(
1 − E2

E

)
Ė

+ f (T2, V2)V2
kγ E2

(μI + pC2)

×
(
1 − V2

V

)
V̇

p f (T2, V2)V2
aγ E2

(
1 − C2

C

)
Ċ .

Applying the equality λ = μT T2 + f (T2, V2)V2 − ρE2, we
get

dW2

dt
=

(
1 − f (T2, V2)

f (T, V2)

)
μT (T2 − T )

+ f (T2, V2) f (T, V )

f (T, V2)
V

− μT ρ(1 + α2V2)

(1 + α1T2 + α2V2 + α3T2V2)(μT + μE + γ )T2
(T − T2)

2

− ρ(1 + α2V2)(μE + γ )

(1 + α1T2 + α2V2 + α3T2V2)(μT + μE + γ )T2
(E − E2)

2

− ρ(1 + α2V2)(E − E2)(T − T2)

(1 + α1T2 + α2V2 + α3T2V2)T2

+
(
1 − f (T2, V2)

f (T, V2)

)(
(μE + γ )E2 + ρE

)

+ f (T2, V2)V2

[
− I2E

I E2
+ μI I2

γ E2

− μV V (μI + pC2)

kγ E2
− V2 I (μI + pC2)

V γ E2

+ μV V2(μI + pC2)

kγ E2
+ pμCC2

aγ E2

]
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Fig. 1 Stability of the infection-free equilibrium Q0 for system (1)

− f (T, V )E2

E
+ f (T2, V2)V2,

= − (1 + α2V2)(T − T2)2

T T2(1 + α1T2 + α2V2 + α3T2V2)

(
(μT T2 − ρE2)

+ ρμT T

μT + μE + γ
+ ρE

)

− ρ(E − E2)
2(1 + α2V2)(μE + γ )

T2(1 + α1T2 + α2V2 + α3T2V2)(μT + μE + γ )

+ f (T2, V2)V2

(
5 − f (T2, V2)

f (T, V2)
− I2E

E2 I

− f (T, V )

f (T2, V2)

V E2

V2E
− V2 I

V I2
− f (T, V2)

f (T, V )

)

− f (T2, V2)V2(1 + α1T )(α2 + α3T )(V − V2)2

V2(1 + α1T + α2V2 + α3T V1)(1 + α1T + α2V + α3T V )
.

From (13), we deduce that dW2
dt ≤ 0 if R1 > 1 and ρE2 �

μT T2.
However, this last condition is equivalent to

kβμCρ ≤ α1λρaμV + μT (ρ + μE + γ )(α2kμC + aμV )

+α3ρλkμC .

Note that dW1
dt = 0 if and only if T = T2, E = E2, I = I2,

V = V2 andC = C2.Hence, the largest compact invariant set
in {(T, E, I, V,C)| dW2

dt = 0} is the singleton {Q2}. Based
on the LaSalle invariance principle, we deduce that Q2 is
globally asymptotically stable. This completes the proof. 	


We remark that the condition (14) holds for ρ sufficiently
small, or γ sufficiently large. Hence, we have the following
corollary.

Corollary 2.7 (i) The chronic infection equilibrium Q2 is
globally asymptotically stable if R1 > 1 and ρ suffi-
ciently small.

(ii) The chronic infection equilibrium Q2 is globally asymp-
totically stable if R1 > 1 and γ sufficiently large.

In addition, we have the following remark.

Remark 2.8 If α3 = 0, then the condition (14) becomes

kβμCρ ≤ α1λρaμV + μT (ρ + μE + γ )(α2kμC + aμV ),

which is the condition given by Lv et al. [12] that ensures the
global asymptotic stability of the chronic infection equilib-
rium.

3 Global stability of the PDE model

It is not hard to see that the PDE model (2) has the same
three equilibria as the ODEmodel (1), namely, the infection-
free equilibrium Q0, the immune-free infection equilibrium
Q1 which exists whenever R0 > 1and the chronic infection
equilibrium Q2 which exists if R1 > 1.

Now, we investigate the global stability of problem (2)–
(4) by constructing appropriate Lyapunov functionals. The
construction of these Lyapunov functionals is based on the
method proposed by Hattaf and Yousfi [23].
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Fig. 2 Stability of the infection-free equilibrium Q0 for system (2)

Theorem 3.1 For all diffusion coefficients, we have

(i) The infection-free equilibrium Q0 of problem (2)–(4) is
globally asymptotically stable if R0 ≤ 1.

(ii) The immune-free infection equilibrium Q1 of problem
(2)–(4) is globally asymptotically stable if R1 ≤ 1 < R0

and the condition (12) holds .

(iii) The chronic infection equilibrium Q2 of problem (2)–
(4) is globally asymptotically stable if R1 > 1 and the
condition (14) holds.

Proof Let u(t, x) = (
T (t, x), I (t, x), V (t, x), E(t, x),

C(t, x)
)
be a solution of (2)–(4), and we put

Li =
∫

	

Wi
(
u(x, t))dx,

whereWi is the Lyapunov functional for the ODE model (1)
at Qi , i = 0, 1, 2.
It is easy to check that Wi satisfies the condition (15) given
in [23], for all i = 0, 1, 2. From Proposition 2.1 given in Ref.
[23], we deduce that Li is a Lyapunov functional for problem
(2)–(4) at Qi . This completes the proof. 	


4 Numerical simulations

In this section, we present some numerical simulations to
validate our theoretical results. Firstly,we consider parameter
values 
 = 10 cells μl−1 day−1, μT = 0.0139 day−1,
β = 2.4 × 10−5 μl virion−1 day−1, α1 = 0.1, α2 = 0.01,
α3 = 0.00001, ρ = 0.01 day−1, γ = 0.01 day−1,μI = 0.27
day−1,μE = 0.0347day−1, p = 0.001 cell−1 μl day−1, k =
1200 virion cell−1 day−1, μV = 3 day−1, a = 0.002 cell−1

μl day−1,μC = 0.1 day−1 and d = 0.1.Here, the values p,a
andμC are taken from [1,5], while the other parameter values
are chosen from [10]. For these set of parameter values, we
have R0 = 0.1141 < 1. Hence, systems (1) and (2) have an

0 50 100 150
50

100

150

200

250

300

350

400

Time (days)

U
ni

nf
ec

te
d 

ce
lls

0 20 40 60 80 100 120
0

50

100

150

200

250

Time (days)

U
np

ro
du

ct
iv

e 
ce

lls

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (days)

Pr
od

uc
tiv

e 
ce

lls

0 50 100 150 200
0

2000

4000

6000

8000

Time (days)

Vi
ru

s

0 20 40 60 80 100
0

10

20

30

40

50

60

Time (days)

C
TL

0

20

40

02000400060008000
0

20

40

60

IE

V

Fig. 3 Stability of the immune-free infection equilibrium Q1 for system (1)
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Fig. 4 Stability of the immune-free infection equilibrium Q1 for sys-
tem (2)

infection-free equilibrium Q0(719, 4245, 0, 0, 0, 0)which is
globally asymptotically stable according toTheorems2.2 and
3.1 (i). Figures 1 and 2 illustrate this result.

Secondly, we choose β = 0.0012 μl virion−1 day−1

and do not change the other parameter values. By calcu-
lation, we have R0 = 3.2055 > 1, R1 = 0.1427 < 1

and [μT μIμV (μE+γ )+α2μT λkγ ](μE+ρ+γ )+ρα3kγ λ2

ρμIμV (μE+ρ+γ )(μT +α1λ)
= 2.2725.

In this case, both systems have an immune-free equilibrium
Q1(138.53, 183.16, 6.80, 2724.2, 0). By Theorems 2.3 and
3.1 (ii), Q1 is globally asymptotically stable (see Figs. 3 and
4). We see that in the absence of CTL cells, the number of
CD4+ T cells decreases to the value 138.53, which means
that the patient enters in the phase AIDS (< 200 cell mm−3).

Thirdly, we change one parameter which is a = 0.065
cell−1 μl day−1. By calculation, we have R1 = 4.6379 > 1.
Then systems (1) and (2) have a chronic infection equilib-
rium Q2(370.56, 106.97, 1.57, 629.65, 409.12). Therefore,
by Theorems 2.6 and 3.1 (iii), Q2 is globally asymptotically
stable (see Figs. 5 and 6). In this case, we see that in the pres-
ence of CTL cells, the number of CD4+ T cells increases to
the value 252.0792 > 200 cell mm−3, which means that the
patient is no longer in the phase AIDS.

Finally, in Fig. 7, we see that the dynamics of HIV
infection converges to steady state Q1 for all initial con-
ditions. However, the condition (12) is not satisfied with
R0 = 4.1501 > 1, R1 = 0.0999 < 1 and

1 + [μTμIμV (μE + γ ) + α2μT λkγ ](μE + ρ + γ ) + ρα3kγ λ2

ρμIμV (μE + ρ + γ )(μT + α1λ)

= 2.3910.
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Fig. 5 Stability of the chronic infection equilibrium Q2 for system (1)
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Fig. 6 Stability of the chronic infection equilibrium Q2 for system (2)

Similarly, in Fig. 8, we see that the dynamics of HIV
infection converges to steady state Q2 for all initial con-
ditions. However, the condition (14) is not satisfied with
R1 = 3.4338 and α1λρaμV + μT (ρ + μE + γ )(α2kμC +

aμV ) + α3ρλkμC − kβμCρ = −0.0041 < 0. Therefore,
the conditions (12) and (14) are not necessary for the global
stability of Q1 and Q2.

5 Conclusion and discussion

In this paper, we have proposed two HIV infection mod-
els. The first is an ODE model with cure of infected cells in
eclipse stage, CTL immune response and Hattaf’s incidence
rate which includes the traditional bilinear incidence rate, the
saturated incidence rate, the Beddington–DeAngelis func-
tional response and the Crowley-Martin functional response.
The second is a PDE model that extends the first one by
taking into account the diffusion of virus. The two models
admits three equilibria, namely, the infection-free equilib-
rium Q0, the immune-free infection equilibrium Q1 which
exists whenever R0 > 1 and the chronic infection equilib-
rium Q2 which exists if R1 > 1. The global stability of these
three equilibria have obtained in terms of the basic reproduc-
tion number R0 and the CTL immune response reproduction
number R1. It is shown that Q f is globally asymptotically
stable when R0 ≤ 1, Q1 is globally asymptotically stable
when R1 ≤ 1 < R0 and the condition (12) holds, and Q2 is
globally asymptotically stable when R1 > 1 and the condi-
tion (14) holds.

In addition, we remark that if the cure rate ρ is sufficiently
small or the value of γ is sufficiently large, the conditions
(12) and (14) are satisfied. From the numerical simulations
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Fig. 7 Stability of the immune-free infection equilibrium Q1 with condition (12) not satisfied
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Fig. 8 Stability of the chronic infection equilibrium Q2 with condition (14) not satisfied

(Figs. 7 and 8), we see that both equilibria Q1 and Q2 remain
globally asymptotically stable without the conditions (12)
and (14) are satisfied.

Observing that the basic reproduction number R0 is
independent of the CTL immune parameters. Further, by
comparing the components of healthy cells, infected cells
in the eclipse stage, productive infected cells and viral load
before and after the activation of CTL response, we have
T2>T1, E2 < E1, I2 < I1 and V2 < V1 when R1 > 1.
Therefore, we deduce that the activation of CTL immune
response is unable to eliminate the virus in the host popula-
tion, but plays an important role in HIV infection by reducing
the viral load, increasing the healthy cells and decreasing the
two classes of infected cells.
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