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Abstract Provision of additional/alternative food to the
predators for controlling predator-prey dynamics has been
receiving considerable attention from theoretical as well as
experimental biologists. This is due to environment friendly
role played by the additional food in controlling and man-
aging the interacting population. Theoretical investigations
done on additional food provided predator-prey models
reveal that provision of additional food to predators has
a significant role to play in enhancement of commercially
important predator species and also in reduction of prey
population. The quality and quantity of the additional food
provided to predators play vital role in shaping the dynamics
of the interacting system. So far as our knowledge goes, all
theoretical investigations carried out in this direction assume
logistic growth for the prey species. In reality, the per capita
growth rate of the prey population is often an increasing
function at low prey density. Incorporation of this realistic
growth rate induces Allee effect into the dynamics of the
prey species. In this paper, we consider an additional food
provided predator-prey model wherein the prey population
is subjected to Allee effect. The model includes both strong
andweakAllee effects. This article presents a comprehensive
analysis of the consideredmodel that highlights the influence
of Allee effect in prey and additional food for the predators
on the system dynamics.
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1 Introduction

Representing dynamics of population through mathemati-
cal models seem to have been initiated by Malthus in early
nineteenth century through the development of Malthusian’s
model. This model was subsequently modified by introduc-
ing linear per-capita growth rate for the population which
resulted in the well known logistic model. This modifica-
tion allowed the population to evolve in such a way that
it tends asymptotically to a constant termed as carrying
capacity of the environment for the population [1]. In the
early twentieth century, Lotka and Volterra independently
developed models representing predator—prey interactions.
Subsequently, this Lotka–Volterra model has been subjected
to several modifications to incorporate the complex relation-
ships that exist between the interacting species. For example,
a variety of species dependent functional responses have been
developed that enabled realistic representation of the inter-
actions between prey and predator species [2–5]. Similarly,
growth rate of the prey species has also been subjected to
modifications through incorporation of various Allee effects
such as additive Allee effect [6] and multiplicative Allee
effect [7]. Although these attempts bring in complexities
into the system dynamics, they draw the models closer to
reality.

Allee effect is a realistic phenomenon that finds its pres-
ence in many fields associated with evolutionary biology.
This concept has been formalised and initiated by the work
of W.C. Allee in the early twentieth century [8]. Essen-
tially, Allee effect refers to reduction in individual fitness
at low population size or density [9]. This effect plays
very important role in population dynamics. There are sev-
eral mechanisms which generate Allee effect in population
growth.A classification of variousAllee effects characterised
by the nature of involved mechanisms is presented in [10].
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There are some real world examples [9,11–16] where the
presence of Allee effect is observed. Consequently, analysis
of systems involving Allee effect has gained lot of impor-
tance in problems associated with various fields such as
conservation biology [17,18], sustainable harvesting [19],
pest control, biological control [20], populationmanagement
[10], biological invasions [21–25],metapopulation dynamics
[26,27], interacting species [28–32]. The review article [33]
presents a classification of single species models that are
subjected to various Allee effects. Elaborate discussion on
Allee effect can be found in the recent article [8]. Although
there are many classifications within Allee effect such as
strong Allee effect, weak Allee effect, demographic Allee
effect etc., dynamics of population in presence of strong
and weak Allee effects have been subjected to lot of inves-
tigations both mathematically [7,34–40] and ecologically
[8,41].

Another important concept which is being investigated
in the recent past is the dynamics of predator-prey systems
when the predator is provided with additional food [42–45].
This concept deserves attention as many predators are more
often found to be generalists rather than specialists. More-
over, provision of additional food to one of the interacting
species has become an eco-friendly practice in the fields
such as biological conservation, bio-remediation, resource
management, biological control, pest management etc. Thus
studying predator-prey dynamics when the predator is pro-
vided with additional food, following consequent changes in
qualitative behaviour of the system and its dependance on
the characteristics of the additional food such as quality and
quantity would not only be mathematically interesting but
also of practical importance.

In this article, we consider a predator-prey system where
the growth of the prey species is influenced by Allee effect
and the predator population is provided with additional food.
The considered model can be made to exhibit both strong as
well as weak Allee effect with appropriate choice on Allee
effect parameter value. Our interest is to understand the role
of additional foodon the predator-prey dynamics.Comparing
the considered system dynamics with the one without addi-
tional food reveals several interesting consequences which
can be utilised for the purpose of biological control and
species conservation.

This article is organised as follows. Section 2 intro-
duces the model and presents a simplified version through
the process of non-dimensionalisation. Section 3 presents
equilibrium analysis and occurrence of local bifurcations.
Global dynamics of the system are demonstrated through
bifurcation diagrams and phase portraits in Sect. 4. This
is followed by discussion section. The analysis pertain-
ing to various local bifurcations is presented in the
“Appendix”.

2 Model

In this paper we consider the following nonlinear system
which represents predator-prey interactions

dN

dT
= r N (N − L)

(
1 − N

K

)
− g(N , P, A)P, (1)

dP

dT
= s(g(N , P, A) + h(N , P, A))P − mP, (2)

P(0), N (0) > 0 (3)

wherein the growth of the prey is influenced by Allee effect
(strong/ weak) and the predator is provided with additional
food. Here N (t), P(t) respectively represent prey and preda-
tor population densities at time t. K and L (with −K <

L < K ) are the carrying capacity and Allee effect thresh-
old of the prey population respectively. r is the intrinsic
growth rate of the prey. The parameters s andm, respectively,
stand for growth and death rates of the predator. A is the
amount of additional food [42], g(N , P, A), h(N , P, A) are
the functional responses of the predator towards the prey and
additional food respectively. Here, the forms for g(N , P, A),
h(N , P, A) are assumed to be

g(N , P, A) = cN

a + αηA + N
, (4)

h(N , P, A) = cηA

a + αηA + N
(5)

where c is the maximum rate of predation, a is the half
saturation level of the functional response in the absence
of additional food. η represents ability of the predator to
detect the prey relative to predator and the term ηA stands
for quantity of additional food perceptible by the predator
relative to prey (effectual additional food level) and α rep-
resents the quality of additional food relative to prey [42].
In the absence of additional food, the functional response
g(N , P, A) reduces to theHolling type II functional response
and h(N , P, A) reduces to zero. With the functions (4),
(5) and denoting b = cs, the model (1)–(2) takes the
form

dN

dT
= r N (N − L)

(
1 − N

K

)
− cN P

a + αηA + N
, (6)

dP

dT
= b(N + ηA)P

a + αηA + N
− mP. (7)

To reduce the number of parameters, we introduce three
dimensionless variables x, y and t, and five dimensionless
parameters θ, γ, ξ, β and δ given by x = N

a , y = cP
ra2

, t =
arT , θ = L

a , γ = K
a , ξ = ηA

a , β = b
ra and δ = m

ra , thereby
reduce the system (6)–(7) to the form
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ẋ = x(x − θ)

(
1 − x

γ

)
− xy

1 + αξ + x
, (8)

ẏ = β(x + ξ)y

1 + αξ + x
− δy, (9)

x(0) ≡ x0 ≥ 0, y(0) ≡ y0 ≥ 0 (10)

All the parameters involved with the model are positive
except θ . It is well known that the Allee effect is classified
as strong Allee effect and weak Allee effect whenever the
parameter θ satisfies 0 < θ < γ and θ < 0 respectively
[40].
Defining

f (x) = x

1 + αξ + x
,

g(x) = (1 + αξ + x)(x − θ)

(
1 − x

γ

)
,

the above predator-prey system (8)–(9) can be expressed as

ẋ = [g(x) − y] f (x), (11)

ẏ =
[
β f (x)

(
1 + ξ

x

)
− δ

]
y. (12)

For the predator-prey system (11)–(12), the prey nullclines
are: y-axis, the curve y = g(x) and the predator nullclines
are: x-axis, the straight line x = δ(1+αξ)−βξ

β−δ
, which is a part

of β f (x)
(
1 + ξ

x

)
− δ = 0 lying within the first quadrant.

The prey nullcline y = g(x) intersects the x-axis at (θ, 0),
(γ, 0) and g(x) is positive in the interval (θ, γ ). Also, the
prey nullcline y = g(x) has a hump at x = xH ∈ (θ, γ ) and
it is increasing (ie, g′(x) > 0) in (θ, xH ) and decreasing (ie,
g′(x) < 0) in (xH , γ ) where

xH = 1

3
((γ + θ) − −(1 + αξ))

+1

3

(√
[(γ + θ) − −(1 + αξ)]2 + 3[(1 + αξ)(γ + θ) − γ θ]

)
.

Thus, the prey nullcline y = g(x) is negative in (0, θ) and
positive in (θ, γ ) in case of strong Allee effect whereas it is
positive in (0, γ ) in case of weak Allee effect. The predator
nullcline x = δ(1+αξ)−βξ

β−δ
lies in the positive quadrant if

δ(1 + αξ) − βξ and β − δ have the same sign.

3 Local stability and bifurcation

In this section we study the predator-prey system (11)–(12)
to identify its equilibrium solutions, find their stability nature
and provide local bifurcation analysis.

3.1 Existence of equilibria

First we find the number of equilibrium solutions admitted by
the system (11)–(12) and investigate their local stability prop-
erties. We observe that the system (11)–(12) always admits
the trivial equilibrium E0 = (0, 0) and the axial equilibrium
point Eγ = (γ, 0). It admits yet another axial equilibrium
Eθ = (θ, 0) if theAllee effect in thepreypopulation is strong.
Existence of interior equilibrium E∗ = (x∗, y∗), where

x∗ = δ(1 + αξ) − βξ

β − δ
,

y∗ = g(x∗) = (1 + αξ + x∗)(x∗ − θ)

(
1 − x∗

γ

)
, (13)

depends on the positivity of its components. Positivity of x∗
is assured if one of the following conditions

ξ

1 + αξ
<

δ

β
< 1, (14)

ξ

1 + αξ
>

δ

β
> 1 (15)

is satisfied. Positivity of y∗ is guaranteed if θ < x∗ < γ in
case of strong Allee effect and 0 < x∗ < γ in case of weak
Allee effect. Thus the considered system admits at least three
and at most four equilibria incase of strong Allee effect and
at least two and at most three equilibria in case of weak Allee
effect.

In view of the above discussion we can conclude that,
whenever the parameters satisfy either (14) or (15) and x∗ <

γ , the system (11)–(12) admits a unique interior equilibrium
if either

θ(β − δ) < δ(1 + αξ) − βξ < γ (β − δ), (16)

or

0 < δ(1 + αξ) − βξ < γ (β − δ), (17)

are satisfied in the cases of strong orweakAllee effect respec-
tively.

3.2 Local stability analysis

Having identified the equilibrium solutions of the consid-
ered system (11)–(12), we evaluate the local stability nature
of each of the equilibrium solutions. This enables us to under-
stand the nonlinear dynamics associated with the system by
investigating the involved local and global bifurcations. In
order to study the bifurcations we concentrate on two para-
meters of the system given by θ , the strength of the Allee
effect and δ, the death rate of the predator. Variations in
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Table 1 Table presenting the existence, eigenvalues of the Jacobian matrix (18) and stability nature at the concerned equilibrium point for the
prey-predator system (11)–(12) with weak Allee effect (WAE) and strong Allee effect (SAE)

Equilibrium
point

Existence Eigenvalues of the
Jacobian

Nature of equilibrium

WAE SAE WAE SAE

E0 = (0, 0) Exists Exists −θ, δ0 − δ Unstable node if δ < δ0Saddle if
δ > δ0

Saddle if δ < δ0Stable if δ > δ0

Eθ = (θ, 0) Does not exist Exists θ
γ
(γ − θ), δTθ − δ Unstable node if δ < δTθ Saddle if

δ > δTθ

Eγ = (γ, 0) Exists Exists θ − γ , δTγ − δ Saddle if δ < δTγ stable if δ > δTγ Saddle if δ < δTγ stable if δ > δTγ

E∗ = (x∗, y∗) Exists if
0 < x∗ < γ

Exists if
θ < x∗ < γ

Roots of
characteristic
equation of the
Jacobian matrix
(18)

Unstable if δ ∈ (δ0, δH ) and
δ0 < δ < βStable if
δ ∈ (δH , δTγ ) and
δ0 < δ < βSaddle if
δ ∈ (δ0, δTγ ) and β < δ < δ0

Unstable if δ ∈ (δTθ , δH ) and
δ0 < δ < βStable if
δ ∈ (δH , δTγ ) and
δ0 < δ < βSaddle if
δ ∈ (δTθ , δTγ ) and β < δ < δ0

the parameter θ facilitates a comparative study in the sys-
tem dynamics with respect to the strength of the Allee effect.
Study associatedwith variations in the parameter δ highlights
dependance of the system dynamics on the death rate of the
predators and also indicates the consequences of linear pro-
portionate harvesting in predator population. Thus we derive
the Jacobianmatrix of the system (11)–(12) through the stan-
dard process of linearization and analyse its eigenvalues to
identify the nature of the associated equilibrium point. The
general form of the Jacobian matrix of the considered system
(11)–(12) at any point (x, y) is given by

J (x, y)

=
(
g′(x) f (x) + [g(x) − y] f ′(x) − f (x)

βy
[
f ′(x)

(
1 + ξ

x

)
− f (x)

x2
ξ
]

β f (x)
(
1+ ξ

x

)
− δ

)

(18)

where

f ′(x) = 1 + αξ

(1 + αξ + x)2
,

g′(x) = − 3

γ
x2 + 2

[(
1 + θ

γ

)
− 1

γ
(1 + αξ)

]
x

+
[
(1 + αξ)

(
1 + θ

γ

)
− θ

]
.

Evaluating the Jacobian J (x, y) at each of the equilibrium
solutions we come across four critical values for the parame-
ter δ given by δ0 = βξ

1+αξ
, δTθ = β(θ+ξ)

1+αξ+θ
, δTγ = β(γ+ξ)

1+αξ+γ

and δH = β(xH+ξ)
1+αξ+xH

. Significance of these critical values is
presented in Table 1.

FromTable 1we clearly understand that the system under-
goes trans-critical bifurcation at the equilibria Eθ , Eγ (if
admitted by the system) whenever the parameter δ equals
δTθ , δTγ respectively and Hopf-bifurcation occurs around
E∗ whenever δ = δH , provided the parameters satisfy the

condition (14). No Hopf bifurcation can occur at E∗ if the
parameters follow the condition (15), in which case E∗
remains as a saddle point throughout. Below we give the-
oretical support for the occurrence of foresaid bifurcations.

3.3 Transcritical bifurcations

The expressions for the eigenvalues presented in Table 1
and the corresponding stability nature associated with the
axial equilibria clearly indicate the occurrence of transcriti-
cal bifurcation at the equilibrium Eγ which is independent
of sign of θ and also at Eθ for the case of strong Allee effect.
An application of Sotomayer theorem (See “Appendix”) con-
firms the occurrence of transcritical bifurcation at Eγ and Eθ

when δ = δTγ and δ = δTθ respectively.
The interior equilibrium emerged or annihilated due to

occurrence of two transcritical bifurcations at the axial equi-
libria Eθ and Eγ respectively and the respective bifurcation
conditions are given by (14) and (15). These two transcriti-
cal bifurcation curves are shown in the bifurcation diagrams
presented in Figs. 1 and 4.

3.4 Hopf bifurcation

Let J∗ represent the Jacobian matrix evaluated at E∗. It can
be easily verified that

Tr(J∗) = g′(x∗) f (x∗) (19)

and

Det (J∗) = βg(x∗) f (x∗)
[
f ′(x∗)(1 + ξ

x∗
) − f (x∗)

x2∗
ξ

]

= βg(x∗) f (x∗)
(1 + αξ + x∗)2

[1 + αξ − ξ ]. (20)
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Fig. 1 Figure presenting the
bifurcation diagram in the upper
half plane of (θ, δ) space for the
case where parameters of the
model (11)–(12) satisfy the
condition (14). The curve in
cyon represents (21). The
transcritical bifurcation curve at
Eθ (22) is represented by the
magenta curve. The green curve
represents transcritical
bifurcation curve at Eγ (23).
The blue curve represents Hopf
bifurcation curve (24) at E∗.
The curve presented in red
colour represents occurrence of
heteroclinic bifurcation between
the two saddles Eθ and Eγ .
(Color figure online)
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Clearly, Hopf bifurcation can not occur at E∗ under the
assumption (15), as it remains a saddle due to negativity of
Det (J∗). Now, let us assume that the parameters satisfy the
condition (14). Here we have Det (J∗) to be positive and
Tr(J∗)|δ=δH = f (xH )g′(xH ) = 0 (since x∗ = xH when-
ever δ = δH ). Differentiating trace of J∗ with respect to the
bifurcation parameter δ, we obtain

d

dδ
(Tr(J∗)) = f ′(x∗)g′(x∗)

dx∗
dδ

+ f (x∗)g′′(x∗)
dx∗
dδ

= (
f ′(x∗)g′(x∗)+ f (x∗)g′′(x∗)

)
(1+αξ+x∗).

Therefore

d

dδ
(Tr(J∗)) |δ=δH

=
(
f ′(xH )g′(xH ) + f (xH )g

′′
(xH )

)
(1 + αξ + xH )

= 2xH
γ

(√
[(γ +θ)−(1+αξ)]2+3[(1+αξ)(γ +θ)−γ θ ]

)
.

Thus we have d
dδ

(Tr(J∗)) |δ=δH > 0. Hence the transver-
sality condition for Hopf bifurcation is satisfied. The stability
of the Hopf bifurcating limit cycle is determined by the first
Lyapunov coefficient and we are not providing its expres-
sion here from the sake of brevity [46]. Numerically we have
verified that the limit cycles are stable whenever they exist.
Thus the considered system (11)–(12) undergoes a supercrit-
ical Hopf bifurcation at δ = δH whenever the parameters
satisfy the condition (14) and this is independent of sign of
θ . Here, we see that lowering δ gives an increasing period of
the limit cycle that arises through the Hopf-bifurcation. This
Hopf-bifurcation curve (δ = δH ) is represented by the blue
curve in Fig. 1. In case of strong Allee effect, the limit cycle,

that appears throughHopf bifurcation, increase in size (as the
predator isocline crosses the hump of the prey isocline and
moves closer to y-axis) until it disappears through the hete-
roclinic bifurcation. At the heteroclinic bifurcation threshold
we find the heteroclinic cycle joining the saddle points Eθ

and Eγ . The curve on which the limit cycle disappears is
represented by the red curve in Fig. 1.

4 Global dynamics

Information on the number of equilibrium solutions admit-
ted by the system, the nature of the equilibria and the local
bifurcations at equilibrium points identify the following four
significant relations between the system parameters using
which the global dynamics of the system can be determined.

h1(θ, δ) ≡ βξ − δ(1 + αξ) = 0, (21)

h2(θ, δ) ≡ β(θ + ξ) − δ(1 + αξ + θ) = 0, (22)

h3(θ, δ) ≡ β(γ + ξ) − δ(1 + αξ + γ ) = 0 (23)

and

h4(θ, δ) ≡ g′(x∗) = g′(δ(1 + αξ) − βξ

β − δ

)
= 0. (24)

Observe that the above curves represent occurrence of trans-
critical bifurcation at E0, Eθ , Eγ and Hopf-bifurcation at
E∗ respectively. Since we assumed θ and δ to be bifur-
cation parameters, we plot the above curves in the upper
half plane of (θ, δ) space for fixed parameter values of γ ,
α, ξ and β. Here we obtain two distinct bifurcation dia-
grams (Figs. 1, 4) corresponding to the parametric restrictions
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satisfying the conditions (14) and (15) respectively. Apart
from the curves (21)–(24), Fig. 1 presents yet another curve
(shown in red colour) that signifies the occurrence of saddle-
saddle connection in the phase space. Thus, there are five
curves in Fig. 1 and three in Fig. 4. In both these figures, the
first and second quadrants respectively represent the system
bifurcations associated with strong and weak Allee effects
respectively.

Note that the curves presented in each of the Figs. 1 and
4 divide the two quadrants into finite number of subregions.
These subregions characterise nature of the equilibria admit-
ted by the system. Observe that there are ten such regions
(six for strong Allee effect and four for weak Allee effect)
in Fig. 1 and seven such regions (four for strong Allee effect
and three for weak Allee effect) in Fig. 4. Below we shall
discuss the global dynamics of the system as the bifurcation
parameters move through each of these regions.

Let us consider the bifurcation diagrampresented inFig. 1.
In the case of strongAllee effect,we startwith a small value of
δ lying in the region R1. In this region we have h1(θ, δ) < 0,
h2(θ, δ) > 0 and h3(θ, δ) > 0 meaning that E0 is saddle,
Eθ is unstable node and Eγ is saddle point respectively and
hence all the solutions starting in this region exhibit blow up
in the predator component (see phase portraits for Region R1

in Fig. 2). Essentially the region R1 represents the situation
where the predator nullcline lies in the second quadrant of the
phase space. As we move from R1 to R2 we have h1(θ, δ) >

0, h2(θ, δ) > 0 and h3(θ, δ) > 0 indicating that E0 is stable,
Eθ is unstable node and Eγ is saddle point respectively. Thus
the predator and prey population always tend to extinction.
Therefore E0 is globally asymptotically stable (see phase
portraits for Region R2 in Fig. 2).

As we enter R3 from R2 we have emergence of the interior
equilibrium point E∗. In this region we have h2(θ, δ) < 0
and h4(θ, δ) > 0. Hence we have Eθ to be saddle point
and the interior equilibrium point E∗ to be unstable node.
The transcritical bifurcation taking place due to exchange
of stability between Eθ and E∗ along the curve (23) that
separates the region R2 and R3. The nature of the equilibrium
points E0 and Eγ remains unchanged. E0 being the only
asymptotically stable equilibrium, all the non equilibrium
solutions initiating in the positive quadrant of the phase space
approach E0 asymptotically leading to eventual extinction
of both predator and prey population (see phase portraits for
Region R3 in Fig. 2).

Aswe enter the region R4 from R3 the interior equilibrium
point E∗ turns into unstable focus from unstable node and the
stability nature of all other equilibria remains unchanged.The
heteroclinic orbit (green colour path), joining the two sad-
dle points Eθ and Eγ , that occurs along the boundary curve
between R4 and R3 is presented in the bifurcation diagram
(see Heteroclinic, Fig. 2). Since this saddle-saddle connec-
tion is broken in R4, the stable manifold of Eθ divides the

phase plane into two invariant sub regions such that one of
them contains E0 and the other contains E∗ and Eγ . All the
paths with their initial state present in the region contain-
ing E0 will eventually reach E0 and those initiating in the
region containing E∗ and Eγ approach a stable limit cycle
surrounding the unstable focus E∗ (see phase portraits for
Region R4 in Fig. 2). Therefore co-existence or extinction
of population depends on the initial state of the system. As
we move from R4 to R5 we have h4(θ, δ) < 0 and hence
the interior equilibrium E∗ becomes asymptotically stable
while the stability nature of the axial equilibria E0, Eθ and
Eγ remain unchanged. Here the separatrix (stable manifold
of Eθ ) marks the boundary between the basins of attrac-
tion of the two asymptotically stable equilibria E0 and E∗.
Depending on the initial state in the basins of attraction, the
trajectories of the system either tend to E0 or to E∗. So, either
the predator and prey go to extinction or there is stable coex-
istence between the prey and the predator (see phase portraits
for Region R5 in Fig. 2). Thus as we move from R5 to R4,
the limit cycles that appear due to hopf bifurcation occurring
along the curve h4(θ, δ) = 0 increase in size until they dis-
appear when the heteroclinic curve joining the points Eθ and
Eγ is broken, which occurs on the boundary between R4 and
R3.

As we enter the region R6 from R5 we have occurrence
of transcritical bifurcation at Eγ leading to exchange of sta-
bility between E∗ and Eγ and disappearance of E∗. The
system admits two asymptotically stable equilibria E0 and
Eγ whose basins of attraction are separated by the stable
manifold of the saddle point Eθ . Hence, the eventual state
of the system (E0 or Eγ ) depends on the initial state. Irre-
spective of the initial state, the predators get extinct where as
the prey population either survives and reaches its carrying
capacity or gets extinct (see phase portraits for Region R6 in
Fig. 2).

So far we have discussed the global dynamics of the con-
sidered system (11)–(12) under the influence of strong Allee
effect with the assumption that the parameters satisfy the
condition (14). Now let us look at the bifurcation diagram
for the case of weak Allee effect which is represented by
the second quadrant in the Fig. 1. In region R7, we have
that h1(θ, δ) < 0 and h3(θ, δ) < 0 meaning that E0 is sad-
dle and Eγ is asymptotically stable (see phase portraits for
Region R7 in Fig. 3). Hence all the solutions initiating in the
positive quadrant eventually approach Eγ making it glob-
ally asymptotically stable. As we enter R8 from R7 through
the curve h3(θ, δ) = 0, transcritical bifurcation takes place
at Eγ leading to exchange of stability between Eγ and the
newly emerged interior equilibrium E∗. Since h3(θ, δ) > 0
and h4(θ, δ) < 0 we have Eγ to be saddle point and the inte-
rior equilibrium point E∗ to be asymptotically stable node
(see phase portrait for Region R8 in Fig. 3). Thus, in the
region R8, E∗ is globally asymptotically stable. As we move
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Fig. 2 Phase portraits of the
considered system (11)–(12)
satisfying (14) with strong Allee
effect for different values of δ.
δ = 0.25 (Region R1), δ = 0.55
(Region R2), δ = 0.62 (Region
R3), δ = 0.6746878728994055
(Heteroclinic), δ = 0.678
(Region R4), δ = 0.74 (Region
R5), δ = 0.81 (Region R6).
Here θ = 0.2, γ = 1.2, α = 4.3,
ξ = 1.4 and β = 2.5 are fixed
parameters
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Fig. 3 Phase portraits of the considered system (11)–(12) with weak Allee effect for different values of δ = 0.81 (Region R7), δ = 0.725 (Region
R8), δ = 0.66 (Region R9), δ = 0.4 (Region R10). Here θ = −0.75, γ = 1.2, α = 4.3, ξ = 1.4 and β = 2.5 are fixed parameters

from R8 to R9 we have h4(θ, δ) > 0 and hence the inte-
rior equilibrium point E∗ is unstable focus surrounded by
a limit cycle while the stability of other equilibrium points
remains unchanged. Therefore both the predators and prey
asymptotically approach the stable limit cycle surrounding
the unstable focus (see phase portrait for Region R9 in Fig. 3).
This is due to the occurrence of Hopf-bifurcation along the
curve h4(θ, δ) = 0.Here the limit cycle surrounding E∗ is the
global attractor.Moving from R9 to R10 wehaveh1(θ, δ) > 0
and hence E0 becomes unstable and the interior equilibrium
disappears. The saddle nature of the axial equilibrium Eγ

remains unchanged. Therefore all solutions starting in the
first quadrant blow up in the y−direction (see phase portraits
for Region R10 in Fig. 3).

So far, we described the bifurcation diagram (Fig. 1) in
greater detail by using phase portraits that give better under-
standing of the dynamical behavior of the considered model
(11)–(12). The phase portraits corresponding to the differ-
ent regions of the bifurcation diagram (Fig. 1) for strong
Allee effect (R1 − R6) and weak Allee effect (R7 − R10)

are presented in Figs. 2, 3 respectively. The values of the
parameters are mentioned in the captions of the respective
figures. In these phase portraits, the saddle, stable, unstable
equilibrium points are represented by circles, circles filled
with blue color and circles filled with red color respectively.
Stable and unstable manifolds are represented by red curves.
Limit cycles are represented in green and paths are repre-
sented in blue.
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Fig. 4 Figure presenting the
bifurcation diagram in the upper
half plane of (θ, δ) space for the
case where parameters of the
model (11)–(12) satisfying (15).
The curve in cyon represents
(21). The transcritical
bifurcation curve at Eθ (22) is
represented by the magenta
curve. The green curve
represents transcritical
bifurcation curve at Eγ (23).
(Color figure online)
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NowFig. 5 presents another bifurcation diagram (in (x, δ)
plane) that depicts the stability nature of the equilibria of the
considered model (11)–(12) with strong Allee effect under
the parametric condition (14). The three blue color dotted ver-
tical lines δ = δTθ , δ = δH and δ = δTγ represent transcritical
bifurcation at Eθ , Hopf-bifurcation at (xH , g(xH )) and trans-
critical bifurcation at Eγ respectively. The heteroclinic orbit,
connecting the two saddle points Eθ and Eγ comes into exis-
tence at δ = δHet . The axial equilibrium points always exist
and E0 is asymptotically stable represented by solid magenta
line, Eθ is unstable (saddle) if δ < δTθ (δ > δTθ ) and Eγ is
saddle (stable) if δ < δTγ (δ > δTγ ). The interior equilib-
rium point exists for δ ∈ (δTθ , δTγ ) but it is unstable node
for δ ∈ (δTθ , δHet ), unstable focus for δ ∈ (δHet , δH ) and
locally asymptotically stable for δ ∈ (δH , δTγ ). Red color
dotted line represents the x component of the unstable inte-
rior equilibrium point. The x component of the stable interior
equilibrium point along with the minimum and maximum of
the stable limit cycle surrounding an unstable focus is pre-
sented (red in color). One can easily observe the existence
of bistability in the system for δ > δHet for the considered
model (11)–(12) with strong Allee effect. Similarly, Fig. (6)
presents the bifurcation diagram for the system (11)–(12)
with weak Allee effect when the involved parameters satisfy
the condition (14).

Now, let us look at the other case where parameters
of the system follow the condition (15). Bifurcation dia-
gram corresponding to this case is represented in Fig. 4
which presents division of parameter space into seven
regions. The phase portraits of the system (11)–(12) cor-
responding to the subregions depicted in Fig. 4 are pre-
sented in the Figs. 7 and 8. The description pertaining
to the bifurcation diagram and the corresponding phase

portraits can be presented in a similar as in the previous
case.

5 Discussion

Growing importance for eco-friendly practices for managing
and controlling ecosystems has driven experimental scien-
tists to perform various experiments to identify appropriate
methods for biological control. One of the established meth-
ods happens to be provision of additional food to predators.
This method is expected to enhance the survival of the preda-
tors in the environment. Further, it is anticipated that the
increased growth in predators would control and limit the
resident prey (pest). On the contrary, it is observed that pro-
vision of additional food to predators did not always increase
the population density of the predators. There were occa-
sions where this provision lead to decrease in predators and
increase in the pest density. This contra intuitive observation
has motivated the theoretical scientists to investigate into the
influence of additional food on the dynamics of interacting
species such as predator-prey systems in order to offer expla-
nation for the observations made by experimental scientists.
Recent studies [42–45] not only highlight the necessity for
undertaking such studies but also provide state of art in this
area.

In this article we study the dynamics of a predator-prey
system when the predator is provided with additional food
and the prey growth is influenced by Allee effect. The con-
sidered model takes both strong and weak Allee effects
into consideration. Analysis of the system highlights the
bifurcations associated with the dynamics. It is observed
that inclusion of additional food into the system enriches
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Fig. 5 Figure presenting the bifurcation diagram for stability of equi-
librium point of the considered model with strong Allee effect under
the parametric conditions (14). E0 is stable and Eθ is unstable for
δ ∈ [0.52, 0.82]. Eγ is unstable for δ ∈ [0.52, δTγ ) and stable for δ ∈
(δTγ , 0.82], Eγ and E∗ coincides at the transcritical bifurcation thresh-
old δTγ . Interior equilibrium point E∗ is feasible for δTθ < δ < δTγ and

is stable for δH < δ < δTγ . E∗ loses stability through super-critical
Hopf-bifurcation at δH and stable limit cycle exists for δHet < δ < δH .
The stable limit cycle disappear through a heteroclinic bifurcation and
heteroclinic loop is formed by joining two axial equilibrium points Eθ

and Eγ

Fig. 6 Figure presenting the
bifurcation diagram for stability
of equilibrium point of the
considered model with weak
Allee effect where the
parameters of the system
satisfying (14). E0 is stable for
δ ∈ [0.48, 0.88] and Eγ is stable
for δ ∈ (δTγ , 0.88]. Eγ and E∗
coincide with each other at the
transcritical bifurcation
threshold δTγ . Interior
equilibrium point E∗ is feasible
for δTθ < δ < δ0 and is stable
for δH < δ < δTγ . E∗ loses
stability through super-critical
Hopf-bifurcation at δH and
stable limit cycle exists for
δ0 < δ < δH
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the system dynamics. This analysis also offers strategies to
manipulate the additional food provision for accomplishing
the desired results in the system such as elimination of prey
from the system (an application to pest management) or dis-
traction of predators from prey (an application to biological
conservation) there by enhance chances of survival for prey.

While provision of additional food to predators does not
eliminate the characteristic features of the existing Allee
effect in the system, it does affect the level of coexistence

of the species considerably. The existence of interior equilib-
rium and variation in its stability behaviour much depends on
the measure of a specific combination of quality and quan-
tity of the additional food relative to unity as well as the
ratio between the maximum growth rate and death rate of
the predators. If the maximum growth rate of the predators is
higher than their natural death rate then, with the quality and
quantity of the additional food satisfying certain relations, it
is possible to bring in coexistence of the species (if it is not
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Fig. 7 Phase portraits of the considered system (11)–(12) with strong Allee effect for different values of δ = 1.80 (Region S1), δ = 2.2 (Region
S2), δ = 2.52 (Region S3), δ = 2.824 (Region S4). Here θ = 0.2, γ = 1.2, α = 0.01, ξ = 2.85 and β = 1 are fixed parameters

originally present), alter the stability nature of the interior
equilibrium and even eliminate the coexistence by chang-
ing the quality and quantity of additional food provided to
predators.

On the other hand, if the maximum growth rate of the
predators is lower than their natural death rate then although
an interior equilibrium can be brought in (only in the case
of strong Allee effect) through provision of additional food
to predators, for all practical purposes co-existence of the
species can not be achieved due to saddle nature of the inte-
rior equilibrium which can not be altered with variations in
quality and quantity of additional food. As a result the system
experiences either unlimited growth in the predator com-
bined with prey extinction or asymptotic approach of the

prey population to its carrying capacity along with extinc-
tion of predator population. Various regions presented in the
bifurcation diagrams and the associated phase portraits can
be used as the guiding principles for achieving the needed
biological control results.

6 Appendix

Let f (x, y; δ) represent the vector

f (x, y; δ) =
(
x(x − θ)(1 − x

γ
) − xy

1+αξ+x
β(x+ξ)y
1+αξ+γ

− δy

)
. (25)
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Fig. 8 Phase portraits of the considered system (11)–(12) with weak Allee effect for different values of δ = 2.82 (Region S5), δ = 2.52 (Region
S6), δ = 1.80 (Region S7). Here θ = −0.75, γ = 1.2, α = 0.01, ξ = 2.85 and β = 1 are fixed parameters

Differentiate the above function with respect to δ, we obtain

f δ(x, y; δ) =
(

0
−y

)
. (26)

The jacobian matrix of the prey-predator system (8)–(9) at
the equilibrium point Eθ is given by

P = J1(θ, 0) =
(

θ
γ
(γ − θ) − θ

1+αξ+θ

0 β(θ+ξ)
1+αξ+θ

− δ

)
.

Observe that the Jacobian matrix P has a simple zero eigen
values as its determinant is zero and the trace is different

from zero whenever x∗ = θ . Let v =
(

v1
v2

)
be an eigen

vector of the Jacobian matrix P corresponding to the eigen
value λ = 0. We have

Pv =
(

θ
γ
(γ − θ) − θ

1+αξ+θ

0 0

) (
v1
v2

)

=
(

θ
γ
(γ − θ) v1 − θv2

1+αξ+θ

0

)

and

λv =
(

λv1
λv2

)
=

(
0
0

)
.
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We know that the vector v will be an eigen vector of P cor-
responding to the eigen value λ = 0 if Pv = λv. Clearly the
components of this eigen vector satisfy the equation

θ

γ
(γ − θ)v1 − θv2

1 + αξ + θ
= 0

By choosing v1 = 1 we obtain an eigen vector for P given
by

v =
(

1
(γ−θ)(1+αξ+θ)

γ

)
. (27)

Now, let w =
(

w1

w2

)
be the eigen vector of the matrix P�

then

P� =
(

θ
γ
(γ − θ) 0

θ
1+αξ+θ

0

)(
w1

w2

)
=

(
θ
γ
(γ − θ)w1

θw1
1+αξ+θ

)

and

λw =
(

λw1

λw2

)
.

Considering λw = P�w we obtain the equations

λw1 = θ

γ
(γ − θ)w1,

λw2 = θw1

1 + αξ + θ
.

Now λ = 0 implies that w1 = 0 wince γ − θ �= 0 and w2 is
arbitrary. Hence eigen vector of P� corresponding the eigen
value λ = 0 is given by

w =
(
0
1

)
=

(
w1

w2

)
.

From Eq. (26) we have

f δ(θ, 0; δ) =
(
0
0

)

and hence

w�f δ(θ, 0; δ) = (
0 1

) (
0
0

)
= 0. (28)

Now, let us consider

D f δ(x, y; δ)v = ∂ f δ(x, y; δ)

∂x
v1 + ∂ f δ(x, y; δ)

∂y
v2

= ∂

∂x

(
0

−y

)
v1 + ∂

∂y

(
0

−y

)
v2

=
(
0
0

)
v1 +

(
0

−1

)
v2. (29)

The expansion of the term D2f (x, y; δ)(v, v) is given by

D2f (x, y; δ)(v, v) = ∂2f (x, y; δ)

∂x∂x
v1v1 + ∂2f (x, y; δ)

∂x∂y
v1v2

+ ∂2f (x, y; δ)

∂y∂x
v2v1 + ∂2f (x, y; δ)

∂y∂y
v2v2

=
⎛
⎝

[
− 6x

γ
+ 2

(
1 + θ

γ

)
+ 2(1+αξ)

(1+αξ+x)3

]
v1v1[−2[(1+αξ)βy−βξ y]

(1+αξ+x)2

]
v1v1 + 2

[
β[(1+αξ)−ξ ]
(1+αξ+x)2

]
v1v2

⎞
⎠ .

(30)

Evaluating D f δ(x, y; δ)v at (x, y) = (θ, 0) using (27) and
(29) we obtain

D f δ(x, y; δ)v =
(
0
0

)
.1 +

(
0

−1

)
(1 + αξ + θ)(γ − θ)

γ

=
(

0
− (1+αξ+θ)(γ−θ)

γ

)

and hence we have

w�[D f δ(θ, 0; δ)v] = (
0 1

) (
0

− (1+αξ+θ)(γ−θ)
γ

)

= − (1 + αξ + θ)(γ − θ)

γ
�= 0. (31)

Evaluating w�D2f (θ, 0; δ)(v , v) using (27) and (30) we
obtain

w�[D2f (θ, 0; δ)(v, v)]

= (
0 1

) (
−6 θ

γ
+ 2

(
1 + θ

γ

)
+ 2(1+αξ)

(1+αξ+θ)3

2β[(1+αξ)−ξ ](γ−θ)
(1+αξ+θ)

)

= 2
β[(1 + αξ) − ξ ](γ − θ)

(1 + αξ + θ)
�= 0. (32)

From Sotomayer theorem [46] together with the Eqs. (28),
(31) and (32), the prey-predator system (8)–(9) experiences
transcritical Bifurcation at Eθ . In a similar manner, we can
also prove that the prey-predator system (8)–(9) experiences
transcritical Bifurcation at Eγ
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