
Int. J. Dynam. Control (2017) 5:30–39
DOI 10.1007/s40435-016-0237-y

Computing step and impulse responses of closed loop fractional
order time delay control systems using frequency response data

Nusret Tan1 · Derek P. Atherton2 · Ali Yüce1

Received: 22 November 2015 / Revised: 19 January 2016 / Accepted: 26 February 2016 / Published online: 9 March 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper deals with the computation of accu-
rate step and impulse responses of fractional order control
systems with time delay. Two elegant methods which are
extensions of themethods previously obtained by the authors
for systemswithout a time delay are given. Thefirstmethod is
called the Fourier seriesmethod and the secondmethod is the
inverse Fourier transform method. The results obtained from
these methods are exact since the methods use frequency
domain data of fractional order transfer functions which can
be computed exactly. Time response equations which are
functions of the frequency response data of the fractional
order PID, lag or lead controllers, and plant are derived.
Numerical examples are given to illustrate the results.

Keywords Fractional order control systems · Step
response · Impulse response · Time delay · Time response
from frequency response

1 Introduction

In recent years there has been considerable interest in the
study of fractional order control systems. Many results
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have been reported for stability analysis, controller design,
frequency domain analysis and time domain analysis of
fractional order control systems [1–3]. However, obtaining
exact or accurate time responses, such as step and impulse
responses, of control systems with fractional order transfer
functions is a difficult problem, since the analytical solu-
tion of the inverse Laplace transform is not possible and
there is not a general method for estimating it. Generally
some of the methods used for time response analysis are
based on integer approximation models which replace the
fractional derivative term sα, α ∈ R by an approximate
integer order transfer function and others are based on numer-
ical approximation of the non-integer order operator such as
the Grünwald–Letnikov (GL) approximation [4–9]. There
are also some methods based on Mittag-Leffler and Gamma
functions for computation of the impulse and step responses
of commensurate-order systems [10,11]. In a recent paper by
the authors [12] two exact methods were given for the com-
putation of step and impulse responses of fractional order
transfer functions (FOTF). One method called the Fourier
Series Method (FSM) uses the Fourier series of a low fre-
quency squarewave as the input to a FOTF to compute its step
and impulse responses. The other method called the Inverse
Fourier Transform Method (IFTM) is based on the inverse
Fourier transform. The results obtained from these methods
are exact since frequency domain data of fractional order
transfer functions, which can be computed exactly, have been
used.

To analyse many physical systems a closed loop with a
time delay needs to be considered which was not discussed
in reference [12], although some provisional results were
presented in the conference paper of reference [13]. It is
well known that the presence of a time delay makes the
computationof time responses for systemswith transfer func-
tions more complicated, and approximate results, obtained
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by replacing the time delay by a Pade approximation, are
often used. However, since frequency domain data for a time
delay can be obtained exactly the FSM and IFTM can be
used for exact step and impulse response computations of
FOTF systems with time delay. These methods are presented
in this paper. Thus, in this paper, we propose exact meth-
ods for the computation of step and impulse responses of a
feedback control structure including a plant with time delay
and a fractional order controller. The time response equa-
tions which depend on the frequency response data of the
controller and plant within the closed loop control system
are derived. Since the results obtained in the paper use the
frequency response data such as gain and phase values at each
frequency, the time response computations of the closed loop
time delay system are accurate and provide useful solutions
for fractional order control design.

The paper is organized as follows: in Sect. 2, an introduc-
tion to FOTF with time delay is given. The exact methods
using FSM and IFTM for computation of step and impulse
responses of closed loop fractional order control systemswith
time delay are given in Sect. 3, together with Examples to
show the importance of the methods. Concluding remarks
are given in Sect. 4.

2 Fractional order transfer functions with time
delay

Fractional order calculus is a generalization of the ordinary
differentiations by non-integer derivatives. Many mathe-
maticians like Liouville and Riemann contributed to the
field of fractional calculus. There are different definitions
of fractional order operators such as Grünwald–Letnikov,
Riemann–Lioville and Caputo [10]. In recent years, frac-
tional calculus has been an important tool to be used in
engineering, chemistry, physical, mechanical and other sci-
ences [14–18] since many real systems are known to display
fractional order dynamics.

A fractional order control system with input z(t), output
q(t) and time delay θ can be described by a fractional order
transfer function of the form,

Fig. 1 A fractional order closed loop control system with time delay

Gp(s) = G(s)e−θs

= Q(s)

Z(s)
e−θs

= bmsβm + bm−1sβm−1 + · · · · +b0sβ0

ansαn + an−1sαn−1 + · · · · +a0sα0
e−θs (1)

where ai , b j (i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m) are
real parameters and αi , β j are real positive numbers with
α0 < α1 < · · · < αn and β0 < β1 < · · · < βm . Thus,
a transfer function including fractional powered s terms and
time delay can be called a fractional order transfer function
(FOTF) with time delay. One can obtain Bode, Nyquist and
Nichols diagrams of Eq. (1) replacing s by jω and using
( jω)α = ωα[cos(απ/2) + j sin(απ/2)]. Therefore, the fre-
quency response computation of FOTF or FOTF with time
delay can be obtained similar to integer order transfer func-
tions. However, for time domain computation no general
analytical method is currently available, hence the FSM and
IFTM introduced in the next section.

The block diagramof a closed loop fractional order control
system with time delay is shown in Fig. 1.

Here, L(s) = C(s)Gp(s) is the open loop transfer func-
tion which is in the form of Eq. (1) such as

L(s) = C(s)Gp(s)

= C(s)G(s)e−θs

= bmsβm + bm−1sβm−1 + · · · · +b0sβ0

ansαn + an−1sαn−1 + · · · · +a0sα0
e−θs (2)

Then the closed loop transfer function can be written as

P(s) = Y (s)

R(s)

= L(s)

1 + L(s)

= (bmsβm + bm−1sβm−1 + · · · · +b0sβ0)e−θs

ansαn + an−1sαn−1 + · · · · +a0sα0 + (bmsβm + bm−1sβm−1 + · · · · +b0sβ0)e−θs
(3)

Letting

P(s) = Y (s)

R(s)
= L(s)

1 + L(s)
= C(s)Gp(s)

1 + C(s)Gp(s)
(4)
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and replacing s by jω in Eq. (4), one obtains

P( jω) = Y (ω)

R( jω)
= C( jω)Gp( jω)

1 + C( jω)Gp( jω)

= (Re[C( jω)] + jIm[C( jω)])(Re[Gp( jω)] + jIm[Gp( jω)]
1 + (Re[C( jω)] + jIm[C( jω)])(Re[Gp( jω)] + jIm[Gp( jω)]

= U (ω) + jV (ω)

Z(ω) + j Q(ω)
(5)

where

U (ω) = Re[C( jω)]Re[Gp( jω)] − Im[C( jω)]Im[Gp( jω)]
(6)

V (ω) = Re[C( jω)]Im[Gp( jω)] + Im[C( jω)]Re[Gp( jω)]
(7)

Z(ω) = 1 + Re[C( jω)]Re[Gp( jω)]
−Im[C( jω)]Im[Gp( jω)] (8)

Q(ω) = Re[C( jω)]Im[Gp( jω)] + Im[C( jω)]Re[Gp( jω)]
(9)

and

Re[Gp( jω)] = Re[G( jω)] cos(ωθ) + Im[G( jω)] sin(ωθ)

(10)

Im[Gp( jω)] = Im[G( jω)] cos(ωθ) − Re[G( jω)] sin(ωθ).

(11)

Thus, P( jω) can be written as

P( jω) = [U (ω)Z(ω) + V (ω)Q(ω)] + j[V (ω)Z(ω) −U (ω)Q(ω)]
Z(ω)2 + Q(ω)2

(12)

so that the real part and imaginary parts of the closed loop
transfer function P( jω) are

Re[P( jω)] = [U (ω)Z(ω) + V (ω)Q(ω)]
Z(ω)2 + Q(ω)2

(13)

Im[P( jω)] = [V (ω)Z(ω) −U (ω)Q(ω)]
Z(ω)2 + Q(ω)2

(14)

3 Step and impulse responses of closed loop
fractional order time delay control systems

3.1 Fourier series method (FSM)

Themethod presented in [12] developed by the authors of this
paper can be applied to the fractional order control system
with time delay shown in Fig. 1. The Fourier series for a
square wave of −1 to 1 with frequency ωs = 2π/T can be
written as

r(t) = 4

π

∞∑

k=1(2)

1

k
sin(kωs t) (15)

where T is the period of the square wave. If r(t) passes
through the transfer function P(s) then the output, which is
the unit step response if T is sufficiently large, can be written
as

ys(t) ∼= 4

π

∞∑

k=1(2)

1

k
Re [P( jkωs)] sin(kωs t) (16)

The proof of this can be done using convolution. The fol-
lowing proof was given in [12] for a fractional order transfer
function and it is extended here for fractional order closed
loop control systemswith time delay. Let p(t) = L−1 (P(s))
and using the convolution integral, the output can be written
as

y(t) =
∞∫

0

p(τ )r(t − τ)dτ

=
∞∫

0

p(τ )

⎛

⎝ 4

π

∞∑

k=1(2)

1

k
sin(kωs(t − τ))

⎞

⎠ dτ

= 4

π

( ∞∫

0

p(τ ) sin(ωs(t − τ))dτ

+1

3

∞∫

0

p(τ ) sin(3ωs(t − τ))dτ

+1

5

∞∫

0

p(τ ) sin(5ωs(t − τ))dτ + · · · · ·
)

= 4

π
(A1 + A2 + A3 + · · · · ·) (17)

If we consider the first integral

A1 =
∞∫

0

p(τ ) sin(ωs(t − τ))dτ

= 1

2 j

∞∫

0

p(τ )
(
e jωs (t−τ) − e− jωs (t−τ)

)
dτ

= e jωs t

2 j

∞∫

0

p(τ )e− jωsτdτ − e− jωs t

2 j

∞∫

0

p(τ )e jωsτdτ

(18)
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from which

A1 = e jωs t

2 j
P( jωs) − e− jωs t

2 j
P(− jωs)

=
(− j

2
cos(ωs t) + 1

2
sin(ωs t)

)
P( jωs)

+
(
j

2
cos(ωs t) + 1

2
sin(ωs t)

)
P(− jωs) (19)

Since Re P(− jωs) = Re P( jωs) and Im P(− jωs) =
−Im P( jωs), we can write

A1 = Re P( jωs) sin(ωs t) + Im P( jωs) cos(ωs t) (20)

Thus, the step response can be written as

ys(t) = 4

π

∞∑

k=1(2)

(
1

k
Re [P( jkωs)] sin(kωs t)

+1

k
Im[P( jkωs)] cos(kωs t)

)
(21)

As T →∞ andωs →0 the numerator of the imaginary part of
P( jkωs) ismultiplied byωs so that limωs→0 Im[P( jkωs)] =
0 and Eq. (21) becomes

ys(t) ∼= 4

π

∞∑

k=1(2)

1

k
Re [P( jkωs)] sin(kωs t) (22)

which is the unit step response of P(s). Using Eq. (13),
Eq. (22) can be written as

ys(t) ∼= 4

π

∞∑

k=1(2)

1

k
Re [P( jkωs)] sin(kωs t)

= 4

π

∞∑

k=1(2)

1

k

[U (kωs)Z(kωs) + V (kωs)Q(kωs)]
[Z(kωs)2 + Q(kωs)2]

sin(kωs t) (23)

Similarly, the impulse response, which is the derivative of
the step response is given by

yi (t) = dys(t)

dt

= 4

π

∞∑

k=1(2)

(ωsRe [P( jkωs)] cos(kωs t)

−ωsIm[P( jkωs)] sin(kωs t))

∼= 4

π

∞∑

k=1(2)

ωsRe [P( jkωs)] cos(kωs t)

= 4

π

∞∑

k=1(2)

ωs
[U (kωs)Z(kωs) + V (kωs)Q(kωs)]

[Z(kωs)2 + Q(kωs)2]
cos(kωs t) (24)

If the controller is a fractional order PID controller of the
form

C(s) = Kp + Ki

sλ
+ Kds

μ (25)

then the closed loop transfer function of the system can be
written as

P(s) = C(s)Gp(s)

1 + C(s)Gp(s)

=
(
Kp + Ki

sλ
+ Kdsμ

)
Gp(s)

1 +
(
Kp + Ki

sλ
+ Kdsμ

)
Gp(s)

(26)

In this equation, replacing s by jω and using ( jω)λ =
ωλ[cos(λπ/2) + j sin(λπ/2)], ( jω)μ = ωμ[cos(μπ/2) +
j sin(μπ/2)], one obtains the following equation

P( jω) =
(
Kp+ Ki

( jω)λ
+Kd ( jω)μ

)
(Re[Gp( jω)]+ jIm[Gp( jω)])

1+
(
Kp+ Ki

( jω)λ
+Kd ( jω)μ

)
(Re[Gp( jω)]+ jIm[Gp( jω)])

= UPID(ω) + jVPID(ω)

ZPID(ω) + j QPID(ω)
(27)

where

UPID(ω) = Re[Gp( jω)]
(
Kp + Ki cos

(
λ

π

2

)
/ωλ

+ Kdω
μ cos

(
μ

π

2

))

+ Im[Gp( jω)]
(
Ki sin

(
λ

π

2

)
/ωλ

− Kdω
μ sin

(
μ

π

2

))
(28)

VPID(ω) = Im[Gp( jω)]
(
Kp + Ki cos

(
λ

π

2

)
/ωλ

+ Kdω
μ cos

(
μ

π

2

))

+Re[Gp( jω)]
(
−Ki sin

(
λ

π

2

)
/ωλ

+ Kdω
μ sin

(
μ

π

2

))
(29)

ZPID(ω) = 1 + Re[Gp( jω)]
(
Kp + Ki cos

(
λ

π

2

)
/ωλ

+ Kdω
μ cos

(
μ

π

2

))

+ Im[Gp( jω)]
(
Ki sin

(
λ

π

2

)
/ωλ

− Kdω
μ sin

(
μ

π

2

))
(30)

QPID(ω) = Im[Gp( jω)]
(
Kp + Ki cos

(
λ

π

2

)
/ωλ
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+ Kdω
μ cos

(
μ

π

2

))

+Re[Gp( jω)]
(
−Ki sin

(
λ

π

2

)
/ωλ

+ Kdω
μ sin

(
μ

π

2

))
(31)

and Re[Gp( jω)] and Im[Gp( jω)] are given in Eqs. (10)–
(11). Thus, the step and impulse responses of the closed loop
system with fractional order PID controller of Eq. (25) can
be written as

ys(t) ∼= 4

π

∞∑

k=1(2)

1

k

[UPID(kωs)ZPID(kωs) + VPID(kωs)QPID(kωs)]
[ZPID(kωs)2 + QPID(kωs)2]

sin(kωs t) (32)

yi (t) = dys(t)

dt

= 4

π

∞∑

k=1(2)

ωs

[UPID(kωs)ZPID(kωs) + VPID(kωs)QPID(kωs)]
[ZPID(kωs)2 + QPID(kωs)2]

cos(kωs t) (33)

If the controller is a fractional order lag or lead controller of
the form

C(s) = K
sμ + a

sμ + b
(34)

then the closed loop transfer function can be written as

P(s) = Y (s)

R(s)

= C(s)Gp(s)

1 + C(s)Gp(s)

= K (sμ + a)Gp(s)

(sμ + b) + K (sμ + a)Gp(s)
. (35)

Replacing s by jω and using ( jω)μ = ωμ[cos(μπ/2) +
j sin(μπ/2)] then

P( jω) = K (( jω)μ + a)Gp( jω)

(( jω)μ + b) + K (( jω)μ + a)Gp( jω)

= ULL(ω) + jVLL(ω)

ZLL(ω) + j QLL(ω)
(36)

where

ULL(ω) = Re[Gp( jω)]
(
Kωμ cosμ

π

2
+ Ka

)

− Im[Gp( jω)]
(
Kωμ sinμ

π

2

)
(37)

VLL(ω) = Re[Gp( jω)]
(
Kωμ sinμ

π

2

)

+ Im[Gp( jω)]
(
Kωμ cosμ

π

2
+ Ka

)
(38)

ZLL(ω) = ωμ cosμ
π

2
+ b

+Re[Gp( jω)]
(
Kωμ cosμ

π

2
+ Ka

)

− Im[Gp( jω)]
(
Kωμ sinμ

π

2

)
(39)

QLL(ω) = ωμ sinμ
π

2
+ Re[Gp( jω)]

(
Kωμ sinμ

π

2

)

+ Im[Gp( jω)]
(
Kωμ cosμ

π

2
+ Ka

)
(40)

Using these equations, the expressions for the step and
impulse responses of the closed loop system from Fig. 1
with a fractional order lag or lead controller of the form of
Eq. (34) are

ys(t) ∼= 4

π

∞∑

k=1(2)

1

k

[ULL(kωs)ZLL(kωs) + VLL(kωs)QLL(kωs)]
[ZLL(kωs)2 + QLL(kωs)2]

sin(kωs t) (41)

yi (t) = dys(t)

dt

= 4

π

∞∑

k=1(2)

ωs

[ULL(kωs)ZLL(kωs) + VLL(kωs)QLL(kωs)]
[ZLL(kωs)2 + QLL(kωs)2]

cos(kωs t) (42)

Example 1 The aim of this example is to show the validity
of the method by considering block diagram of the control
system shown in Fig. 1 with integer order transfer functions
for the controller and plant of

C(s) = 0.771

(
1 + 1

16.310s
+ 4.077s

)
and

Gp(s) = 1.2e−10s

(5s + 1)(2.5s + 1)
(43)

The step responses of the system obtained by Simulink and
the FSM program are shown in Fig. 2a, where it can be seen
that the results on this scale are identical. From the numerical
data the error between the two plots was found to be less than
10−4 at all the computed points. The impulse response was
obtained using Matlab with a 10/10 degree Pade approxima-
tion for e−10s . This result together with that from the FSM
are given in Fig. 2b, where it is seen that for small time values
there are errors in the Matlab plot due to the Pade approx-
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Fig. 2 a Step responses b impulse responses

imation used for the time delay in both the numerator and
denominator of the closed loop transfer function.

Example 2 Consider the block diagramof the control system
shown in Fig. 1 with

C(s) = 1 and Gp(s) = e−s

s0.8
(44)

For this example the step responses of the closed loop control
system are calculated from the FSM, Oustaloup, and Mat-
suda integer order approximations. Instead of replacing s0.8

with the equivalent integer order approximations ofOutaloup
and Matsuda approximation, we used s0.2

s for the realization
of the 1

s0.8
in order to avoid steady state error. In order to

obtain the step response of the system, the Simulink diagram
of the closed loop system from Fig. 1 with C(s) = 1 and
Gp(s) = s0.2e−s

s was set up. For e−s the transport lag block of
Simulink was used and for s0.2 the fourth and fifth order inte-
ger approximation transfer functions given in Eqs. (45) and
(46), which are calculated from the Matsuda and Oustaloup
methods respectively, and are given below, were used:-

s0.2 ∼= 3.357s4 + 161s3 + 453.9s2 + 95s + 1

s4 + 95s3 + 453.9s2 + 161s + 3.357
(45)

s0.2 ∼= 2.512s5 + 98.83s4 + 531.7s3 + 442.3s2 + 56.87s + 1

s5 + 56.87s4 + 442.3s3 + 531.7s2 + 98.83s + 2.512
(46)

The closed loop transfer function of the system for use in the
FSM is

P(s) = L(s)

1 + L(s)
= C(s)Gp(s)

1 + C(s)Gp(s)
= e−s

s0.8 + e−s
(47)

and the step response was then computed from Eq. (23).
These step responses are shown in Fig. 3a where the dif-
ferences between the plots can be seen more clearly on the
zoomed figure. Also, the errors between the plots which use
the Oustaloup andMatsuda approximations and the FSM are
given in Fig. 3b where it can be concluded that the results
have similar small errors. FSM is considered as the reference
method in Fig. 3b.

Example 3 Consider Fig. 1 with

C(s) = 1 + 1

s0.9
and Gp(s) = e−1.6s

s + 2
(48)

then the open loop transfer function of the system is

L(s) = C(s)Gp(s) = s0.9 + 1

s1.9 + 2s0.9
e−1.6s (49)

Here it will be shown that there is a steady state error to a
step input when the fractional order derivative is replaced
by an integer order approximation, and further a comparison
with the Grünwald–Letnikov (GL) approximation method
will be given. Oustaloup’s fifth and seventh order integer
approximations for s0.9 are

s0.9 ∼= 63.1s5+1303s4+3679s3+1606s2+108.4s+1

s5+108.4s4+1606s3+3679s2+1303s+63.1
(50)

s0.9 ∼= 63.1s7+2470s6+20450s5+42940s4+23750s3+3462s2+127.9s+1

s7+127.9s6+3462s5+23750s4+42940s3+20450s2+2470s+63.1

(51)

Using these approximations in Eq. (49) give the two open
loop transfer functions
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Fig. 3 a Step responses obtained from Matsuda 4th order, Oustaloup 5th order and FSM b Error plot between step responses obtained from
Matsuda 4th order, Oustaloup 5th order and FSM
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Fig. 4 a Step responses of Lous5(s), Lous7(s) and actual system using FSM b error plots between 5th and 7th orders Oustaloup’s methods and the
FSM

Lous5(s)

= 64.1s5+1411.4s4+5285s3+5285s2+1411.4s+64.1

63.1s6+1429.2s5+6285s4+8965s3+3320.4s2+217.8s+2
e−1.6s

(52)

and

Lous7(s) = 64.1s7 + 2597.9s6 + 23912s5 + 66690s4 + 66690s3 + 23912s2 + 2597.9s + 64.1

63.1s8 + 2596.2s7 + 25390s6 + 83840s5 + 109630s4 + 50962s3 + 7051.9s2 + 256.8s + 2
e−1.6s (53)

The exact step response of the system obtained from FSM
and the step responses of Lous5(s) and Lous7(s) are shown
in Fig. 4a. In both cases Oustaloup’s approximations give
a steady-state error equal to 0.031 (3.1%) and increasing
the approximation order further does not eliminate it. On
the other hand FSM gives a steady state error of 0.004 at

t = 100 s. and reduces further when t is further increased.
The error plots between Oustaloup approximations and FSM
are shown in Fig. 4b. The step responses of the control system
with Lous5(s) and Lous7(s) are obtained fromSimulink using
the transport lag block. If a Pade approximation is used for
the time delay additional errors result.

The closed loop transfer function of the system is

P(s) = L(s)

1 + L(s)
=

(
s0.9 + 1

)
e−1.6s

s1.9 + 2s0.9 + (s0.9 + 1)e−1.6s (54)

One can compute the step response of Eq. (54) using
Grünwald–Letnikov(GL) approximation method. We used
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Fig. 5 Step responses obtained from GL method and FSM

the Matlab GL program given in [2] by taking first order and
second order Pade approximations for e−1.6s and obtained
Fig. 5. The difference between the plots can be seen more
clearly on the small figure. The result from the GL method
with the second order Pade approximation approach is
near to that from the FSM apart from small values of
time.

Example 4 Let the control system from Fig. 1 have the fol-
lowing plant transfer function

Gp(s) = 4

s(0.4s + 1)(0.1s + 1)
e−0.6s (55)

The aim is to design a lead controller of the form

C(s) = K
sμ + a

sμ + b
(56)

so that the closed loop step response satisfies the following
specifications: percentage overshoot must be less than 12%,
settling timemust be less than 10s for 2% tolerance band and
rise timemust be less than 2s. Using Eq. (41), the parameters
of the controllerwhich give these specifications are computed
as K = 1.1, μ = 0.88, a = 1 and b = 6. These values are
obtained by iteration from some selected initial parameters
such as K = 1, μ = 1, a = 1 and b = 4. The designed
controller is

C(s) = 1.1
s0.88 + 1

s0.88 + 6
(57)

The step response of the system is shown in Fig. 6
where it can be seen that the percentage overshoot is
equal to 11.7%, the rise time is equal to 1.84 s and
the settling time is 7.76 s. Thus, with the designed con-
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Fig. 6 Step response of the closed loop system with Gp(s) of Eq. (55)
and C(s) of Eq. (57)

troller the closed loop performance meets the required
specifications.

3.2 Inverse Fourier transform method (IFTM)

It was shown in [12] that the impulse response of a frac-
tional order transfer function can be obtained from frequency
response data using the inverse Fourier transform. Here, the
results given in [12] are extended for time response compu-
tation of a fractional order closed loop control system with
time delay.

The impulse response, p(t), corresponding to the trans-
fer function P(s) of Eq. (3) is given by p(t) = L−1 (P(s))
where L−1 denotes the inverse Laplace transform. Assum-
ing the impulse response is that of a stable system so that
limt→∞ p(t) = 0 then the Fourier transform can be eval-
uated. The impulse response, p(t), only exists for t > 0
so it will be denoted by p+(t) but as the range of t is
from −∞ to ∞ for the Fourier transform one may consider
the double sided function p(t) = p−(t) + p+(t), where
p−(t) exists for t < 0 and p+(t) for t > 0. p−(t) may be
taken as p+(−t) or−p+(−t), making the total time function
either even or odd. Assuming the even case then P( jω) =
0∫

−∞
p−(t)e− jωt dt +

∞∫

0
p+(t)e− jωt dt = P−( jω)+ P+( jω),

which can be shown to give P( jω) = 2
∞∫

0
p+(t) cosωtdt .

However, our concern is with the inversion integral p(t) =
1
2π

∞∫
−∞

[P+( jω) + P−( jω)]e jωt dω. It can be shown that

P+( jω) = Re[P( jω)] + j[Im P( jω)] where P( jω) is the
Laplace transform of p+(t) or p(t), with s = jω, since the
transform is defined for t > 0. Further from the definition it
can be seen that P−( jω) = Re[P( jω)] − j[Im P( jω)], so
that the integral gives
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p(t) = 1

2π

∞∫

−∞
2Re[P( jω)]e jωt d(ω)

= 2

π

∞∫

0

Re[P( jω)] cos(ωt)d(ω)

= 2

π

∞∫

0

[U (ω)Z(ω) + V (ω)Q(ω)]
[Z(ω)2 + Q(ω)2] cos(ωt)d(ω) (58)

Alternatively, if one assumes p(t) to be odd then P−( jω) =
−Re[P( jω)] + j[Im P( jω)], P+( jω) + P−( jω) = 2 j
Im[P( jω)] and

p(t) = 1

2π

∞∫

−∞
2 jIm[P( jω)]e jωt d(ω)

= − 2

π

∞∫

0

Im[P( jω)] sin(ωt)d(ω)

= − 2

π

∞∫

0

[V (ω)Z(ω) −U (ω)Q(ω)]
[Z(ω)2 + Q(ω)2] sin(ωt)d(ω)

(59)

Thus, for the closed loop system with the fractional order
PID controller, the impulse response using Eq. (25) is

p(t) = 2

π

∞∫

0

[UPID(ω)ZPID(ω) + VPID(ω)QPID(ω)]
[ZPID(ω)2 + QPID(ω)2]

cos(ωt)d(ω) (60)

or

p(t) = − 2

π

∞∫

0

[UPID(ω)ZPID(ω) − VPID(ω)QPID(ω)]
[ZPID(ω)2 + QPID(ω)2]

sin(ωt)d(ω) (61)

whereUPID(ω), VPID(ω), ZPID(ω) and QPID(ω) are given in
Eqs. (28)–(31). Similarly, the closed loop impulse response
of the time delay control system of Fig. 1 with frac-
tional order lag or lead controller of the form of Eq. (34)
is

0 10 20 30 40 50 60 70 80
-0.5

0

0.5

1

1.5

Time(sec)

O
ut

pu
t(s

te
p 

re
sp

on
se

)

5 10 15 20 25 30

0.9

1

1.1

1.2

1.3

FSM
IFTM

Fig. 7 Step responses obtained from FSM and IFTM

p(t) = 2

π

∞∫

0

[ULL(ω)ZLL(ω) + VLL(ω)QLL(ω)]
[ZLL(ω)2 + QLL(ω)2]

cos(ωt)d(ω) (62)

or

p(t) = − 2

π

∞∫

0

[ULL(ω)ZLL(ω) − VLL(ω)QLL(ω)]
[ZLL(ω)2 + QLL(ω)2]

sin(ωt)d(ω) (63)

whereULL(ω), VLL(ω), ZLL(ω) and QLL(ω) are given in Eqs.
(37)–(40).

Example 5 In this example L(s) of Fig. 1 was taken as

L(s) = C(s)Gp(s)

= 30(s2.15+2s0.9 + 0.5)

s6.2 + 13s4.84 + 60s3.75 + 150s3.1 + 160s1.92 + 66s1.12
e−2s

(64)

Thus, the closed loop transfer function is

P(s)= L(s)

1+L(s)

= 30(s2.15+2s0.9+0.5)e−2s

s6.2+13s4.84+60s3.75+150s3.1+160s1.92+66s1.12+30(s2.15+2s0.9+0.5)e−2s
(65)

The step response of P(s) using FSM and the impulse
responses of 1

s P(s) which is the step response of P(s) using
IFTM are plotted in Fig. 7. From the zoomed figure given
in Fig. 7, one can see there is no difference between the two
plots.
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4 Conclusions

In this paper, two exact methods namely FSM and IFTM
have been used for the time response computation of control
systems with fractional order plus time delay plant transfer
functions. The FSM uses the Fourier series of a square wave
with large period and the IFTMuses the inverse Fourier trans-
form of frequency domain data. Since the frequency domain
data for a fractional order control systemwith time delay can
be obtained exactly, the step and impulse responses computed
from the FSM and IFTM are very accurate. The numerical
examples presented show that the results given in the paper
can be very useful for the analysis and design of fractional
order time delay control systems. Development of a system-
atic design procedure based on the FSM is the subject of
future work.
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