
Int. J. Dynam. Control (2017) 5:542–550
DOI 10.1007/s40435-016-0248-8

Fractional order PID controller design based on Laguerre
orthogonal functions

Mohammad Tabatabaei1 · Romina Salehi1

Received: 15 December 2015 / Revised: 19 March 2016 / Accepted: 9 May 2016 / Published online: 24 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper proposes a novel fractional order PID
controller for commensurate fractional order systems based
on Laguerre orthonormal functions. The transfer functions of
the fractional order plant, the desired loop gain and the frac-
tional order PID controller are expanded in terms of their
Laguerre basis functions. Matching the first three coeffi-
cients of the Laguerre series of the loop gain with the desired
one yields the fractional order PID controller parameters.
The pole of the fractional order Laguerre basis function is
adjusted to minimize an integral square error performance
index subject to control signal constraint. The numerical
examples are presented to show the effectiveness of this
Laguerre based fractional order PID controller.

Keywords Fractional order PID controller · Orthogonal
functions · Laguerre functions · Fractional order Laguerre
functions

1 Introduction

Fractional calculus concerns utilizing non-integer derivatives
and integrals instead of the corresponding ordinary ones to
increase the design flexibility and modelling precision [1–3].
The Fractional Order PID (FOPID) controllers with frac-
tional order derivative and integral terms have been employed
to control industrial plants [4,5]. A lot of approaches have
been proposed to design FOPID controllers for fractional
order systems in the literature. Internal model based FOPID
controllers have been considered in this regard [6,7]. In [8],
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a Ziegler–Nichols-type tuning method for designing FOPID
controllers has been provided. Designing fractional order PD
(FOPD) controllers robust to gain variations has been consid-
ered [9,10]. The same idea has been proposed for designing
fractional order PI (FOPI) controllers [11]. In [12], the supe-
riority of the FOPI controller comparing with the PI and
PID controllers for controlling a time delayed system with
a fractional order pole has been demonstrated. Optimization
methods have been employed for designing these controllers
[13]. Root locusmethod has been employed to design FOPID
for minimum-phase fractional order systems [14].

One of the analytical approaches proposed for design-
ing PID controllers is the moment matching method. In this
method, the PID controller parameters could be obtained by
matching the first three moments of the closed loop system
transfer function with the desired one. In this approach, the
closed loop system transfer function is expanded in terms
of some orthogonal functions. For example, the MacLau-
rin expansion has been employed to find the PID controller
parameters through a moment matching approach [15]. A
PD controller for the First-Order Plus Dead Time (FOPDT)
plants is designed based on the Taylor series approximation
[16]. Laguerre orthogonal functions have been utilized to
design PID controllers for some special case of plants [17].
A moment matching based FOPID controller, has been pro-
posed in the literature [18]. In the proposed approach, the
first three moments of the desired closed loop system trans-
fer function obtained from a characteristic ratios assignment
approach are matched with the corresponding ones in the
closed loop system transfer function. The proposed method
could be employed to design FOPID for commensurate frac-
tional order systems. Block pulse, Walsh and Haar Wavelet
as piecewise orthogonal functions have been employed to
design FOPID for integer and fractional order systems [19].
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Fractional order Laguerre orthogonal functions as a gen-
eralization of ordinary Laguerre functions have been con-
structed to approximate fractional order systems [20,21].

In the current paper, the fractional order Laguerre orthog-
onal functions are employed to design FOPID and Fractional
order PI (FOPI) controllers for fractional order systems. First,
the Laguerre series coefficients of a commensurate fractional
order plant are calculated. These coefficients are the inner
product of the plant transfer function with their correspond-
ing fractional order Laguerre basis functions. This idea is
employed to calculate the Laguerre series coefficients of the
open loop gain (the product of the FOPID controller transfer
function with the plant transfer function). Matching the first
three Laguerre series coefficients of the open loop gain with
the desired one gives the FOPID or FOPI controller parame-
ters. The optimum location of the fractional order Laguerre
basis function pole is determined so that the best fitting to
the desired loop gain is achieved. The performance of these
Laguerre based FOPID and FOPI controllers is investigated
through numerical simulations.

The remainder of this paper is organized as follows. A
brief review on fractional calculus is given in Sect. 2. Sec-
tion 3 describes the construction of the fractional order
Laguerre series basis functions. The proposed FOPID and
FOPI controller are presented in Sect. 4. The performance of
the proposed FOPID and FOPI controllers is demonstrated
by numerical simulations given in Sect. 5. Finally, Sect. 6
concludes the paper.

2 A brief review on fractional calculus

There are a lot of definitions for the fractional order deriva-
tive in the literature [1]. Due to its computation advantages,
the Grunwald–Letnikov definition is utilized in this paper.
According to this definition, the fractional order derivative
of a function f (t)(Dρ f (t)) is defined as [1]

Dρ f (t) = lim
h→0

h−ρ

[ t
h

]
∑

j=0

(−1) j
(

ρ

j

)
f (t − jh),

(n − 1 < ρ ≤ n) (1)

where ρ is the fractional order. If ρ = 1, then the ordinary
definition of derivative is obtained. The Fractional Order
Transfer Function (FOTF) toolbox proposed for numerical
simulation of fractional order systems is based on this def-
inition [22]. A Linear Time Invariant (LTI) fractional order
system with input u(t) and output y(t) could be described
with the following differential equation

anD
αn y(t) + an−1D

αn−1 y(t) + · · · + a0D
α0 y(t)

= bmD
βmu(t) + bm−1D

βm−1u(t) + · · · + b0D
β0u(t) (2)

where αi (i = 0, . . . , n) and β j ( j = 0, . . . ,m) are the frac-
tional orders and ak(k = 0, . . . , n) and bk(k = 0, . . . ,m) are
arbitrary constant numbers. If αi = iv, i = 0, . . . , n and
β j = jv, j = 0, . . . ,m are considered, then the fractional
order system (2) is called commensurate and v is called the
commensurate order. Taking Laplace transform from both
sides of (2) gives the transfer function of a commensurate
fractional order system as

G(s) = Y (s)

U (s)
= bmsmv + bm−1s(m−1)v + · · · + b0

ansnv + an−1s(n−1)v + · · · + a0
. (3)

The controllers containing fractional order operators in
their structure are called fractional order controllers. For
example, the transfer function of a fractional order PID con-
troller could be written as

C(s) = kc

(
1 + 1

Ti sβ
+ Tds

μ

)
(4)

where kc, Ti and Td are the proportional gain, integrator and
derivative coefficients, respectively. While β and μ are two
arbitrary real numbers belonging to (0, 2). If β = μ = 1,
then the ordinary PID controller is obtained.

3 Fractional order Laguerre orthogonal functions

In this section, fractional order Laguerre basis functions are
introduced.Tobegin, somenecessary preliminaries should be
introduced. A fractional order transfer function (3) is stable
if the following conditions are satisfied [23,24]

0<v < 2, |arg(z)| >
vπ

2
, anz

n + an−1z
n−1 + · · · + a0 = 0.

(5)

The H2 norm of a transfer function F(s) denoted by ‖F‖2
is defined as

‖F‖2 =
√

1

π

∫ ∞

0
F( jω)F(− jω)dω. (6)

Let denote open right half-plane (complex numbers with
positive real part) with C+ and closed right half plane (com-
plex numbers with nonnegative real part) with C+. Now, the
space of functionswhich are analytical onC+ and continuous
on C+ with finite H2 norm are called H2(C

+).
The transfer function (3) belongs to H2(C

+) if the follow-
ing inequality is fulfilled [20]

(n − m)v>0.5. (7)
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To construct the fractional order Laguerre basis functions,
the following generating functions are defined

Fn(s) = 1

(sv + λ)n
. (8)

According to (7), the generating functions in (8) belong
to H2(C

+), if the following inequality holds

n ≥ n0, n0 =
[
1

2v

]
+ 1. (9)

According to (9), the transfer function (8) belongs to
H2(C

+) for all n ≥ 1(n0 = 1) if v ∈ (0.5, 2). Thus, in
the remainder of the paper, the plant is considered a com-
mensurate fractional order system as (3) with commensurate
order v ∈ (0.5, 2). Unfortunately, the generating functions
(8) aren’t orthogonal and couldn’t be utilized directly as
Laguerre basis functions [20]. Therefore, these functions
are employed to generate fractional order Laguerre basis
functions according to a Gram-Schmidt orthogonalization
procedure [20].

Gram-Schmidt orthogonalizationprocedure:Consider
arbitrary generating functions Fi (s) ∈ H2(C

+), i =
1, . . . , N . Now, the functions ϕi (s) ∈ H2(C

+), i =
1, . . . , N obtained from the following relations are ortho-
normal

ϕ1(s) = F1(s)

‖F1(s)‖ ,

ϕi (s) = Fi (s) − ∑i−1
j=1 <Fi (s), ϕ j (s)>ϕ j (s)

∥∥∥Fi (s) − ∑i−1
j=1 <Fi (s), ϕ j (s)>ϕ j (s)

∥∥∥
,

i = 1, . . . , N (10)

where <p, q> denotes the inner product of functions p and
q defined as follows

<p, q> = 1

2π

∫ +∞

−∞
p( jω)q( jω)dω. (11)

Moreover, the norm of function p is defined as

‖p‖ = √
<p, p>. (12)

This yields the orthonormal fractional order Laguerre
basis functions ϕi (s) ∈ H2(C

+), i = 1, . . . , k. To construct

fractional order Laguerre basis functions, the inner product
of a fractional order plant and the generating functions (8)
should be calculated. The transfer function of any commen-
surate order plant with real poles could be described with a
partial fractions expanded form in terms of pseudo first order
terms (8). Thus, it is enough to compute the inner product of
two generating functions like (8). Or

θ(v, h,m, λ, δ) = <
1

(sv + λ)h
,

1

(sv + δ)m
> = 1

2π

∫ +∞

−∞
dω

(( jω)v+λ)h( jvωv + δ)m
.

(13)

The relation (13) could be rewritten as

θ(v, h,m, λ, δ) = 1

2π

(∫ +∞

0

dω

(( jω)v + λ)h( jvωv + δ)m

+
∫ +∞

0

dω

((− jω)v + λ)h((− j)vωv + δ)m

)
. (14)

By change of variable x = ωv Eq. (14) is simplified as

θ(v, h,m, λ, δ)

= 1

2πvλhδm

[
I

(
λ−1e j

π
2 v, δ−1e− j π

2 v,
1

v
, h,m

)

+I

(
λ−1e− j π

2 v, δ−1e j
π
2 v,

1

v
, h,m

)]
(15)

where

I

(
ζ, γ,

1

v
, h,m

)
=

∫ ∞

0

x
1
v
−1dx

(ζ x + 1)h(γ x + 1)m
. (16)

The details of computing integral (16) is illustrated in
[3.194, 4 p. 285] of [25] and [20].

Now, a commensurate order strictly proper system as (3)
could be described as the following fractional order Laguerre
series expansion

G(s) =
∞∑

i=1

giϕi (s) (17)

where ϕi (s) are the Laguerre basis functions constructed
from a Gram-Schmidt procedure. The Laguerre basis func-
tions could be parameterized as follows

ϕi (s) =
i∑

j=1

si j
(sv + λ) j

(18)

where si j , j = 1, . . . , i, i = 1, 2, 3, . . . are constant parame-
ters obtained from the Gram-Schmidt procedure. Moreover,
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the Laguerre series coefficients gi are calculated as

gi = <G(s), ϕi (s)>. (19)

Example 1 Consider the following fractional order system

G(s) = 2

s0.7 + 1
. (20)

Considering the Laguerre pole λ = 2.5, gives the
unknown parameters of Laguerre basis functions in (18) as

s11 = 1.5037, s21 = −1.2422, s22 = 10.8697,
s31 = −1.159, s32 = 22.6265, s33 = −71.9935

. (21)

The first three Laguerre series coefficients of (20) obtained
from (19) and (15) are

g1 = 0.8227, g2 = 0.2492, g3 = 0.0826. (22)

To design Laguerre based FOPI and FOPID controllers,
the product of each pairs of two Laguerre basis functions
should be computed. By some manipulations, we have

ϕi (s)ϕ j (s) =
i+ j∑

k=1

ai jkϕk(s) (23)

where the coefficients ai jk could be obtained in terms of si j
as

⎡

⎢
⎣

ai j1
...

ai j (i+ j)

⎤

⎥
⎦ =

⎡

⎢⎢⎢
⎣

s11 s21 . . . s(i+ j)1

0 s22 . . . s(i+ j)2
...

...
...

...

0 0 0 s(i+ j)(i+ j)

⎤

⎥⎥⎥
⎦

−1

×

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0
j∑

m=1

i∑

l=1
sil s jm, (l + m = 2)

...
j∑

m=1

i∑

l=1
sil s jm, (l + m = i + j)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (24)

4 Laguerre based design of FOPI and FOPID
controllers

At first, consider a stable commensurate fractional order sys-
tem with the fractional order Laguerre series expansion (17).
Then, the algorithm is extended for the unstable plants, too.
The controller C(s) is designed such that the open loop gain
could approximate a desired open loop gain L(s). Or

L(s) = G(s)C(s). (25)

In a unit negative feedback control structure, the following
desired loop gain is considered

L(s) = ω2
n

sv(sv + 2ηωn)
(26)

where η and ωn are the damping ratio and the natural fre-
quency, respectively. The desired open loop gain isn’t a stable
function. Therefore, it should be rewritten as follows

L(s) =
ω2
n

(sv+2ηωn)(sv+λ)2

sv

(sv+λ)2

=
∑∞

i=1 liϕi (s)∑∞
i=1 l

′
iϕi (s)

(27)

where the first three Laguerre series coefficients in (27) are
calculated by partial fraction expansion as

li = <
ω2
n

(sv + 2ηωn)(λ − 2ηωn)2
, ϕi (s)>

+<
−ω2

n

(sv + λ)(λ − 2ηωn)2
, ϕi (s)>

+<
ω2
n

(sv + λ)2(2ηωn − λ)
, ϕi (s)>, i = 1, 2, 3.

(28)

l ′1 = s22 + λs21
s11s22

, l ′2 = −λ

s22
, l ′3 = 0. (29)

The Laguerre based FOPI and FOPID design procedures are
illustrated in the following subsections.

4.1 Laguerre based FOPI design for stable plants

Consider the following FOPI controller

C(s) = kc

(
1 + 1

Ti sv

)
. (30)

The controller couldbe rewritten in the followingLaguerre
series form

C(s) =
kc(Ti sv+1)
Ti (sv+λ)2

sv

(sv+λ)2

=
∑∞

i=1 ciϕi (s)∑∞
i=1 c

′
iϕi (s)

(31)

where

c1 = kcTi s22 − kcs21(−λTi + 1)

Ti s11s22
,

c2 = kc(1 − λTi )

Ti s22
, c′

1 = s22 + λs21
s11s22

, c′
2 = −λ

s22
. (32)
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Substituting relations (17), (27) and (31) in (25) yields

∞∑

i=1

giϕi (s)
∞∑

i=1

ciϕi (s)
∞∑

i=1

l ′iϕi (s) =
∞∑

i=1

liϕi (s)

×
∞∑

i=1

c′
iϕi (s). (33)

Considering the product property of fractional order
Laguerre basis functions in (23) and matching the first two
coefficients in both sides in series (33) gives the following
FOPI coefficients

kc = s11c1 + s21c2, Ti = s11c1 + s21c2
s22c2 + λ(s11c1 + s21c2)

(34)

where

[
c1
c2

]
=

[
X1 X2

Y1 Y2

]−1 [
q1
q2

]
,

Xi =
2∑

j=1

ai j1u j ,Yi =
2∑

j=1

ai j2u j , ui

=
2∑

k=1

2∑

j=1

g j l
′
ka jki , qi =

2∑

k=1

2∑

j=1

l j c
′
ka jki ,

i = 1, 2. (35)

Finally, the following algorithm could be obtained for
designing FOPI controllers.

Algorithm 1.

a) Calculate s11, s21, s22 in (18) according to the Gram-
Schmidt orthogonalization procedure in (10).

b) Calculate li , l ′i , i = 1, 2 according to (28) and (29) and
gi , i = 1, 2 according to (19) (partial fraction expansion
could be utilized).

c) Calculate c′
i , i = 1, 2 according to (32) and ci , i = 1, 2

according to (35).
d) Calculate FOPI controller parameters (kc, Ti ) according

to (34).

4.2 Laguerre based FOPID design for stable plants

The FOPID controller with the following transfer function is
considered

C(s) = kc

(
1 + 1

Ti sv
+ Tds

v

)
. (36)

Transfer function (36) is rewritten as

C(s) =
kc(Ti Td s2v+Ti sv+1)

Ti (sv+λ)3

sv

(sv+λ)3

=
∑∞

i=1 ciϕi (s)∑∞
i=1 c

′
iϕi (s)

(37)

where

c3 = kc(TdTiλ2 − Tiλ + 1)

s33Ti
,

c2 = − (kc (2λτd − 1) + s32c3)

s22
,

c1 = kcTd − s31c3 − s21c2
s11

. (38)

c′
3 = −λ

s33
, c′

2 = s32λ + s33
s22s33

, c′
1 = − (

s21c′
2 + s31c′

3

)

s11
. (39)

The relation (33) could be utilized in the FOPID case, too.
Thus, the following FOPID controller parameters could be
obtained from relations (23), (38) and (39)

kc = 2s11λc1 + (s22 + 2λs21)c2 + (s32 + 2λs31)c3,

Td = s11c1 + s21c2 + s31c3
kc

,

Ti = kc
λ2s11c1 + (λs22 + s21λ2)c2 + (s33 + λs32 + s31λ2)c3

(40)

where

⎡

⎣
c1
c2
c3

⎤

⎦ =
⎡

⎣
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

⎤

⎦

−1 ⎡

⎣
q1
q2
q3

⎤

⎦ ,

Xi =
3∑

j=1

ai j1u j ,Yi =
3∑

j=1

ai j2u j , Zi =
3∑

j=1

ai j3u j ,

ui =
3∑

k=1

3∑

j=1

g j l
′
ka jki , qi

=
3∑

k=1

3∑

j=1

l j c
′
ka jki , i = 1, 2, 3. (41)

Consider that a113 = 0. Finally, the Laguerre based FOPID
controller design algorithm could be summarized as

Algorithm 2.

a) Calculate s11, s21, s22, s31, s32, s33 in (18) according to
the Gram-Schmidt orthogonalization procedure in (10).

b) Calculate li , l ′i , i = 1, 2, 3 according to (28) and (29) and
gi , i = 1, 2, 3 according to (19).

c) Calculate c′
i , i = 1, 2, 3 according to (39) and ci , i =

1, 2, 3 according to (41).
d) Calculate FOPID controller parameters (kc, Ti , Td)

according to (40).
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4.3 Laguerre based FOPI and FOPID design for
unstable plants

The proposed FOPI and FOPID controllers could be utilized
to control unstable plants. To achieve this goal, the plant
transfer function is written as

G(s) = p(s)

qs(s)qu(s)
(42)

where p(s) is the numerator of G(s) and qs(s) and qu(s)
are the stable and unstable parts of the denominator of G(s),
respectively. The transfer function (42) could be rewritten in
the following Laguerre series form

G(s) =
p(s)

qs (s)(sv+λ)r+1

qu(s)
(sv+λ)r+1

=
∑∞

i=1 giϕi (s)∑∞
i=1 g

′
iϕi (s)

(43)

where r is the degree of qu(s) and gi , g′
i are the Laguerre

series coefficients of p(s)
qs (s)(sv+λ)r+1 and qu(s)

(sv+λ)r+1 , respec-
tively. Now, according to (25), relation (33) should be
rewritten as

∞∑

i=1

giϕi (s)
∞∑

i=1

ciϕi (s)
∞∑

i=1

l ′iϕi (s)

=
∞∑

i=1

liϕi (s)
∞∑

i=1

c′
iϕi (s)

∞∑

i=1

g′
iϕi (s). (44)

Now, the FOPI controller parameters could be obtained
from (34) in which c1, c2 are calculated as

[
c1
c2

]
=

[
X1 X2

Y1 Y2

]−1 [
q1
q2

]
,

Xi =
2∑

j=1

ai j1u j , Yi =
2∑

j=1

ai j2u j ,

ui =
2∑

k=1

2∑

j=1

g j l
′
ka jki , qi =

2∑

k=1

2∑

j=1

q ′
j c

′
ka jki ,

q ′
i =

2∑

k=1

2∑

j=1

g′
j lka jki i = 1, 2. (45)

For the FOPIDcontroller case, relation (44) and (40) could
be utilized, yet. But, relation (41) should be replaced with the
following relation

⎡

⎣
c1
c2
c3

⎤

⎦ =
⎡

⎣
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

⎤

⎦

−1 ⎡

⎣
q1
q2
q3

⎤

⎦ ,

Xi =
3∑

j=1

ai j1u j ,Yi =
3∑

j=1

ai j2u j , Zi =
3∑

j=1

ai j3u j ,

ui =
3∑

k=1

3∑

j=1

g j l
′
ka jki , qi =

3∑

k=1

3∑

j=1

q ′
j c

′
ka jki , q

′
i

=
3∑

k=1

3∑

j=1

g′
j lka jki i = 1, 2, 3. (46)

Finally, the following algorithm could be employed to
design FOPI or FOPID controllers for unstable plants

Algorithm 3.

a) Calculate s11, s21, s22, s31, s32, s33 in (18) according to
the Gram-Schmidt orthogonalization procedure in (10).

b) Calculate li , l ′i , i = 1, 2, 3 according to (28) and (29) and
gi , g′

i , i = 1, 2, 3 in (43) using inner product approach.
c) Calculate c′

i , i = 1, 2 for FOPI according to (32) and
c′
i , i = 1, 2, 3 for FOPID according to (39) and calculate
ci , i = 1, 2 for FOPI from (45) and ci , i = 1, 2, 3 for
FOPID from (46).

d) Calculate FOPI controller parameters (kc, Ti ) accord-
ing to (34) and FOPID controller parameters (kc, Ti , Td)
according to (40).

4.4 Optimum choice of the fractional order Laguerre
basis function pole

The designed FOPI and FOPID controllers have three para-
meters: η, ωn, λ. The parameters η and ωn could be selected
to reach a good transient response. But, the free parameter λ

should be selected to achieve the closed loop system stability
and the best compliance with the desired step response in the
presence of control signal constraints. Thus, the following
constrained optimization problem should be solved

min : J (λ) =
∫ T
0 (y(t) − yd(t))2dt

∫ T
0 y2d (t)dt

s.t : u−<u(t)<u+ (47)

where y(t) is the closed loop system step response, yd(t)
is the desired closed loop system step response, u(t) is the
control signal, u+ and u− are its upper and lower bounds.

Thismeans that for theFOPI andFOPIDcontroller design,
an initial value for λ is selected. Based on this selection, the
FOPI or FOPID controller parameters are calculated. These
parameters could be employed to obtain the closed loop sys-
tem step response y(t) and the performance index J (λ).
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Then, the value of λ is changed according to an optimiza-
tion loop such that the minimum performance index J (λ)

is obtained and the control signal constraints are satisfied.
MATLAB FMINCON function is utilized to solve this con-
strained optimization problem.

5 Simulation results

To show the performance of the FOPI and FOPID controllers,
some numerical examples are provided.

Example 2 Consider the following fractional order plant

G(s) = 2

s0.9 + 1
. (48)

Considering u+ = 2, u− = −2, η = 0.5, ωn = 6 and the
obtained Laguerre function pole λ = 2, yields the following
FOPI controller transfer function

C(s) = 1.6258

(
1 + 1

0.4521s0.9

)
. (49)

With the same values of λ, ωn , the Laguerre function pole
value for the FOPID controller is obtained as λ = 1.5. This
leads to the following FOPID transfer function

C(s) = 2.1927

(
1 + 1

0.7136s0.9
− 0.0785s0.9

)
. (50)

Figure 1 compares the closed loop system unit step response
obtained from the FOPI and FOPID controllers with the

desired one. The FOPID shows superior performance com-
paring with the FOPI controller. Moreover, the control signal
constraints are fulfilled.

Example 3 In this example, a fractional order plant with one
zero and two poles is considered

G(s) = 2(s1.2 + 4)

(s1.2 + 1)(s1.2 + 5)
. (51)

For the FOPI controller, considering u+ = 2, u− =
−2, η = 1, ωn = 4 yields λ = 0.1. This leads to the fol-
lowing FOPI controller

C(s) = 1.0589

(
1 + 1

0.7715s1.2

)
. (52)

If the similar values for λ, ωn are considered for the FOPID
controller, then λ = 1.5 will be obtained. The corresponding
FOPID controller is given by

C(s) = 0.9361

(
1 + 1

0.6944s1.2
− 0.1146s1.2

)
. (53)

The obtained closed loop system unit step responses for
the FOPI and FOPID controllers are compared with the
desired step response in Fig. 2. As could be seen from Fig. 2,
the step response obtained from the FOPID controller is
closer to the desired step response comparing with the corre-
sponding one obtained from the FOPI controller. Moreover,
the obtained control signals are in the permissible range.

Fig. 1 The closed loop system
unit step responses and control
signals for Example 2
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Fig. 2 The closed loop system
unit step responses and control
signals for Example 3

Fig. 3 The closed loop system
unit step responses and control
signals for Example 4

Example 4 In this example, the following unstable integer
order plant is considered

G(s) = 10

5s − 1
. (54)

Considering u+ = 6, u− = −1, η = 1, ωn = 26.35 and
λ = 3.7 gives the following PI controller

C(s) = 5.77

(
1 + 1

31.67s

)
. (55)

With similar values for λ, ωn and λ = 11.95 the following
PID controller is obtained

C(s) = 6.01

(
1 + 1

6.81s
− 0.011s

)
. (56)
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The comparison between the desired step response and
the closed loop system step response obtained from the PI
and PID controllers are given in Fig. 3. As expected, in the
PID controller case, the step response is more similar to the
desired step response. In addition, the control signals given
in Fig. 3 are admissible.

6 Conclusions

The orthonormal Laguerre basis functions obtained from
a Gram-Schmidt orthogonalization approach are employed
to design FOPI and FOPID controllers for commensurate
fractional order systems. The simulation results show the
effectiveness of the proposed controllers. The best transient
response quality based on integral square error performance
index in the presence of the control signal limitations is
achieved. The design approach could be utilized for com-
mensurate fractional order plants with real poles. Extending
the proposed FOPI and FOPID methods for general com-
mensurate fractional order systems could be considered as
a future research topic. Designing Laguerre based FOPID
controllers for the commensurate fractional order systems
with commensurate order smaller than half is another future
work. The FOPD controller could be designed in the similar
manner, too.
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