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Abstract Frequency domain technique is adapted here
together with an optimization scheme to design controllers
for a class of linear time-invariant single-input single-output
systems (SISO) with a loop delay, such that the closed loop
system can be made stable in two distinct pre-selected delay
intervals [0, h1) and (h2, h3), where h1 < h2 < h3. This
stability-certifying approach is demonstrated over case stud-
ies, including an experiment.
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1 Introduction

In many real-world applications involving sensing, actua-
tion, and decision making, time delays arise naturally. This
is mainly due to the time needed to sense and transmit infor-
mation, and to prepare and execute actuator commands. The
presence of delays may cause poor performance, import
instability, and posemajor limitations on the ability to control
[1–4]. In the context of linear time-invariant (LTI) systems,
effects of delays can be interpreted based on the behavior
of system eigenvalues with respect to the delay parameter.
Since delays manipulate the eigenvalues, if the controller is
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not properly designed, then these eigenvalues with the influ-
ence of delays may bring low damping or instability to the
dynamics. To remedy this, one needs to carefully design the
controller, incorporating explicitly the delay parameter into
the design process.

Control design in the presence of delays is challenging.
Some solutions to this problem were proposed based on the
Lyapunov stability theory [2] and even beyond LTI systems
[5,6], where delay-range-dependent stability in the pres-
ence of time-varying delays was studied, both in continuous
and discrete time. Lyapunov-based approaches are indeed
versatile as they can address a large class of control prob-
lems; and are attractive as the corresponding problems can
be solved efficiently via optimization tools under convex-
ity assumptions, and even for multiple controller gains. On
the other hand, conservatism posed on stability conditions
and difficulties in designing structured controllers lead one
to pursue alternatives especially in the case of LTI systems.
One option is to formulate the control problem in frequency
domain and take an eigenvalue-based approach. Know-how
of control design in the frequency domain however is much
limited, mainly characterized by the arising control problem
being infinite dimensional [7] and the inherent difficulties in
handling multiple design parameters using the system char-
acteristic equation. Many studies along these lines therefore
remained to focus on designing few parameters for LTI SISO
systems. Some key studies can be found in [8–14].

Frequency domain techniques are however still attractive
as they can be used to analyze the stability of LTI systems,
without any conservatism. Moreover, these techniques can
be used to formulate structured controllers. In this direction,
most advancements were made by focusing on the rightmost
root of the closed-loop system characteristic equation, and
tuning the controller gains accordingly [14–17]. In this effort,
the delay in the control loop is given and/or designed together
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with the controller while optimizing the real part of the
rightmost root. Other contributions in the literature include
delay-dependent stability where by tuning the controller
parameters stability can be achieved within a delay margin
τ , that is, the system is stable for all delays τ satisfying τ ∈
[0, τ ) [18]. Complementary to this is the well-known delay
independent stability (DIS)where the system is stable regard-
less of the amount of delays, i.e., the delay margin is infinite,
τ → +∞. Existing work in this direction includes testing
whether or not a given LTI system with single or multiple
delays exhibits DIS property; see [19–21] and the references
therein, or designing certain system parameters such that the
LTI system can be made delay-independent stable [22,23].

Furthermore, numerous techniques were published for the
“analysis” of the delay parameter space. In these work, the
objective is to find out, given system characteristic equation,
what the stability/instability decomposition of the system is
in any parameter space, including delay τ [3]. This analy-
sis may reveal that the system can be stable in more than
one delay interval [4,24]. Such a property can be useful
in many applications. For example, larger delays falling
into the second delay interval can be more favorable from
the viewpoint of a system’s disturbance-rejection capabil-
ity [25]. Moreover, closed-loop systems cannot be always
made delay-independent stable, and hence having multiple
stable intervals as options for the system to operate is desir-
able. In other cases, the maximum achievable delay margin
of the closed-loop system is upper bounded τ̄ < τ ∗ due to
open-loop unstable poles [26] and hence closed-loop system
stability cannot be guaranteed for τ = τ ′ > τ ∗ even if one
reconfigures the controller. A remedy to this would be to
design multiple stable delay intervals, one of which contain-
ing the delay τ ′. In the case of open-loop settings, multiple
delay intervals are critical when self-excitations are affected
by time delays. One notable example is the delay-induced
regenerative chatter where the well-known stability lobes
are essentially the stability intervals [4,13] corresponding
to proper machining settings including machine tool speed,
which is inversely proportional to the delay term.

While having a system with multiple stable delay inter-
vals is attractive as reviewed above, most of the existingwork
remains to focus on the forward problem where system char-
acteristic equation is given, and stability intervals along τ are
to be computed. A control design approach based on these
techniques cannot certify stability in pre-set delay intervals,
but requires brut force re-checking and plotting, which also
limits the design to one or two parameters. As amatter of fact,
in many design problems, the reverse problem is more rele-
vant, where one needs to reveal the controller gains by which
certain stability intervals along τ can be crafted strategically.
Such an effort is extremely complicated mathematically, and
if properly constructed, would have practicable impacts on
the control of LTI systems.

Fig. 1 Desired stability decomposition of the closed loop system in
Fig. 2

To the best of our knowledge, this article is the first attempt
in the above described design problem with stability “certifi-
cates” in pre-set delay intervals. To layout themainprinciples
of the approach, here we focus on a class of LTI SISO sys-
tems forwhichwe create two disjoint stability intervals along
τ , as depicted in Fig. 1, by designing multiple coefficients of
the corresponding closed-loop characteristic equation. This
in essence is achieved by carefully formulating the control
design problem in frequency domain and next solving it effi-
ciently using optimization tools.

2 Problem statement

In general, a SISO system with a single delay τ around the
control loop, as shown in Fig. 2, has the following character-
istic equation:

F(s, e−sτ ) = A(s) + B(s)e−sτ = 0, (1)

where s ∈ C is theLaplace variable, the delay is non-negative
τ ≥ 0, and polynomials A(s) and B(s) are nothing but
respectively the numerator and denominator of C(s) · G(s).
Here, these polynomials are in the general form,

A(s) = sm + am−1s
m−1 + · · · + a1s + a0

B(s) = bns
n + bn−1s

n−1 + · · · + b1s + b0 (2)

where ak , bk are real, bn �= 0, and deg(A(s)) = m ≥
deg(B(s)) = n for causality reasons.

Whenm > n, the system is of retarded type [4]. This indi-
cates that the highest order derivative in the system dynamics
is not affected by any delay terms. The case of m = n cor-
responds to neutral class systems [27,28], which present a
number of unique properties related to their spectrum. To
keep the presentation compact, in the sequel, we present all
the developments first for retarded class systems. Adapting
these results for neutral class systems will then easily follow
(see Remark 7).

The main problem at hand is that, given G(s), we would
like to designC(s) such that the closed-loop system in Fig. 2
with the corresponding characteristic equation (1) is asymp-
totically stable for all delay values τ in the feedback falling
within the pre-determined intervals τ ∈ [0, h1)∪ (h2, h3) as
depicted in Fig. 1, and marginally stable for delays h1, h2,
and h3.
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Fig. 2 Model of the SISO LTI system with single delay τ in the feed-
back

3 Preliminaries

To design a retarded type system to be in stability/instability
transition at τ = h1, h2, h3 delay values, we need to study the
roots of the characteristic equation (1) that are on the imag-
inary axis, s = jω [4]. We also need to make sure no other
crossings occur for delay values interfering the sequence h1,
h2, h3, and that s = jω roots tend to cross the imaginary axis
toward C+ at h1, h3, but toward C− at h2. Moreover, since
for retarded systems, stability of (1) at τ = 0 is preserved as
τ → 0+, it suffices to guarantee the stability of A(s) + B(s)
such that A(s) + B(s)e−sτ is also a stable polynomial for
τ = 0+ [4,27]. These knowledge will be the starting point
in the following developments.

Note that designing the polynomials A(s) and B(s) to
achieve a desired stability decomposition as shown inFig. 1 is
quite complicated,mainly because solving the transcendental
equation (1) is impossible. On the other hand, many studies
can be followed in order to develop a systematic approach to
achieve this nontrivial task (see Sect. 4). Before we present
these new results, in the sequel, we first revisit the work of
[29], to carry out the mathematics.

3.1 Computing the imaginary crossings

Since from the stability point of view, the most critical roots
of (1) are those that are on the imaginary axis, s = jω, fol-
lowing [29], we can calculate these roots by writing down
a new equation by replacing s with −s in (1). That is,
F(s, e−sτ ) = 0 and F(−s, esτ ) = 0 have the same roots
on the imaginary axis. This is as per the symmetricity of sys-
tem characteristic roots with respect to the real axis of the
complex plane. It then follows:

{
A(s) + B(s)e−sτ = 0

A(−s) + B(−s)esτ = 0
(3)

and after the elimination of e−sτ from (3), one obtains

A(s)A(−s) − B(s)B(−s) = 0 (4)

which is an even polynomial in s. Then, with s = jω and
hence ω2 = −s2, Eq. (4) can be rearranged into

W (ω2) = |A( jω)|2 − |B( jω)|2 = 0 (5)

whose ω2 > 0 roots are related to s = jω roots of (3) for
some τ ≥ 0.

Remark 1 The system with the characteristic equation (1)
has an imaginary axis root at s = jω∗ if and only if
W (ω∗2) = 0 [30]. In the case of multi-input multi-output
(MIMO) systems, the characteristic equation may contain
commensurate delays. In such cases, imaginary roots of the
characteristic equation may constitute only a subset of the
roots of the transformed equation W (ω∗2) = 0 [31]. One
should therefore pay attention to handling such cases when
using this elimination technique. Since we do not have com-
mensurate delays in (1), this does not pose any issues in what
follows.

Once W (ω2) = 0 in (5) is solved for ω2 > 0, the
set of solutions, namely, the crossing set, is formed as
ω = {ωc1, ωc2, . . . , ωcM }, where M is the maximum num-
ber of crossings. Since the highest power of A(s) is m, we
have that M ≤ m. Next, the delay values creating an imag-
inary crossing at s = jωcν are calculated. For this, one
obtains e jωτ = − B( jω)

A( jω)
from (1), which then yields, for each

ω = ωcν ,

τk,ν = 1

ωcν
( � B( jωcν) − � A( jωcν) + π ∓ 2kπ) (6)

where k = 0, 1, . . . ,∞, ν = 1, . . . , M . That is, for each
crossing ωcν , ν = 1, . . . , M , we have infinitely many delays
τk,ν and the union of these delays

⋃
k

⋃
ν
τk,ν gives rise to all

delays that create imaginary axis crossings of the closed-loop
system represented by (1) [24,30].

Remark 2 With the assumption that ωcν > 0 without loss of
generality, we then have in general,

ωc1 ≥ ωc2 ≥ · · · ≥ ωcM > 0 (7)

where stability of the delay-free system guarantees ωcM �= 0
for any finite τ .

3.2 Computing the critical delay values

Denote now by τ̃ν the minimum positive delay value τ in (6)
with respect to each ωcν . This delay can be expressed as:

τ̃ν = 1

ωcν

{
arctan 2(y, x), if arctan 2(y, x) ≥ 0;
arctan 2(y, x) + 2π, if arctan 2(y, x) < 0.

(8)

123



Creating two disjoint stability intervals along the delay axis via controller design: a class… 1159

where

x = �
Å

− B( jωcν)

A( jωcν)

ã
, y = 

Å
− B( jωcν)

A( jωcν)

ã

Since as per (6), for each ωcν , there exist infinitely many
periodically spaced τk,ν valueswith the period 2π

ωcν
, thenusing

(8) each τk,ν in (6) can be compactly formulated as

τk,ν = τ̃ν + 2π

ωcν
k, k = 0, 1, . . . ,∞, ν = 1, . . . , M (9)

3.3 Computing the root tendency

For each imaginary crossing at ωcν , ν = 1, . . . , M , there
exist infinitely many delay values τk,ν as per (9). As the delay
τ is slightly increased past the critical delay value τk,ν is the
characteristic root on the imaginary axis s = jωcν will be
perturbed, either into C− or C+. Depending on which direc-
tion the root moves, the system will have two more, or less,
unstable roots. Root tendency (RT ) is aimed at calculating
this movement via a sensitivity formula at jωcν with respect
to τk,ν [24,30,32]. It is defined as

RTk,ν = sgn
ï
�
Å
ds

dτ

∣∣∣
τ=τk,ν ,s= jωcν

ãò
,

k = 0, 1, . . . ,∞, ν = 1, . . . , M (10)

It is known that (10) is invariant for all delays corresponding
to a specific crossing of (1), see, e.g. [24]. That is, (10) is
invariant with respect to the counter k. This implies that given
ν, RTk,ν is fixed for all k. For this reason, we can write RTν

instead of RTk,ν .
Moreover, when τ increases slightly past τk,ν , if RTν =

+1, then the root at s = jωcν crosses the imaginary axis
always from left-half plane (LHP) to right-half plane (RHP),
i.e., from stable to unstable, for all τk,ν ; else if RTν = −1,
then the root always crosses from RHP to LHP (from unsta-
ble to stable) for all the corresponding delays τk,ν (k =
0, 1, 2, . . .).

Remark 3 [29] If a pair of characteristic roots, s = ∓ jω,
only touches the imaginary axis then so W (ω2) touches
ω2-axis. If the characteristic roots cross from LHP(RHP)
to RHP(LHP), then W (ω2) crosses from below(above) to
above(below) the positive ω2-axis.

Based on Remark 3, the following relationships hold:

RTν = sgn
ï
dW (σ )

dσ

ò ∣∣∣
σ=ω2

cν

= sgn[W ′(ω2
cν)] (11)

Remark 4 In general, for SISO systems, when crossing val-
ues ωcν are unique, and sorted in order ωc1 > · · · > ωcν >

· · · > ωcM , then RTν corresponding to each one of these

crossings have alternating signs. Moreover since (1) repre-
sents a retarded class system, W (ω2) goes to +∞ with ω

increasing. Owing to this, RT1 = +1 at the largest crossing
ωc1, RT2 = −1 at ωc2 and so on [30]. Special cases must
be carefully considered, for example, when ωcν is a tangent
point of curve W (ω2) [29] or when (1) has multiple roots
[33,34]. For the sake of considering the general cases, here
we shall assume that crossings ωcν > 0 are distinct.

4 Main results

In this article, the main interest is to design a controller C(s)
for an open-loop plant with transfer function G(s) subject to
delay, achieving closed-loop stability in two pre-determined
delay intervals (Fig. 1). To keep the presentation compact,
we first take G(s) as a second-order plant,1

G(s) = 1

s2 + 2ζωns + ω2
n

(12)

Following the standard definitions, here ζ andωn are defined
respectively as damping ratio and natural frequency of the
open-loop plant.

For the design of C(s), the following conditions must be
met:

Condition A. The SISO LTI closed-loop system is stable
for the delay-free case (τ = 0);
Condition B. Given h1, h2 and h3 with 0 < h1 < h2 <

h3, the SISO LTI closed-loop system is stable for delays
satisfying τ ∈ [0, h1) ∪ (h2, h3), and marginally stable
for h1, h2, and h3;
Condition C. The controller C(s) itself is stable.

4.1 Sufficient conditions

We first establish the sufficient conditions to be satisfied
within the design process of C(s). The following steps are
considered for this purpose:

Step 1: Assignment of τ = h1, h2, h3 to crossings ωcν .
The system has two separate stable intervals in τ para-

meter space. Specifically, the first three critical delay values,
which cause stability–instability switches, are denoted by h1,
h2 and h3.

A strategic decision here is that the number of crossingsM
will be set to 2 (see also Step 3), where we have two crossing
values ωc1 and ωc2. Due to Remark 4, note that we have
ωc1 > ωc2, with s = jωc1 causing destabilizing crossing
and s = jωc2 creating a stabilizing crossing. Accordingly

1 See discussion at the end of the section on how to extend the approach
to higher-order systems.
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h1 and h3 are assigned to the same crossing ωc1, while being
the successive delays values causing this crossing. That is,
τ0,1 = τ̃1 = h1, and τ1,1 = h3 in (9), hence h3 = h1 + 2π

ωc1
.

Next, ωc2 is assigned to h2, which corresponds to τ0,2 =
τ̃2 = h2 in (9).

Moreover, since h1 is the minimum positive τ̃1 value with
respect to ωc1 and h3 is the successive critical delay τ1,1,
we have the condition 2h1 < h3. In other words, although
h1, h2, h3 can be arbitrarily selected by the designer, 2h1 <

h3 must still be respected. In general, the initial selection of
h1 and h3 follows h3 = h∗

3 where

h∗
3 =

{
h3, if 2h1 < h3;
2h1 + λ, if 2h1 ≥ h3,

(13)

and λ is a positive number.
Now that h1 and h3 are given, ωc1 can be calculated from

(9) as

ωc1 = 2π

h3 − h1
.

Step 2: Structure of C(s).
Let C(s) be in the form of N (s)

D(s) , where deg[D(s)] ≥
deg[N (s)]. Since the design of stability intervals in Fig. 1
relies on the infinite dimensional system characteristic equa-
tion, one must make sure there are sufficiently many design
parameters to achieve this goal. For example, the polynomi-
als D(s) and N (s) can be expressed as follows:

D(s) = s2 + α1s + α0, N (s) = β2s
2 + β1s + β0 (14)

where α0, α1, β0, β1, β2 ∈ R are design parameters.
The characteristics equation in this case becomes

F(s, e−sτ , αk , βk) =
Ä
s2 + α1s + α0

äÄ
s2 + 2ζωns + ω2

n

ä

+
Ä
β2s

2 + β1s + β0

ä
e−sτ (15)

where the general form in (1) reads

A(s) = (s2 + α1s + α0)
Ä
s2 + 2ζωns + ω2

n

ä

B(s) = β2s
2 + β1s + β0

At this point, we have 6 unknowns ωc2, α0, α1, β0, β1, β2

in total, denoted by the vector χ = [ωc2, α0, α1, β0, β1, β2].
Next we formulate the constraints that this vector should
comply with.

Step 3: Constraints C for all specifications.
From (15), Walton’s equation can be written as

W (ω2) = ω8 −
Ä
−4ω2

nζ
2 − α2

1 + 2ω2
n + 2α0

ä
ω6

+ (
4α2

1ω
2
nζ

2 − 8α0ω
2
nζ

2 − 2α2
1ω

2
n + ω4

n

+ 4α0ω
2
n + α2

0 − β2
2
)
ω4 − (−4α2

0ω
2
nζ

2

−α2
1ω

4
n + 2α0ω

4
n + 2α2

0ω
2
n

− 2β0β2 + β2
1
)
ω2 +

Ä
α2
0ω

4
n − β2

0

ä
(16)

Through (16), we have 2 constraints related to the imagi-
nary axis crossing values:

C1 : W (ω2
c1) = 0,

C2 : W (ω2
c2) = 0.

As for the minimum positive critical delay value, refering
to (8), we revise x and y variables as

xk = �
(

− β2s2 + β1s + β0

(s2 + α1s + α0)(s2 + 2ζωns + ω2
n)

) ∣∣∣
s= jωck

,

yk = 
(

− β2s2 + β1s + β0

(s2 + α1s + α0)(s2 + 2ζωns + ω2
n)

) ∣∣∣
s= jωck

.

where k = 1, 2. Since the minimum positive critical delay
valuemust be equal to the given delays h1 and h2 respectively
for ωc1 and ωc2, we have two more constraints:

C3 : h1 =
{

arctan 2(y1,x1)
ωc1

, if arctan 2(y1, x1) ≥ 0;
arctan 2(y1,x1)+2π

ωc1
, if arctan 2(y1, x1) < 0;

C4 : h2 =
{

arctan 2(y2,x2)
ωc2

, if arctan 2(y2, x2) ≥ 0;
arctan 2(y2,x2)+2π

ωc2
, if arctan 2(y2, x2) < 0.

In order to guarantee the number of crossings M to be 2,
we need to make sure (16) has only 2 distinct positive real
roots σ = ω2 as per Remark 4. Firstly, (16) with σ = ω2 can
be rewritten as:

σ 4 + r3σ
3 + r2σ

2 + r1σ + r0 = 0 (17)

where

r3 = −
Ä
−4ω2

nζ
2 − α2

1 + 2ω2
n + 2α0

ä

r2 = 4α2
1ω2

nζ
2 − 8α0ω

2
nζ

2 − 2α2
1ω2

n + ω4
n + 4α0ω

2
n + α2

0 − β2
2

r1 = −
Ä
−4α2

0ω2
nζ

2 − α2
1ω4

n + 2α0ω
4
n + 2α2

0ω2
n − 2β0β2 + β2

1

ä

r0 = α2
0ω4

n − β2
0

Since ω2
c1 and ω2

c2 must be the two roots of (17), one fac-
tor of (17) is (σ 2 − (ω2

c1 + ω2
c2)σ + ω2

c1ω
2
c2). Then, using

factorization in (17), the other factor must be

σ 2 +
Ä
r3 + ω2

c1 + ω2
c2

ä
σ + r0

ω2
c1ω

2
c2

(18)

To make sure M = 2, the zeros of (18) in σ should not be
positive. Owing to this, we have to check the discriminant of
(18):
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δ =
Ä
r3 + ω2

c1 + ω2
c2

ä2 − 4r0
ω2
c1ω

2
c2

(19)

The following two scenarios are to be considered:

1. Equation (18) has two complex zeros, that is δ < 0.
Denote by I1 the set of all solutions χ satisfying δ < 0.

2. Equation (18) has two negative real zeros, that is, δ > 0
& r3 + ω2

c1 + ω2
c2 > 0 & r0

ω2
c1ω

2
c2

> 0. In this case, the set

of solutions satisfying the three inequalities is denoted
by I2.

Consequently, the following constraint guarantees that M =
2 holds,

C5 : χ ∈ I1
⋃

I2

Remark 5 As per Remark 4, and M = 2 based on C5, and
ωc1 > ωc2 holds as per Step 1, the crossing directions of
jωc1 and jωc2 are automatically guaranteed and therefore
do not need to be explicitly considered. In the case of MIMO
problemswith commensurate delays, these directions are not
necessarily implied and hence must be taken into account
explicitly.

Next, from Condition A that the delay-free system is sta-
ble, Routh’s array on F(s, 1) in (15) can be implemented,
where the Number of Sign (NS) changes in the first column
of the array elements determines the number of unstable roots
of the system [35]. Thus, for delay-free (τ = 0) closed-loop
system stability this constraint becomes:

C6 : NS = 0

which is formulated specifically for the problem at hand, as:

2α0ωnζ + α1ω
2
n + β1

− (2ωnζ + α1)(α0ω
2
n + β0)

2α1ωnζ + ω2
n + α0 + β2 − 2α0ωnζ+α1ω

2
n+β1

2ωnζ+α1

> 0

& 2α1ωnζ + ω2
n + α0 + β2 − 2α0ωnζ + α1ω

2
n + β1

2ωnζ + α1
> 0

& α0ω
2
n + β0 > 0

& 2ωnζ + α1 > 0

For Condition C, where the controller C(s) must be a
stable one, the constraint that the roots of the denominator
s2 + α1s + α0 of C(s) to be in LHP is given by:

C7 : α0 > 0 & α1 > 0

Finally, from Step 1, we can write down another con-
straint:

C8 : ωc2 < ωc1

Now that the constraints C1−8 sufficient to satisfy Condi-
tions A–C are established, we next discuss how to compute
the controller under these constraints.

4.2 Optimization setup

We now propose to utilize an optimization scheme to calcu-
late C(s) in light of the constraints C1−8.

Step 4: fmincon optimization.
To solve for the vectorχ = [ωc2, α0, α1, β0, β1, β2] satis-

fying the above listed constraints, we can consider this design
problem as an optimization problem. A solution toχ may not
exist, and if it does, it may not be unique. Since the aim is to
find a solution, multiple solutions are however of no concern.

It can be observed that the type of constraints C1−8 we
have matches that of the nonlinear optimization toolboxes,
namely fmincon tool of Matlab [36]. On the other hand, we
so far did not formulate an optimization problem. For this,
an objective function f is needed. Among many different
ways one can formulate this function, here we propose to
minimize the sum of the magnitudes of the coefficients in
the controller, that is,

f = α2
0 + α2

1 + β2
0 + β2

1 + β2
2 (20)

Notice thatwith the above objective function, it nowbecomes
possible to utilize fmincon tool in Matlab, as explained next.

Since we have a small-medium scale optimization prob-
lemwith thenumber of variables<100, SequentialQuadratic
Programming method can be used. In this method, fmincon
solves a Quadratic Programming subproblem at each itera-
tion. An estimate of the Hessian of the Lagrangian is updated
at each iteration and a line search is performed using a merit
function. An active set strategy is used to solve the program-
ming subproblem.

For the implementation of C1−8 in the standard form for
fmincon active-set algorithm, tolerances for inequality and
upper/lower bound constraints must be set. With k being
small positive values (or vectors with all the entries being
small positive values), constraints C1−8 are adapted to the
optimizer as follows

C1 → ceq1(α, β) = 0

C2 → ceq2(χ) = 0

C3 → ceq3(α, β) = 0

C4 → ceq4(χ) = 0

C5 → c1(χ) ≤ −1
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C6 → c2(α, β) ≤ −2 & A · χ ≤ b − 3

C7−8 → lb + 4 ≤ χ ≤ ub − 5

Remark 6 fmincon numerical tool is implemented under sev-
eral considerations: (i) firstly in the domain of optimization,
constraints are assumed to be continuous functions in terms
of their arguments; (ii) we have that the obtained result, if any,
will be very likely a local minimum; (iii) in general there are
no set rules as to how one selects a feasible initial point.

Consideration (i) is neglected here partly because all
the constraints, possibly except at some special singularity
points, will remain as continuous functions of their argu-
ments. For consideration (ii), since we only care about
whether the constraints are satisfied in this problem, the local
minimum point χ is equally admissible. Finally, we have to
pay attention to consideration (iii), in which initial condi-
tion could affect whether this optimization method leads to
an admissible solution. A rule for selecting an appropriate
initial condition is well stated in the Appendix.

Based on the Appendix, a rigorous way of formulating an
initial condition follows

where εl are small positive values. In other words, with the
above proposed initial condition, the characteristic equation
in (15) becomes

F(s, e−sτ ) ∼=
Ä
s2 + ε1s + (ωc1 − ε0)

2
äÄ

s2 + 2ζωns + ω2
n

ä

+ ε2(s
2 + s + 1)e−sτ (21)

The small gains of βk = ε2 will not let the time delayed term
e−τ s render a crossing, and the system is almost marginally
stable for a large interval of τ due to the factor s2 + ε1s +
(ωc1 − ε0)

2.
As we tested, this rule for the initial condition works well

for a large interval of ωn , and for ζ from 0 (undamped) to
some value above 1 (over-damped); see details in the next
section. For some cases, this rule may not work well for
undamped systems as this creates potentially an additional
crossing at ωn , violating our design constraints at the very
first step of our problem setup. In such cases we may need
to propose higher order controllers for C(s), which can be
done following the above steps.

Remark 7 In the case when m = n in (2), we have a neutral
class system.For such systems, stabilitymaynot bepreserved
as τ : 0 → 0+ and could be lost for all τ > 0, even if the

delay-free (τ = 0) system is stable. To prevent this on the
LTI SISO system at hand, an additional condition is needed,
which is |bn| < 1 in (2) [27,28]. Remainder of the analysis
is the same, following Steps 1–4.

4.3 Extensions to higher-order problems

Designing a controller for higher-order open-loop systems
that leads to a closed-loop system with two separate stability
intervals is even more challenging. This is mainly due to the
fact that arising equations are of higher order making it more
difficult to keep system crossings under ‘control’. Indeed,
inspecting the above design procedure (Steps 1–4), the only
step where the assumption of a second-order plant G(s)
becomes a key enabler is where factorization and discrim-
inant are used to prevent any additional unwanted crossings
in the closed-loop system (see Examples 1, 2 in Sect. 5). By
doing so, any unwanted delays are avoided hence it becomes
more feasible to attain the intended stable delay intervals.

In the sequel, we discuss two alternatives to the above
manipulation where factorization to smaller factors may not
be easily established due to the size of the problem. Notice
that the design process in Steps 1–4 is primarily concerned
with “preventing” additional unwanted crossings. This in
some sense is the safest choice, and should be followed when
possible (e.g., in the case of low-order problems). On the
other hand, the designer has also the option of “allowing”
additional unwanted crossings as long as the delay values
corresponding to these crossings do not ruin the intended sta-
bility intervals along the delay axis. Allowing such crossings
simplifies the design as factorization is no longer necessary.
Since “prevent” option is already covered in sufficient detail
in Steps 1–4, we further discuss the “allow” option next.

4.3.1 Allow additional unwanted crossings

Since two crossings must exist for the intended design, let
ωc3, . . . , ωcv, . . . , ωcM be the list of unwanted crossings,
where σv = ω2

cv > 0. Then we have three sets of additional
constraints for the optimizer:

(a) Allow unwanted crossings but make sure the minimum
positive delay value τ̃v corresponding to each crossing
is sufficiently large. That is, unwanted τ̃v should occur
outside the range of the intended stability intervals. For
this, τ̃v > h3 must hold.

(b) Let τ̃v = εv + h3 with εv ∈ R+. Since the delay value
smaller than the minimum positive delay τ̃v should be
negative, τ̃v − 2π/ωcv < 0, we can write εv + h3 −
2π/ωcv < 0 which implies that the unwanted crossings
satisfy ωcv < 2π/(εv +h3). Furthermore, since crossing
directions are implied, ωc2 must be the second largest
crossing, hence a stricter conditionωcv < ωc2 must hold.
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The remaining σv roots, σM+1, . . . , σm , are infeasible for
a crossing. For example they can be set as negative quantities,
σv < 0. Then, one can design a candidateWalton’s equation
given by

W (σ ) :=
m∏

v=1

(σ − σv) = σm +
m−1∑
k=0

�̄kσ
k,

where σ1 = ω2
c1 is given, and the remaining σv are opti-

mization variables. Next, compare this equation with that of
Walton’s,W (σ ) = σm+∑m−1

k=0 �kσ
k , which leads to another

set of constraints as described next.

(c) To attain the desired and unwanted crossings, as well as
the infeasible solutions σv , sign of these solutions must
be imposed in the optimization, and the coefficients of
Walton’s equation must match with those of the candi-
date equation, |�̄k − �k | = 0, k = 0, 1, . . . ,m − 1. This
imposes a constraint on the nature of the roots of the
equation since σv , v ≥ 2, are all optimization variables.

Notice that the above three sets of constraints are not
different in structure than those already available in the
optimization routine as established in Steps 1–4. The set
described in (a) is related to minimum delay formulations
already available for h1 and h2 (see constraints C3−4). The
set described in (b) is similar to the inequality constraint C8

considered, and the set in (c) is incorporated as an equality
constraint in the solver. In some sense conditions in sets (a),
(b) guarantee sparsely repeated delays corresponding to the
unwanted crossings, thereby reducing the possibility of these
delays interfering with the desired stability intervals, while
set (c) gives control over the number of feasible crossings the
system could have.

The above approachof safely creating additional unwanted
crossings can be over-constraining in some cases since these
crossings and their delay values must respect additional con-
ditions. For this reason, optimizing the controller whereby
the closed-loop system has many crossings can be more dif-
ficult than optimizing for fewer crossings. Hence, the logic
line here must be to achieve only the two crossings ωc1 and
ωc2 as the design requires. In the case the formulations in
Steps 1–4 indicate that this cannot be feasible, one would
then relax the problem with as fewer number of additional
unwanted crossings as possible. An example of this scenario
is demonstrated in Example 3 in Section 5 with and without
using factorization.

4.3.2 A bottom-up approach with stable pole/zero
cancellations

Another option is to take a bottom-up approach where one
starts with a “building brick” (e.g., a 2nd order plant G(s)

with a PID controller C1(s)), and grows the loop trans-
fer function by successively inserting additional controllers
Ck(s), k = 1, . . . , k̄, into the forward loop. In this approach,
the optimization needs to be set up at each step k, and the
design process through Steps 1–4 must be re-run while keep-
ing fixed the stability intervals τ ∈ [0, h1) ∪ (h2, h3). The
main idea here is to first generate a higher-order loop trans-
fer function L(s) = G(s)�k̄

k=1Ck(s) achieving stability for
τ ∈ [0, h1) ∪ (h2, h3) in the closed loop (see Example 3 in
Section 5).

Next, consider that the aim is to design a controller C(s)
for a high-order plant transfer function G(s) achieving sta-
bility in the closed-loop for τ ∈ [0, h1) ∪ (h2, h3). Then,
this controller is given by C(s) = L(s)

G(s)
, where care must be

taken with the orders of L(s) such that the controller C(s)
is proper hence realizable. Moreover, this design approach
will work owing to pole/zero cancellations. Hence, one must
make sure those cancellations arise only amongst stable poles
and zeros, which brings additional constraints both on the
plant G(s) and loop transfer function L(s). Needless to say,
effects of such cancellations under noise and uncertainties
must be thoroughly studied before certifying the controller
C(s) for implementation.

5 Example case studies

5.1 Example 1: a computational study

Take ζ = 0.7 and ωn = 10 rad/s in G(s) and pick h1 = 0.1,
h2 = 0.5, h3 = 0.7 in Condition C (see also Figs. 1 and 2).
Following Steps 1–4, constraints C1−8 can be incorporated
into the fmincon solver in Matlab.

Specifically, in C5, we reconstruct the feasible interval of
I1

⋃
I2 to simplify the way of expressing the constraints.

For the two roots of (18) to become complex conjugate, the
following constraint denoted by set I1 must hold,

I1:
Ä
4ω2

nζ
2 + α2

1 − 2ω2
n − 2α0 + ω2

c1 + ω2
c2

ä2

− 4
Ä
α2
0ω

4
n − β2

0

ä

ω2
c1ω

2
c2

< 0

Then for the two roots of (18) to lie in LHP, two constraints
denoted by set I3 must hold as per Routh’s Array,

I3: 4ω2
nζ

2 + α2
1 − 2ω2

n − 2α0 + ω2
c1 + ω2

c2 > 0

&
α2
0ω

4
n − β2

0

ω2
c1ω

2
c2

> 0

Obviously, I1
⋃

I3 ≡ I1
⋃

I2, and the above two constraints
are inserted into the fmincon solver.
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Next, we test whether initial condition works well. Given
h1 and h3, we have ωc1 = 2π

h3−h1
= 10.4720, then the initial

condition becomes

The initial points for ωc2 and α0 are then put on a grid
(p × q), and slightly varied,

χ0 = [10.4720 − 0.05 × p, 109.6628 − 0.1 × q,

0, 0.01, 0.01, 0.01]

The optimization is re-run for p × q times, where p =
1, 2, . . . , 20, q = 1, 2, . . . , 20. For these 400 initial points,
we find 98.5% of all the solutions of χ converge to the same
point [ωc2, α0, α1, β0, β1, β2] = [8.7378, 91.7096, 0.0010,
−1.7621, 111.457, 21.5547], while 1.5% of them converge
to different solutions.Moreover, there are no issues with con-
vergence. That is, all 400 runs lead to a feasible solution for
χ .

The solution χ that converge at the highest percentage
of 98.5% is next taken for further study. In this solution,
we have ωc2 = 8.7378 rad/s, which is smaller than ωc1

as expected. Furthermore, these two crossing frequencies
signify the oscillation frequency of the closed-loop system
output at the critical delays;ωc1 for h1 and h3, andωc2 for h2.
We next use the respective controller C(s) in Simulink and
run unit step response simulation of the closed-loop system
with delay values, τ = 0, 0.095, 0.1, 0.105, 0.495, 0.5, 0.505,
0.695, 0.7, 0.705 (s). As simulations indicate in Fig. 3, the sta-
bility of the delay-free system and the stability boundary of
critical delay valuesmatch perfectly with the results obtained
from the controller design method. Furthermore, in the time
window 15–20s, at the critical values τ = h1 = 0.1 and
τ = h3 = 0.7, we observe about 8.25 cycles of oscillations,
corresponding to approximately about 10.36 rad/s, which
matches withωc1 = 10.4720, and similarly at τ = h2 = 0.5,
we observe about 6.75 cycles ≈ 8.48 rad/s, which is very
close to the exact solution ωc2 = 8.7378.

In order to verify that stability intervals of the closed-
loop systemmatch the pre-determined stability “certificates”,
rightmost root of the closed-loop characteristic equation is
computed using the QPmR toolbox [37] in the interval τ ∈
(0, 1). For clarity and relevance, only the real part of the
rightmost root�(sRMR) is depicted, see Fig. 4, which reveals
that the stability intervals match the intended design τ ∈
[0, 0.1) ∪ (0.5, 0.7).

Remark 8 Notice that the controller designed above has sta-
ble poles but close to the imaginary axis due to the small

α1 value. This controller works well in the ideal closed-loop
model and simulations. However, in the presence of sensor
noise that may appear in an experimental system and with
possible uncertainties in α1, e.g., due to digital implemen-
tation, this weakly-damped controller may cause internal
stability problems [38]. To prevent this, a positive lower
bound on α1 can be set as another constraint (see Example
2).

5.2 Example 2: an experimental study

We next implement the controller design approach on a
Rotary Servo Base Unit speed-control experiment compris-
ing of aDC-motorwith gearbox and a shaftmounted encoder,
as shown in Fig. 5. In our experimental setup, the Rotary
Servo Base Unit is linked to a computer through a National
Instruments data acquisition board supported by QUARC
embedded system software using Matlab/Simulink toolbox.
A fixed sample period of 0.001 sec and relative tolerance of
10−8 are utilized with ODE45 time integration scheme in all
the experiments.

For speed control, the model of the DC motor is captured
by a first order transfer function (TF) from voltage to motor
shaft angular velocity, as

Gmotor (s) = 8.4792

0.028s + 1
(22)

A first-order low-pass filter with cut-off frequency of 50 rad/s
is designed to block out the high frequency noise, which is
inserted into Simulink at the encoder reading channel,

G f ilter (s) = 1

0.02s + 1
(23)

The open loop TF then becomes a second-order system given
by that of the DC motor in series with the filter

G(s) = Gmotor (s)G f ilter (s)

= 15141.375

s2 + 85.7143s + 1785.715
(24)

where ζ = 1.01419 and ωn = 42.25772. Consistent with
Fig. 2, we define the speed as the output of the filter, and a
unity negative feedbackwith an artificial transport time delay
is introduced in the Simulink interface. Furthermore, to be
consistent withG(s) in (12) which has a unity gain, we insert
a gain of 1/15,141.375 in front of the controller C(s).

Here, we pick h1 = 0.3, h2 = 1.0, h3 = 1.8 in Condition
B, and follow Steps 1–4 as was done in Example 1 to bring
the constraints into the fmincon solver. Given h1 and h3, we
have ωc1 = 2π

h3−h1
= 4.1888, hence the initial condition

becomes
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Fig. 3 Example 1: unit step response of the closed loop system simu-
lations at a τ = 0, b τ = 0.095, c τ = 0.1, d τ = 0.105, e τ = 0.495, f
τ = 0.5,g τ = 0.505,h τ = 0.695, i τ = 0.7, j τ = 0.705,with the con-

trollerC(s) designed using the optimizationmethod described in Sect. 4
and the pre-determined stability decomposition τ ∈ [0, 0.1)∪(0.5, 0.7)
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Fig. 4 Real part of the
rightmost root of the closed-loop
system in Example 1 as τ varies
from 0 to 1 (computed with
QPmR toolbox [37])
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Fig. 5 Experimental setup of Rotary Servo Base Unit with amplifier
and data acquisition board

Solution set using this initial condition is computed
as [ωc2, α0, α1, β0, β1, β2] = [3.4992, 15.5508, 0.0010,
16, 057.60, 853.6112, 891.4406]. This corresponds to the
following numerical expression of the controller

Ca(s) = 891.4406s2 + 853.6112s + 16,057.60

15,141.375(s2 + 0.001s + 15.5508)
(25)

Notice that this controller has very low damping α1 ≈ 0,
and therefore may not be appropriate from internal sta-
bility point of view. Therefore, we change the constraint

on α1, now setting α1 ≥ 0.2 in our optimization. This
yields [ωc2, α0, α1, β0, β1, β2] = [3.2884, 15.0340, 0.2000,
14, 697.23, 1033.999, 722.7142], revising the numerical
expression of the controller to

Cb(s) = 722.7142s2 + 1033.999s + 14,697.23

15,141.375(s2 + 0.2s + 15.0340)
(26)

We next test the validity of the controller using a step input
with a gain of 57.52, at τ = 0, 0.25, 0.3, 0.32, 0.99, 1.0, 1.05,
1.4, 1.8, 1.85 in both simulations and experiments, as shown
in Fig. 6. In the figure, we see that except some minimal
discrepancies, which may be due to slight variations in DC
motor dynamics and nonlinearities, the tendency of curves
and stability properties can be clearly observed. Interestingly,
at τ = 1.4, when the operating point is inside the second sta-
ble interval, the output of the closed-loop system has fairly
good settling time and transient characteristics, which is wor-
thy of future study.

5.3 Example 3: higher-order loop transfer function

The developed controller design approach can also be repeat-
edly implemented to design cascaded controllers, see also
Sect. 4.3.2. Consider the DC motor system in Example 2,
where we designed C(s) = Ca(s) in (25). While this con-
troller is sufficient to achieve the design requirements, we

nowpropose to insert a PIDcontrollerCpid (s) = kd s2+kps+ki
s

into the closed-loop, in cascade toCa(s), as depicted inFig. 7.
In this setting, we aim to tune the PID gains kp, ki and kd ,
but we still wish to maintain the same stability intervals as
in Example 2. We find out however that h1, h2, h3 values in
Example 2 cannot be attained with the addition of the PID
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Fig. 6 Example 2: step
response of the motor-shaft
angular velocity with controller
Cb(s) in both experiments and
simulations at delay values a
τ = 0, b τ = 0.25, c τ = 0.3, d
τ = 0.32, e τ = 0.99, f τ = 1.0,
g τ = 1.05, h τ = 1.4, i
τ = 1.8, j τ = 1.85
(Experimental data: solid line;
Simulation data: dashed line).
Experimental results and model
predictions are superimposed.
Control design procedure
utilizes the pre-determined
stability decomposition of
τ ∈ [0, 0.3) ∪ (1.0, 1.8)
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Fig. 7 Model of Example 3

controller, mainly because we have only three parameters
to design, which are not sufficiently many for the over con-
strained optimization problem at hand. We therefore set free
α0 and α1 in Ca , to relax the parameter space.

The system shown in Fig. 7 has the following character-
istic equation:

Ä
s2 + α1s + α0

ä Ä
s2 + 85.7147s + 1785.7149

ä
s

+
Ä
891.4406s2 + 853.6112s + 16, 058

ä

×
Ä
kds

2 + kps + ki
ä
e−sτ = 0, (27)

which can be easily converted to Walton’s equation from
(16). Since the constant term in W (ω2) function is negative,
odd number of positive real roots of σ = ω2 exists as per
Descartes rule of signs [39]. Since ωc1 and ωc2 are enforced
as crossings, we have at least three crossings in this closed-
loop system.

Moreover, we have h1 and h3 assigned to ωc1, while h2 is
associated with ωc2. Since the function W (ω2) is of order-5
with respect to σ = ω2 , in this case, using factorization
in W (ω2), we have one factor to be σ 2 − (ω2

c1 + ω2
c2)σ +

ω2
c1ω

2
c2, and the other factor is of order-3. Since negative of

the discriminant of a 3rd order polynomial indicates one real
pole and two complex poles [40], using this condition, we
can make sure at most one positive real root exists in the
remaining factor, rendering in the worst case one additional
unwanted crossing ωc3. Note that imposing σ to be complex
is simple to implement with the help of discriminant. One
can alternatively restrict σ from being positive, to rule out
the presence of unwanted crossings.

Next, we constraint ωc3 to be as small as possible such
that it does not cause frequent solutions of delay values in
(9). For this, we have ωc3 < ωc2 in the optimization environ-
ment. This is done as a necessary condition to prevent those
delay values to undesirably interfere with the pre-selected
delay intervals [0, h1)∪ (h2, h3), consistent with Sect. 4.3.1.
Consequently, we have the order ωc1 > ωc2 > ωc3 with root
crossing directions implied (see Remarks 4, 5) as destabiliz-
ing at ωc1 and ωc3, and stabilizing at ωc2.

For sufficiency such that one can guarantee that the two
disjoint stability intervals [0, h1) and (h2, h3) are guaranteed
to exist in τ domain, the minimum positive delay value τ̃3

corresponding to ωc3 must appear in τ domain but at a value
greater than h3. Hence, a constraint is set for this as τ̃3 >

h3. The minimum positive delay values for ωc1 and ωc2 are
carried over fromExample 2.At last,NS is checked for delay-
free closed-loop system stability.

Considering all the above constraints, another fmincon
solver is set with a new unknown vector χ = [kp, ki , kd , α0,

α1, ωc2, ωc3]. The initial condition is easily extracted from
the feasible solution point in Example 2, which is kp → 1,
ki → 0, kd → 0, α0 → 15.5508, α1 → 0.0001 and
ωc3 → 0. With the objective function

f = k2p + k2i + k2d ,

the optimization yields the following solution point

χ = [1.2412, 1.3285, 0.0392, 15.0702, 0.0743, 3.0201, 1.1784]

rendering ωc3 = 1.1784 relatively small as desired. More-
over, it returns τ̃3 = 2.0620, which is the smallest delay
value for which the system characteristic roots will be on the
imaginary axis at s = ∓ jωc3. This delay value, as designed,
is greater than h3 = 1.8 and hence does not interfere with
the pre-determined stability intervals.

Next, with the PID gains found as kp = 1.2412, ki =
1.3285, and kd = 0.0392, and the controller C(s) as

C(s) = 891.4406s2 + 853.6112s + 16,057.60

15,141.375(s2 + 0.0743s + 15.0702)

we perform simulations of the closed loop in Fig. 7 in
Simulink, which present agreement in system stability with
the pre-determined stable delay intervals τ ∈ [0, 0.3) ∪
(1, 1.8) (simulations suppressed to conserve space).

Finally, we remove the factorization condition in the
above setting, and instead revisit Sect. 4.3.1 to setup a new
optimization problemwhere constraint sets (a), (b) are imple-
mented and we allow only one additional unwanted crossing
ωc3 hence M = 3 in set (c). In light of this setting, we
have five coefficients to match since m = 5, and more-
over the optimization variables are collected by the vector
χ = [kp, ki , kd , α0, α1, ωc2, ωc3, σ4, σ5]. The end result
using the same optimization function f as above leads to
the following optimal solution

χ = [1.0384, 0.2282, 0.0128, 15.4742, 0.0015, 3.4488, 0.1661,
−828.3114,−2815.0664]

which indicates that the PID controller gains are given by
kp = 1.0384, ki = 0.2282, kd = 0.0128, and the new con-
troller reads
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C(s) = 891.4406s2 + 853.6112s + 16,057.60

15,141.375(s2 + 0.0015s + 15.4742)

As designed, the additional crossing ωc3 = 0.1661 is less
than ωc2 and moreover its corresponding minimum positive
delay value τ̃3 = 13.3599 (not shown in the above) is larger
than h3. Further, the two solutions σ4 and σ5 generate infea-
sible crossings as they are both negative as imposed by the
structure of candidateWalton’s equationW . Implementation
of these controllers in Simulink and QPmR validates that
indeed the intended stability intervals are achieved.

6 Conclusion

An eigenvalue-based optimization scheme is developed in
this article to design controllers for a class of LTI SISO sys-
tems subject to delay, with the aim to achieve stability of the
closed loop in two pre-determined disjoint intervals along the
delay axis. This challenging reverse problem is successfully
solved over several examples and demonstrated on an exper-
imental study, offering a strong foundation toward solving
more complex problems involving multiple stability inter-
vals. It is critical to note that, driven by applications, control
problems are becoming increasingly more complex, involv-
ing the design of multiple parameters. While optimization
tools to this end were in majority utilized to solve Lin-
ear Matrix Inequalities (LMIs) stemming from Lyapunov
stability theory, formulation of the control problem in the
frequency domain and connecting it with optimization tools
offers new opportunities. This was indeed recognized by a
recent study [21] where frequency domain conditions of DIS
property were tested using LMIs. In future studies, we will
focus on extending the proposedmethod to the case ofMIMO
systems considering additional constraints as highlighted in
Remark 1. We will also systematically investigate the con-
trol of unstable open-loop plants following the footprints
in [26], and design higher-order controllers for higher-order
plants.

Appendix: selecting initial conditions for the opti-
mization

To find out the best way to select the initial condition, we
first reduce the number of constraints and attempt to search
for an initial condition point P satisfying some special cases.
These cases are stated as follows:

I. At τ = 0, the delay-free system F(s, 1) is stable. In this
case, the set of solutions to χ is denoted by Q0.

II. Denoted by Q1 is the set of possible solutionsχ rendering
a crossing ωc1 at a critical delay h1.

Fig. 8 Venn diagram of Q0, Q1 and Q2 in the “Appendix”

III. Denoted by Q2 is the set of possible solutionsχ rendering
a crossing ωc2 at a critical delay h2.

Note that the three conditions I–III above do not guaran-
tee the stability decomposition in Fig. 1, but only guarantee
a crossing at h1 and h2, and the stability of the delay-free
system. In Fig. 8, the intersection area of sets Q0, Q1 and
Q2 is schematically pictured by ĀBC. Since the constraints
corresponding to Q0, Q1 and Q2 are necessary conditions
of C1−8, the feasible solution set satisfying C1−8, denoted
by Q f , must lie inside the region ĀBC. Thus, a good initial
condition would be to pick a point P inside of ĀBC.

When there are multiple design parameters, such as the
case here, it may not be easy to select a point inside the para-
metric region ĀBC. Nevertheless, it is quite practical to select
a point nearby the boundaries of ĀBC . Fortunately, there exist
several ways to calculate the parametric settings, e.g., the
points at P0, P1, P2. The point P0 satisfying Condition I is
trivial to obtain from the stability analysis of the delay-free
system. The points P1 and P2 follow the same type of math-
ematical calculations, and guarantee a single crossing either
at h1 and h2. Conditions on system parameters guaranteeing
a crossing can easily be obtained using frequency sweeping
methods, see, e.g., [18]. Simply, set s = jω, τ = h1 or
τ = h2 in (15), and as ω increases from zero to an upper
bound, one can solve the real and imaginary part of the sys-
tem characteristic equation from which an implicit formula
can be obtained on system parameters satisfying the crossing
s = jω at τ .

Application of the above general guidelines on the specific
problem at hand leads to the following

F�(ω, αk, βk, τ ) = ω4

+
Ä
−2α1ωnζ − cos(τω)β2 − ωn

2 − α0

ä
ω2
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+ sin(τω)β1ω + α0ωn
2 + cos(τω)β0 (28)

F(ω, αk, βk, τ ) = (−2ωnζ − α1)ω
3

+ sin(τω)β2ω
2 + (2α0ωnζ + α1ωn

2

+ cos(τω)β1)ω − sin(τω)β0 (29)

Since it is not easy to solve (28), (29) simultaneously, we
propose to pick α0 = ωc1

2 and α1 = 0 to simplify (28), (29)
as

F�(ω, β0, β1, β2, τ ) = ω4

+
Ä
− cos(τω)β2 − ωn

2 − ωc1
2
ä

ω2

+ sin(τω)β1ω + ωc1
2ωn

2 + cos(τω)β0 (30)

F(ω, β0, β1, β2, τ ) = −2ωnζω3 + sin(τω)β2ω
2

+ (2ωc1
2ωnζ + cos(τω)β1)ω − sin(τω)β0 (31)

For the set Q1 and Q2, at τ = h1, ω = ωc1 and at τ = h2,
ω = ωc2 respectively. Then, the following four equations
obtained from (30) and (31) hold.

F�(ωc1, β0, β1, β2, h1) = 0

F(ωc1, β0, β1, β2, h1) = 0

F�(ωc2, β0, β1, β2, h2) = 0

F(ωc2, β0, β1, β2, h2) = 0 (32)

Since ωc1, h1 and h2 are known in Step 1, a particular solu-
tion of ωc2, β0, β1, β2 can be extracted from the above four
equations, that is, ωc2 → ωc1, β0 = β2ωc1

2, β1 → 0. In this
case, we can pick β2 → 0+, then β0 → 0+. With the choice
of small βk = ε, the coefficient of the exponential term e−sτ

will be vanishing, hence this point is at the boundary of the
set Q1, e.g., point P1, and also at the boundary of the set Q2,
e.g., point P2.

Considering the set Q0, with the same rules as above
in picking αk and βk values, when α0 = ωc1, α1 = 0,
β0, β1, β2 → 0+ and τ = 0, the characteristic equation
in (15) approaches to

F(s, 1) ∼=
Ä
s2 + ω2

c1

ä Ä
s2 + 2ζωns + ω2

n

ä
(33)

which comprises of an oscillating term due to s2 + ω2
c1, and

a stable term due to s2 + 2ζωns + ω2
n . Hence the system is

marginally stable. This solution point is at the boundary of
the set Q0, e.g., point at P0.

Since our parametric space is actually 6-dimensional, the
three points P0, P1 and P2 in Fig. 8 are indeed the same point,
located at the boundary of the intersection area bounded by
ĀBC. This point is therefore a good initial condition point to
be used in the optimization scheme.

Furthermore, since C8 gives a constraint for ωc2, it there-
fore makes sense ωc2 is slightly less than ωc1 for initial

condition. In some sense, this lets the optimization go only
in one direction (reduce ωc2 further) as iterations take place
along the ωc2 direction, consistent with Remark 4.

For parameters β0, β1 and β2 in the numerator, they are
assigned with a small positive value ε as explained above.
This corresponds to a weak controller, which initially guar-
antees that α0, α1 assignment above initially achieves its goal
of satisfying Q0 as well as Q1 and Q2.
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