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Abstract The bi-stability property and transition to hyper-
chaos of a class of semiconductor diode-based oscillators
are investigated. A simple 4D hyperchaotic oscillator pro-
posed by Lindberg and co-workers (referred to as the LMT
oscillator hereafter) is considered as a paradigm. Due to
the usage of stable oscillators coupled through a non-linear
resistor, this circuit has better reproducibility and higher
stability and thus may be exploited for secure communi-
cation applications. In contrast to current approaches based
on piecewise-linearization methods, a smooth mathematical
model is derived to investigate the dynamics of the oscilla-
tor. The bifurcation analysis shows some striking transitions
including period-adding, period doubling and torus break-
down routes to chaoswhenmonitoring the control parameters
in tiny ranges. More interestingly, some regions of the para-
meter space corresponding to the coexistence of different
attractors are revealed. This phenomenon was not reported
previously and thus represents an enriching contribution
concerning the behaviour of such types of oscillators. The
transitions to hyperchaos are contrasted with equivalent sce-
narios obtained from an experimental implementation of the
circuit in PSpice yielding a very good agreement.
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1 Introduction

Using hyperchaos for securing telecommunication waves is
one of the most prominent applications of chaos in engineer-
ing. Hyperchaos systems are classified as chaotic systems
with more than one positive Lyapunov exponent, meaning
that the chaotic dynamics of the system is expanded in more
than one direction leading to a more complex attractor in
state space. It is well known that using hyperchaos (instead of
simple chaos) for coding telecommunication signals greatly
improves the degree of security (see e.g. [1] andRefs therein).
Thus, the design and implementation of hyperchaos genera-
tors has remained for decades a hot topic in nonlinear science
and particularly in electronics engineering. As a result, num-
bers of electronic circuits capable of generating hyperchaos
have been proposed and investigated [2–12]. The relevant
state-of-the-art provides insight/information related to the
dynamic behaviour of several hyperchaotic systems [1–11].
Concerning the modelling, design and implementation of
hyperchaotic electronic generators, the following most com-
monly used approaches can be mentioned: (a) introducing
additional memory elements (followed by some structural
modifications) in some conventional structures of 3D chaotic
circuits [2–6]; (b) coupling of conventional chaotic oscil-
lators [7,8]; (c) designing a universal analog computing
platform to investigate hyperchaos in several types of models
(e.g. Lorenz, Chua or Rössler equation) [9–12]; (d) using an
infinite dimensional oscillator (i.e. delay line based circuit)
[13].
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In this paper, we consider the dynamics of a class of
hyperchaotic generators including a semiconductor diode
as a nonlinear element. This class includes the Matsumoto-
Chua-Kobahashi hyperchaos circuit [7], the Tamasevicius-
Namajunas-Cenys hyperchaos oscillator [2] and the hyper-
chaos circuit with damped harmonic oscillators proposed by
Lindberg et al. [6], just to name a few. The common approach
followed during the analysis of such oscillators is based on
the piecewise-linear (PWL) description of the diode respon-
sible for the chaos/hyperchaos behaviour of the complete
electronic circuit. For instance, in the pioneering work in
[6], the authors proposed a PWLmodel for the LMT oscilla-
tor. Based on the proposed model, the hyperchaos behaviour
of the circuit was demonstrated by a numerical computation
of Lyapunov exponents’ spectrum. However, we stress that
the PWL model represents only a first order approximation
of the reality; therefore it may give rise to different types of
bifurcations compared to those exhibited by the real oscil-
lator. Furthermore, to the best of the authors’ knowledge,
no design tool is reported that may be exploited for a rig-
orous design of such types of oscillators. To overcome this
drawback, this paper proposes a smooth (exponential)mathe-
matical model [14–20] to investigate the nonlinear dynamics
of this particular class of electronic oscillators using as a pro-
totype the circuit proposed by Lindberg et al. [6] (referred
to as the LMT oscillator hereafter). Various bifurcation dia-
grams and corresponding graphs of Lyapunov exponents are
provided to define scenarios to hyperchaos and characterize
the dynamics of the system in terms of the electronic circuit
parameters as well. These diagrams are of precious utility for
design purposes as they allow a goodmonitoring of themodel
by knowing exactly the combination of the control para-
meters corresponding to a regular or chaotic/hyperchaotic
behaviour of the system. The idea of using the Shockley
diode model (instead of its PWL approximation) followed
in this paper may easily be extended to the analysis of sim-
ilar types of chaos and hyperchaos generators including a
diode.

The rest of the paper is structured as follows. Section 2
is concerned with the modelling process. The electronic
structure of the oscillator is presented and the appropriate
mathematical model is derived to describe the dynamics of
the system. In Sect. 3, the fixed points of the model are deter-
mined and their stability is discussed. Section 4 focuses on
the numerical analysis. Various phase portraits and bifur-
cation diagrams associated with their corresponding graphs
of numerically computed Lyapunov exponents are plotted to
explore various transitions/routes leading to chaos. Section 5
deals with the Spice simulations. The results obtained are
compared with theoretical ones and a very good agreement
is observed which serves to validate the model proposed in
this work. Finally some concluding remarks are presented in
Sect. 6.
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Fig. 1 Schematic diagram (a) of the LMT hyperchaotic oscillator [6].
The Op amplifier (b) with feedback resistors R1, R2 and R3 (with R2 =
R3) plays the role of the negative resistor (RN ) which value satisfies
RN = −R1

2 Circuit description and state equations

2.1 Circuit description

The schematic diagram of the LMT oscillator [6] is depicted
in Fig. 1a. The LMT oscillator includes two linear resonance
circuits, (L1, RL1 , C1) and (L2, RL2 , C2) coupled by means
of a nonlinear conductor. The nonlinear conductor is real-
ized by a resistor RS in series with a parallel combination
of a negative impedance converter (NIC, RN ) and a general
purpose semiconductor diode. The op amplifier with feed-
back resistors R1, R2, R3 implements the negative resistor
(RN ). In particular, it should be noted that for R2 = R3, the
input impedance of the NIC satisfies Zin = −R1. In the net-
work of Fig. 1a, b, the only nonlinear element is the diode D
(assuming ideal op. amplifier implementing the NIC) whose
nonlinear character is responsible for the hyperchaotic behav-
iour exhibited by the complete electronic circuit. It should be
stressed that due to the usage of stable oscillators coupled
through a nonlinear resistor, this circuit has better repro-
ducibility and higher stability [6]. Furthermore, due to the
inclusion of a large buffer resistor RS , the circuit has lower
sensitivity to the manufacturing spread of diode parameters
[6].

2.2 State equations

In order to derive a mathematical model for the LMT oscil-
lator, some useful assumptions are considered. First, we
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assumed linear all capacitors, inductors and resistors (i.e.
ideal op. amplifier implementing the NIC) of the oscillator
network. Second, the I-V characteristic of the semiconductor
diode D is modelled with an exponential function [14–18],
that is:

Id = f (Vd) = Is
[
exp (Vd/ηVT ) − 1

]
(1)

where Vd represents the voltage drop across the diode, Is is
the saturation current of the junction;VT = kbT/q is the ther-
mal voltage with kb the Boltzmann constant; T the absolute
temperature expressed in Kelvin, q the electron charge while
η accounts for the ideality factor (1 < η < 2). Mention that
VT ≈ 26mV at room temperature (300K) [12]. Denoting by
IL j ( j = 1, 2) the current flowing through the inductor L j ,
andVCk (k = 1, 2) the voltage across capacitorCk ; theKirch-
hoff’s electric circuit laws can be applied to the schematic
diagram of Fig. 1 to derive the following set of differential
equations describing the dynamics of the LMT hyperchaotic
oscillator:

L1
d IL1

dt
= VC1 − RL1 IL1 (2a)

C1
dVC1

dt
= −IL1 − Id − Vd

RN
(2b)

L2
d IL2

dt
= VC1 − Vd − RS Id − RS

RN
Vd − RL2 IL2 (2c)

C2
dVd
dt

= − (1 + C2/C1) Id − IL1C2/C1 + IL2 − (1 + C2/C1) Vd/RN

1 + RS/RN + RSd Id/dVd
(2d)

where the diode current (Id) is given by (1) and d Id/dVd rep-
resents its derivative with respect to Vd . It should be noted
that the original state vector

(
IL1 , IL2 , VC1 , VC2

)
can still be

obtained keeping in themind that: VC2 = VC1 −Vd −RS Id −
Vd RS/RN . Setting to zero the right hand side of system
(2), it can be shown that the origin

(
IL1 , VC1 , IL2 , Vd

)T =
(0, 0, 0, 0)T is the trivial equilibrium point of the system.
With the following change of variables and parameters to
non dimensional form:

ρ = √
L1/C1; t = τ

√
L1C1, Vre f = ηVT ,

x j Vre f = ρ IL j ( j = 1, 2) , x3Vre f = VC1 , x4Vref = Vd

w = VC2/Vref , α = − ρ

RN
,

γL = L1

L2
, ε1 = RS Is

Vre f
, γC = C1

C2
, ε2 = ρ Is

Vre f
,

σ1 = RL1

ρ
, σ2 = RL2

ρ
(3)

the normalized circuit equations are expressed by the fol-
lowing smooth nonlinear fourth order differential equations:

ẋ1 = x3 − σ1x1 (4a)

ẋ2 = γL (x3 − (1 − αε1/ε2) x4 − σ2x2 − ε1ϕ(x4)) (4b)

ẋ3 = −x1 + αx4 − ε2ϕ(x4) (4c)

ẋ4 = −x1 + γCx2 + α (1 + γC ) x4 − (1 + γC ) ε2ϕ (x4)

1 − αε1/ε2 + ε1 (ϕ (x4) + 1)
(4d)

ϕ (x4) = exp (x4) − 1 (4e)

where the dots denotes differentiation with respect to τ (that
we rename as t in the new scale without lost of generality).
It should be noted that only one state variable (namely x4) is
involved in the exponential nonlinearity of the model in (4)
and origin of the new system coordinates remains the fixed
point of the model. Obviously, the model is non-symmetric
(i.e. no apparent central nor axial symmetry can be captured
from (4)) due to the presence of exponential nonlinearities;
therefore the existence of symmetric orbits (with respect to
a point or an axis) is not expected. Also note that all the state
variables are real andmaybe captured in real experimentwith
a standard oscilloscope. In our model in (4), seven parame-
ters are involved. Four of them depend on intrinsic diode
parameters (i.e. ε1 and ε2) and the non-ideality of the induc-
tors (i.e. σ1 and σ2). Consequently they will be kept constant
during all the numerical computations: ε1 = 8.415e − 6,
ε2 = 5.856e − 5, σ1 = 1.390e − 2, σ2 = 6.952e − 3.
These parameters are obtained from (3) with the follow-
ing values of electronic circuit components (inspired from
Ref. 6): L1 = 256mH , C1 = 220nF , RL1 = 15
,
RL2 = 7.5
, RS = 155
, D = 1N4148(η = 1.9,
VT = 26mV and IS = 2.682nA). Thus, the bifurcation
structures of the system will be analysed with respect to the
control parameters α, γC and γL (i.e. RN ,C2 and L2) respec-
tively.

We would like to stress that in contrast to the previous
pioneering work [6] based on piecewise-linear (PWL)model
of the LMT oscillator, the exponential model (see e.g. Ref.
20), Eq. (1), is considered throughout this paper. In fact, the
PWL model is “non-smooth” and the corresponding vector
field is of C0 type while the vector field associated to the
exponential model is of C∞ type. Briefly recall that a vector
fieldφ (x) is said to be of classCk ifφ is k-time differentiable
with respect to x and the kth derivative of φ(k) is continuous.
Consequently, the PWL model may exhibit different types
of bifurcation compared to the exponential model which it
approximates [15–17].

3 Equilibrium points and their nature

It is well known that the fixed points play a crucial role on
the dynamics of nonlinear systems. In this section, we deter-
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mine the fixed points of the LMT hyperchaos generator and
investigate their stability in terms of the model parameters.

3.1 Equilibrium points

The fixed points of system (4) can be found by solving the
following nonlinear algebraic equations simultaneously:

x3 − σ1x1 = 0 (5a)

γL (x3 − (1 − αε1/ε2) x4 − σ2x2 − ε1ϕ(x4)) = 0 (5b)

−x1 + αx4 − ε2ϕ(x4) = 0 (5c)
−x1 + γCx2 + α (1 + γC ) x4 − (1 + γC ) ε2ϕ (x4)

1 − αε1/ε2 + ε1 (ϕ (x4) + 1)
= 0

(5d)

After simple algebraic manipulations (e.g. inserting Eq. 5c
in 5d), system (5) can be rewritten in the following form:

x3 = σ1x1 (6a)

x1 = αx4 − ε2ϕ (x4) (6b)

σ2x2 = (−σ1ε2 − ε1) ϕ(x4) + (−1 + ασ1 + αε1/ε2) x4

(6c)

x2 + αx4 − ε2ϕ (x4) = 0 (6d)

Combining Eq. (6c) and (6d), we found that the fixed points
are solutions of the following transcendental equation:

exp (x4) − 1 = −1 + αε1/ε2 + ασ1 + ασ2

ε1 + ε2 (σ1 + σ2)
x4 (7)

It is clear that the number of fixed points depends on the
number of solutions of Eq. (7). Obviously P0 (0, 0, 0, 0) is
a trivial solution. It can be seen that a non trivial solution
may exist depending on the sign of the multiplicative term
(−1 + αε1/ε2 + ασ1 + ασ2) that appear in Eq. (7): a) If
−1 + αε1/ε2 + ασ1 + ασ2 ≥ 0 (i.e. α ≥ 1

σ1+σ2+ε1/ε2
=

αmax) there exists a nontrivial solution P1 which can be
computed numerically by using for instance the MATLAB
software build-in function “fzero”; b) If −1 + αε1/ε2 +
ασ1 + ασ2 ≤ 0 (i.e. α ≤ αmax) there exists a single equi-
librium point P0 (0, 0, 0, 0) for system (4). Only the latter
case corresponds to realistic operation conditions of the LMT
hyperchaotic oscillator and will be considered hereafter. In
fact, αmax = 6.0773 with the values of system parame-
ters mentioned in Sect. 2.2, whereas 0 ≤ α ≤ 0.70 for
a proper operation of the oscillator (see Sect. 4). Briefly
recall that an equilibrium point is simply a DC solution of
the equivalent circuit and may also be determined by short-
circuiting the inductors (L1, L2) and open-circuiting the
capacitors (C1,C2).

3.2 Nature of the trivial fixed point

By perturbing Eq. (4) around the critical point P0 (0, 0, 0, 0),
we obtain the following 4×4 Jacobian matrix:

MJ =

⎡

⎢⎢
⎣

−σ1 0 1 0
0 −σ2γL γL −γL�0

−1 0 0 α − ε2
−1
�0

γC
�0

0 �1
�0

⎤

⎥⎥
⎦ (8a)

�0 = 1 − αε1/ε2 + ε1 (8b)

�1 = (1 + γc) (α (1 − αε1/ε2) + 2αε1 − ε2 − ε1ε2) (8c)

Thus the stability of the trivial equilibriumpoint P0 (0, 0, 0, 0)
is determined according to the real parts of the roots of the
following characteristic equation (det (MJ − λId) = 0):

c4λ
4 + c3λ

3 + c2λ
2 + c1λ + c0 = 0 (9a)

where Id is the 4×4 identity matrix and the coefficients
ci (i = 0, 1, 2, 3, 4) are defined as:

c0 = γL (ασ2 − ε2σ2 − ασ1γc + σ1ε2γc

+ γc�0 − σ2�1) (9b)

c1 = α − ε2 − αγcγL + ε2γcγL + γcγL�0σ1 − �1

−�1γLσ1σ2 + σ2γL�0 (9c)

c2 = γLγc�0 − σ2�1γL − σ1�1 + �0 + σ2σ1γL�0 (9d)

c3 = −�1 + σ2γL�0 + σ1�0 (9e)

c4 = �0 (9f)

A set of necessary and sufficient conditions for all the roots of
Eq. (9) to have negative real parts is given by the well-known
Routh-Hurwitz criterion expressed in the form:

ci > 0 (i = 0, 1, 2, 3, 4) (10a)

c3c2 − c1c4 > 0 (10b)

c1 (c2c3 − c1c4) − c23c0 > 0 (10c)

Table 1 shows the eigenvalues (roots of the characteristic
Eq. 9) obtained by using the Newton-Raphson method for
0.0050 ≤ α ≤ 0.7000 with the following sets of system
parameters: γC = 3.23529; γL = 3.04761 (equivalently
L2 = 84mH, C2 = 68nF and varying RN ). Since MJ is a
realmatrix, complex eigenvalues occur in complex conjugate
pairs. It can be noted from Table 1 that for the critical value
α = αc ≈ 0.0066, there are two pairs of complex conjugate
eigenvalues, among which a pair with zero real part. This
critical value αc corresponds to the Hopf bifurcation point.
Indeed, for values of α ≤ αc, P0 has eigenvalues all with
negative real part (i.e. stable spiral point). Eigenvalues with
positive real parts are obtained for values of α ≥ αc; in this
case P0 is classified as an unstable spiral point. Consequently,
(regular or chaotic/hyperchaotic) oscillations generated for
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Table 1 Stability of the fixed point P0 (0, 0, 0, 0)in terms of parameter
α The rest of model parameters are defined in the text

Parameter α Nonlinear
resistor
|RN | = R1

Eigenvalues
λ1, λ2, λ3, λ4

Stability of P0

0.0050 215740
 −0.0045 ± 1.0000i Stable

−0.0026 ± 3.1400i

0.0066 163440
 −0.0037 ± 1.000i Neutral (Hopf
bifurcation)

±3.1400i

0.3000 3595.7
 0.1545 ± 1.0038i Unstable

0.4631 ± 3.0469i

0.5400 1997.6
 0.3184 ± 1.0143i Unstable

0.8074 ± 2.8230i

0.7000 1541
 0.4709 ± 1.0266i Unstable

0.9937 ± 2.5731i

this range of system parameter values are classified as self-
excited [21,22].

4 Bifurcation analysis

4.1 Numerical methods

To define different scenarios/routes to chaos in our model,
system (4) is solved numerically using the standard fourth-
order Runge–Kutta integration algorithm. For each set of
parameters used in this paper, the time step is always �t ≤
0.005 and the computations are carried out using variables
and parameters in extended precision mode. For each para-
meter setting, the system is integrated for a sufficiently
long time and the transient is discarded. Two indicators
are exploited to characterize the type of transition leading
to chaos. The first indicator is the bifurcation diagram, the
second indicator being the graph of three largest Lyapunov
exponents’ spectra. Concerning the latter case, the dynam-
ics of the system is classified using its Lyapunov exponents
which are computed numerically with the help of the reliable
algorithm of Wolf et al. [23]. Unlike some other meth-
ods, which only compute the largest Lyapunov exponent,
the algorithm of Wolf et al. calculates the full spectrum of
the Lyapunov exponents and thus allows one to distinguish
between chaotic attractorsmarked by only one positive expo-
nent, and hyperchaotic attractors characterized by more than
one positive exponent. Moreover, the Lyapunov dimension
of the attractors is obtained according to the definition of
Kaplan and Yorke:

DL = k + 1

|λk+1|
k∑

i=1

λi (10)

where k satisfies
∑k

i=1 λi ≥ 0 and
∑k+1

i=1 λi < 0. Briefly
recall that 2 < DL < 3 for simple chaos while hyperchaos
is characterized with a Lyapunov dimension DL > 3.0.

4.2 Bifurcation with respect to parameter α

In order to investigate the sensitivity of our model with
respect to the control parameter α, we fix γC = 3.23529,
γL = 3.04761 and α is varied. The structure of the bifur-
cation diagrams and the corresponding spectrum of three
largest Lyapunov exponents are depicted in Fig. 2a–c. Two
sets of data are presented. Figure 2a is obtained by plotting
the local maxima of the state variable x3 (t) in terms of the
control parameter α that is decreased (i.e. R1 is increased,
provided that α = −ρ/RN = ρ/R1) in tiny steps. The final
state at each iteration of the control parameter serves as ini-
tial condition for the next iteration. In contrast, Fig. 2b is
obtained using the same initial point (0.2, 0.4,−0.2, 0.1) at

Fig. 2 Bifurcation diagrams (a, b) showing the coordinates x3 in terms
of the control parameter α and corresponding graphs of three largest
Lyapunov exponents (c) computed (see text for details of procedure)
with : γC = 3.23529; γL = 3.04761
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Fig. 3 Typical 3Dviews of the attractors projected onto the (x1, x2, x3)
space and corresponding (double sided) Poincaré sections (in the
hyperplane x2 = 0) obtained for some specific values of the con-
trol parameter α: a torus state for α = 0.30; b periodic attractor
for α = 0.30; c chaos for α = 0.3375; d chaotic attractor for
α = 0.54; e periodic attractor for α = 0.54; f hyperchaos for

α = 0.70. The rest of parameters are those in Fig. 2. Initial condi-
tions (x1 (0) , x2 (0) , x3 (0) , x4 (0)) leading to the attractors shown
in a–f are respectively: (0.20, 0.40,−0.20, 0.10), (20, 40,−20, 10),
(20,−40,−20, 10), (20,−40,−20, 10), (20, 40,−20, 10) and
(0.20, 0.40,−0.20, 0.10)
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Fig. 3 continued

any iteration of the bifurcation control parameter. From Fig.
2a, the following transitions are observed when the control
parameter α is slowly decreased: hyperchaos→ period-5→
hyperchaos → period-6 → period-3 → chaos → period-
6 → periodic-5 → periodic-3 → period-2 → period-1. In
other words, the hyperchaos motion is destroyed progres-
sively within the LMT oscillator with respect to the control
parameter α. By comparing the diagrams depicted in Fig.
2a, b with Lyapunov exponenents in 2c, intervals of α in
which two attractors coexist are clearly identified. Also note
the presence of tiny windows of regular/periodic motion in
the chaotic and hyperchaotic bands. It can be seen that the
bifurcation diagrams well coincide with the spectrum of the
Lyapunov exponents. In particular, a good coincidence is
observed between band of chaos and windows of regular
behavior within those diagrams. Using the same parame-
ter settings in Fig. 2, various numerical computations of
phase portraits and corresponding (double sided) Poincaré
sections (in the hyperplane x2 = 0) were obtained confirm-
ing different transitions depicted previously (see Fig. 3).
Typical bi-stable behaviors involving a chaotic attractor and
a periodic solution are depicted in Fig. 3c–e. For instance,
the phase portrait of Fig. 3d can be obtained under the ini-
tial conditions x1 (0) = 20, x2 (0) = −40, x3 (0) = −20

and x4 (0) = 10; using the initial conditions x1 (0) = 20,
x2 (0) = 40, x3 (0) = −20 and x4 (0) = 10 a completely dif-
ferent solution (i.e. a periodic attractor) is obtained in Fig. 3e.
Therefore, considering the set of parameters in Fig. 3c–e and
performing a scan of initial conditions [in the (x2, x4) plane
see Fig. 4], we have defined the domain of initial conditions
in which the chaotic solution can be found. In Fig. 4a, b, we
present the basin of attraction corresponding to the chaotic
solution (blue regions) for two different values of the control
parameters (i.e. α = 0.3375 and α = 0.540). These regions
represent initial conditions that lead to chaotic trajectories.
The white regions correspond to the regular/periodic orbit.

4.3 Bifurcation with respect to parameters γC and γL

To evaluate the sensitivity of our model with respect to the
control parameter γC , we fix α = 0.55, γL = 3.04761 and
γC is varied. Fig. 5a, b show the bifurcation diagrams of the
system and corresponding graph of three largest Lyapunov
exponents (Fig. 5c) versus the control parameter γC obtained
using the strategies similar to those described previously. In
particular, Fig. 5a is obtained by plotting the local maxima of
the state variable x3 (t) in terms of the control parameter γC
that is increased in tiny steps. The final state at each iteration
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Fig. 4 Structures of the section of the basin of attraction with(
x01 , x

0
3

) = (20,−20), related to the chaotic trajectories depicted in
Fig. 3c, d.White regions correspond to the periodic solution while blue
ones are associated to the chaotic attractor: a α = 0.3375, b α = 0.54

of the control parameter serves as initial condition for the next
iteration. In contrast, Fig. 5b is obtained using the same initial
point (0.2, 0.4,−0.2, 0.1) at any iteration of the bifurcation
control parameter. Once more, the bi-stability property of
the system is clearly illustrated by a direct comparison of
the diagrams in Fig. 5a and (5b). A stable period-3 orbit
coexists with a period-2 orbit, a torus attractor, a period-4
orbit, a chaotic attractor or a period-6 orbit when the control
parameter γC lies in the window [1.85, 3.40]. Note the good
coincidence between the bifurcation diagrams and the graph
of Lyapunov exponents. From Fig. 5c, it can be seen that
the system exhibits two positive Lyapunov exponents (i.e.
hyperchaos) for values of γC approximately greater than the
critical value γCmin = 3.50. For instance, with γC = 4.50,
the spectrum of the Lyapunov exponents is: λ1 = 0.113,

Fig. 5 Bifurcation diagrams (a, b) showing the coordinates x3 in terms
of the control parameter γC and corresponding graphs of three largest
Lyapunov exponents (c) computed (see text for details of procedure)
with: α = 0.55; γL = 3.04761

λ2 = 0.060, λ3 = 0.000, λ4 = −19.144; the corresponding
Lyapunov dimension being DL = 3.009.

Figure 6a–c depict the bifurcation diagrams with corre-
sponding graph of three largest Lyapunov exponents plotted
against the control parameter γL (computed with α = 0.55
and γC = 3.23529) with same procedure as in the case of
varying γC described above. Here the interval of γL in which
two attractors coexist reduces to a tiny interval located at
γL ≈ 3.0 while the presence of two positive Lyapunov expo-
nents is observed for values of γL satisfying 4.4 ≤ γL ≤
6.0. As in the previous cases, the bifurcation diagrams are
perfectly traced by the graph of three largest Lyapunov expo-
nents. However, it should be stressed that the coexistence
of attractors observed in the LMT oscillator has also been
observed in various nonlinear systems including laser [24],
biological systems [25] and electrical circuits [26], to name
a few. This may serve to validate the results obtained in this
work. We would like to stress however, that from a practical
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Fig. 6 Bifurcation diagrams (a, b) showing the coordinates x3 in terms
of the control parameter γL and corresponding graphs of three largest
Lyapunov exponents (c) computed (see text for details of procedure)
with: γC = 3.23529; α = 0.55

view point; the bi-stability behaviour exhibited by the LMT
oscillator for some special sets of its parameters is not desir-
able and justifies the need for control. A detail study on this
direction is beyond the scope of this paper.

5 PSpice simulations

According to the theoretical analysis, the LMT hyperchaotic
oscillator can experience very striking and complicated
dynamic behaviors. Our aim in this section is to verify
the theoretical results obtained previously by performing
an experimental study of the LMT hyperchaotic oscillator
in Spice [27,28]. Also, it of interest to evaluate the effects
of simplifying assumptions adopted during the modeling
process on the dynamics of a hardware implementation of
the LMT hyperchaotic circuit in PSpice. The main advan-

tage of using PSpice is the possibility of changing initial
capacitor voltages aswell as initial inductor currents and ana-
lyzing the corresponding effect/influence on the dynamics of
the complete electronic generator. Thus different coexisting
attractors can be tracked/observed in a straightforward way.
For this purpose, the schematic diagram of the experimen-
tal LMT oscillator (see Fig. 1) is implemented in PSpice.
The circuit is built using LM741 op. amplifiers type pow-
ered by a symmetric ±15V dc voltage source and a general
purpose 1N4148 diode [6]. The rest of circuit components
are: C1 = 220nF, C2 = 68 nF RL1 = 15
, RL2 = 7.5
,
R1 = 10 k
 variable resistor (recall that RN = −R1), Rs =
155
, R2 = R3 = 2 k
, L1 = 256mH, L2 = 84mH. The
following netlist summarizes the data used in PSpice simula-
tions in case of hyperchaos attractor; the rest of attractors are
obtained by simply changing both the values of resistor R1

and initial conditions as indicated in the caption of Fig. 7:

* Schematics Netlist *

D_D1 0 $N_0001 D1N4148
R_RS $N_0001 $N_0002 155
R_RL1 $N_0003 0 15
V_V1 $N_0004 0 15V
V_V2 0 $N_0005 15V
R_RL2 $N_0006 $N_0002 7.5
R_R3 $N_0001 $N_0007 2k
R_R2 $N_0008 $N_0007 2k
X_U1 $N_0001 $N_0008 $N_0004 $N_0005 $N_0007 LM741
R_R1 0 $N_0008 1997.6
L_L2 $N_0011 $N_0006 84mH IC=0.50
C_C1 $N_0011 0 220n IC=-0.998
C_C2 $N_0011 $N_0002 68n IC=0.494
L_L1 $N_0011 $N_0003 256mH IC=-0.252

The bi-stability property of the systems reported during
the numerical analysis is confirmed in Spice simulations as
well as the scenarios leading to hyperchaos. Sample results
are depicted in Fig. 7 where various coexisting states are
presented. Figure 7a shows the coexistence of two dif-
ferent attractors (a torus with a periodic orbit) obtained in
Spice with different initial points along with their theoretical
counterparts. Similarly, a chaotic attractor coexisting with a
periodic orbit is depicted in Fig. 7b aside with similar theo-
retical results. The results in Fig. 7 confirm a good agreement
between theoretical and experimental analyses and thereby
can be considered to validate the mathematical model pro-
posed in this paper to describe the dynamic behavior of the
LMT hyperchaotic oscillator.

6 Concluding remarks

To summarize, this paper has investigated the nonlinear
dynamics of a simple 4D hyperchaotic electronic oscilla-
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a(i)
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V(C2:2)

-2.0V

0V

2.0V

4.0V

6.0V
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Fig. 7 Comparison between the PSpice simulations results (left
column) and similar theoretical ones (right column) obtained by direct
integration of our model in Eq. (4) with the same initial conditions
of Fig. 3. The PSpice simulations results (x = V (3) and y = V (2);
node 2 and 3 being indicated in Fig. 1 presented in a(i), a(ii), b(i)
and b(ii) are computed using respectively two different values for

nonlinear resistor (i.e. R1 = −RN = 3595.7
 and R1 = −RN =
1997.6
) and the initial points

(
IL1 (0) , IL2 (0) , VC1 (0) , VC2 (0)

)

as follows: a(i) (0.30A,−0.42A,−0.10V,−0.15V ), a(ii)
(0.30A,−0.42A, 10V, 10V ),b(i) (0.252A, 0.50A,−0.998V, 0.494V )

and b(ii) (−0.252A, 0.50A,−0998V, 0494V ). These two values of
the nonlinear resistor RN correspond to α = 0.30 and α = 0.54
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tor described by a set of coupled four first order differential
equationswith exponential nonlinearities. The smoothmodel
is advantageous as it provides a close form description
of the oscillator’s behaviour. The analysis of the bifurca-
tion diagrams and the Lyapunov exponents confirm that the
LMT oscillator has extremely complicated dynamics. Some
striking scenarios/routes to chaos were depicted including
period-adding, period-doubling and torus breakdown route
to chaos. The bi-stability property of the system involving
the coexistence of different solutions for the same parame-
ters values was also discussed. One of the attractive features
of this particular oscillator is the presence of hyperchaotic
motion over a broad range of parameter values which might
be useful for applications in synchronization and chaos based
communication (e.g. Chaoticmasking) as well. PSpice based
simulations results show a very good agreement with the
results obtained by a direct numerical integration of themath-
ematical model proposed in this paper. This clearly shows
that the smooth mathematical model based on the exponen-
tial I–V characteristic of the diode is appropriate to capture
detailed behaviours of semiconductor diode-based circuits in
general [29]. It should bementioned that the bi-stability prop-
erty of the LMT oscillator is also found in hardware models
of the classic Lorenz oscillator based on AD633 multipli-
ers and op. amplifiers RC integrators [30,31]. We would like
to stress that in contrast to the circuit described in [32], the
LMT hyperchaos generator includes no hysteresis element.
This implies that the presence of such type of element is
not necessary for the occurrence of coexisting bifurcations
in a nonlinear circuit. A detailed exploration of the parame-
ter space, aimed at establishing all possible parameter ranges
over which the chaotic/hyperchaotic region emerges, may be
carried out in future work. Also, it should be stressed that
the study performed in this work may easily be extended to
similar diode-based chaotic and hyperchaotic generators.
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