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Abstract Experience mapping based prediction controller
(EMPC) is a novel controller based on the human motor con-
trol mechanism. The application of EMPC for the precise
position control of PMDCmotors and the performance analy-
sis using step responses is present in literature. However,
the performance of the EMPC control concepts in trajectory
tracking applications is not studied. This paper investigates
the trajectory control of a PMDC motor using EMPC. The
ability of EMPC to control the position along an arbitrarily
selected trajectory and the limitations of the quasi-open-loop
control structure of EMPC in trajectory tracking applica-
tions are studied. A modification to the control strategy
which retains the quasi-open-loop control structure is sug-
gested to improve the performance. Further, a novel method
is developed within the existing framework of EMPC in this
paper for the prediction of duty-cycle to achieve the required
steady-state velocity output of the DC motor system and this
is employed for smooth trajectory tracking. The proposed
method is tested in simulation and the results are analyzed
and compared with that of MRAC and LQG techniques. The
robustness of the proposed technique to changes in system
parameters is also studied. All the proposed techniques are
also implemented on a practical laboratory setup and the
results are provided. The proposedmethods are used for plot-
ting and drawing on aXYplotter and the results are presented
and discussed.
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1 Introduction

The performance of control algorithms and techniques is
studied in academia in terms of their response to step inputs.
The performance is analyzed in terms of the steady state error
and the transient characteristicswhich include rise time, over-
shoot, oscillations and settling time. This is clearly seen in
several survey and comparison papers which have been pub-
lished at different times [1–3]. Novel control techniques are
also evaluated and compared to existing ones using the same
criteria of step response [4–6]. However a large number of
control applications in practice do not operate with a fixed
reference. Further, a largenumber of applications donot oper-
ate with step changes in the reference. The reference changes
with time at different rates and the controller is expected
to ensure that the system output tracks such a dynamically
changing reference in an effective manner. Hence it is impor-
tant that the performance of a controller be investigated for
such applications.

DC motors are one of the most popular actuators in the
industry and are used in several applications including plot-
ters, robotic arms, wheeled robots and others which require
trajectory tracking. The ability of the controller to track
some known or calculated trajectory effectively is extremely
important in all these applications. Over the years, sev-
eral publications have also looked at the performance of
control techniques for such trajectory tracking applications.
While references [7–10] have looked at the performance of
different control techniques when applied to the trajectory
control of a DC motor, reference [11] specifically looks
at the trajectory tracking performance in a Cartesian XY
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plotter. The tracking performance of existing control tech-
niques for applications including robotic manipulators and
wheeled robotswhich useDCmotors has also been studied in
[12–14].

Experience mapping based prediction controller (EMPC)
is a novel controller which has been developed and imple-
mented on a DC motor position control system in [15–18].
The concepts of EMPC are based on two important princi-
ples of human motor control (HMC) mechanism. First, in
HMC, direct interaction with the system to be controlled is
used for learning and the experiences developed through this
direct interaction result in reorganization of cortical maps
leading to experience mapping [19–21]. Second, prediction
mechanism is used in HMC where the developed experience
maps are used to predict the input to be fed to the system
for the required output and to predict the system output for
the applied control input [22,23]. HMC achieves accurate
control and adaptation to system changes by combining both
these concepts [21]. Ultimately in HMC, practicing tasks can
lead to control with reduced effort and without conscious
thought. This leads to reduced feedback and hence a quasi-
open-loop control structure [21].

These concepts have been used to develop EMPC in [15–
18]. The main advantage of EMPC is its capability to control
systems and adapt to parameter changes without the use
of an accurate mathematical model of the plant. The per-
formance of EMPC is studied in [15,16] in terms of its
step response characteristics and compared with the popu-
lar model reference adaptive controller (MRAC). A novel
bipolar control action for EMPC is presented in [17] and its
performance also assessed by analyzing the step response.
The adaptation capabilities of EMPC has also been studied
for changes to various system parameters in [15–17] using
step responses and theperformanceofEMPC in termsof tran-
sient and steady state error characteristics of the step response
is found to be good. A novel correction technique presented
in [18] is used to further enhance the adaptation capabilities
of EMPC and is tested on highly non-linear position con-
trol systems. However, the performance analysis of EMPC
for trajectory tracking applications is not present in litera-
ture. Although Saikumar et al. [15] provides the response of
EMPC for sinusoidal and sawtooth reference waveforms, no
analysis is carried out with respect to its performance. Fur-
ther, a large number of trajectory control applications require
smooth tracking and these control aspect studies of EMPC
is not present in literature.

Hence the performance of EMPC for trajectory tracking
applications is studied in Sect. 2 with respect to the deviation
from the required pattern and the smoothness of tracking.
Further, a new technique is proposed in Sect. 3 to improve the
trajectory tracking ofEMPCand its performance is compared
with that of MRAC and linear quadratic Gaussian (LQG)
controller. The discussed techniques are implemented on a

XY plotter to analyze the performance of EMPC for path
tracking applications and the results are discussed in Sect. 4.

2 Experience mapping based prediction controller
(EMPC)

The two important principles of HMC used for the devel-
opment of EMPC have been stated in the previous section.
Experiencemapping should be achieved through direct inter-
action with the system without the need for a detailed
mathematical model of the plant. The knowledge base cre-
ated using these experiences is termed experience mapped
knowledge-base (EMK) [15,16]. In HMC, experiences are
developed with known patterns of inputs and bounded initial
conditions. The same concept is used for the development
of EMK in EMPC. Saikumar et al. [15,16] propose that a
rectangular-input of duration Ton with amplitude fixed to the
maximumallowed value (say Am ) for the given plant be used.
Further the system being at steady state is considered as the
bounded initial conditions required before the application of
the rectangular input [15,16].

Now, consider any stable LTI Type 1 system H(s) with
(n + 1) poles (pi where 1 ≥ i ≥ n and pn+1 = 0) and m
zeros (zi where 1 ≥ i ≥ m) such that n ≥ m given by Eq.
(1),

H(s) = (s − z1)(s − z2), . . . , (s − zm)

s(s − p1)(s − p2), . . . , (s − pn)
(1)

Assuming that the initial steady state system output y(t =
0) = 0, the system output when the rectangular input is
applied is given as

Y (s) = Am · (
1 − e(−sTon)

)

s
· H(s) (2)

The steady state system output can be obtained by applying
final value theorem to get

y(∞) = Yss = Ksa × Ton (3)

where Ksa = Am × b0
a0

, b0 = ∏m
i=1(−zi ), a0 = ∏n

i=1(−pi )

and Am is the amplitude of the rectangular input. Equation
(3) shows that a linear relationship exists between the steady
state output Yss and the duration of the rectangular input Ton .

It must be noted that the application of the rectangular
input results in a change in the steady state output�Yss given
by Eq. (3). However since we consider, y(t = 0) = 0, we
can consider �Yss = Yss for the sake of simplicity. Also
although Eq. (3) provides for a positive steady state output,
a negative steady state value Yss can also be achieved by
applying a negative amplitude rectangular input to the system
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Fig. 1 Comparison of unipolar
and bipolar control action.
a Unipolar, b Bipolar
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while maintaining the magnitude of the input at Am resulting
in a negative value of Ksa .Assuming that the system responds
in a similar manner irrespective of the polarity of the input,
the linear relationship between Yss and Ton can be ensured
even in this case.

This linear relation seen in Eq. (3) can be used to predict
the required duration Ton of the rectangular input that needs
to be applied to the system to achieve any required system
steady state output value as provided by the reference, if the
value of Ksa is known. Hence, a single rectangular input of
any heuristically determined duration can be applied initially
to determine the value of Ksa and this can be used for the
control of the Type 1 system.

The transfer function of an ideal PMDC motor actuated
rotary positioning system is given in [24] as

θ(s)

Vi (s)
= Kt

La Jms3+(Ra Jm+BmLa)s2+(KbKt+RaBm)s
(4)

where Vi is the applied input voltage to the motor, θ is the
position as measured by the sensor, La and Ra are the arma-
ture inductance and resistance respectively, Jm and Bm are
the total inertia and viscous friction coefficient as experi-
enced by the motor respectively, Kt is the torque constant
and Kb is the back emf constant.

The transfer function of the PMDC motor model given
in Eq. (4) matches well with the general transfer function
of H(s) provided in Eq. (1) and hence the rectangular input
can be used for the control of the PMDC motor based posi-
tion control system also. The steady state initial conditions
required before the application of the rectangular input is
that the motor shaft be at rest. This is when the velocity and
acceleration of the motor are zero or have negligibly small
values. The amplitude of the rectangular input Am is fixed to
the maximum allowed terminal voltage Vm of the motor. The

application of the rectangular input results in themotor being
turned with the Vm for duration Ton . After this the motor is
allowed to coast to a halt. The steady state output change for
such a system is the total displacement of the motor achieved
by the rectangular input, determined after it comes to rest
and this is denoted as Ptotal . Hence for an ideal position
control system, there should exist a linear relation between
Ton and Ptotal . Since a negative voltage is not applied to the
motor to brake it faster and instead the friction elements are
used to slow the motor shaft gradually, this rectangular input
action is also termed unipolar control action. This is shown in
Fig. 1.

The linear relationship in Eq. (3) holds true only for ideal
LTI systems. Although the transfer function given in Eq.
(4) presents an ideal picture for the PMDC motor based
position control systems, practical systems consist of non-
ideal and non-linear components. The presence of friction
in position control mechanisms results in several unneces-
sary non-linear effects irrespective of the actuator used. Static
friction is a discontinuous component and Stribeck effect is
non-linear and difficult to model. PMDC motors also suffer
from torque ripples due to cogging. Practical applications
involving PMDC motors also use current limiting for arma-
ture protection which introduces more non-linearities into
the system. These non-ideal elements result in a non-linear
relationship between the steady state output Ptotal and dura-
tion of the rectangular input Ton and the effects of these have
been studied in [17].

Hence themethod of initial learning is proposed in [15,16]
to counter these problems present in a practical position con-
trol system. To counter the nonlinearity of the Ton to Ptotal
relationship, EMK is developed for this system by learning
the values of Ton for ‘n’ different values of the steady state
output Ptotal . This is used to obtain a piece-wise linear rela-
tionship between Ptotal and Ton . The displacement achieved
by themotor till t = Ton when themotor voltage ismade zero
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is termed Pon and this is also recorded against the respective
values of Ton . This is as shown in Fig. 1. The learned values
of Ton and the corresponding values of Ptotal and Pon create
the EMK.

However the initial learning method of [15,16] uses a trial
and error technique to learn the values of Ton for different
values of Ptotal and this is time-consuming. Further it is also
seen that the effects of static friction like presliding displace-
ment and varying breakaway force are prominent initially in
the stick-slip region and hence the relation between Ton and
Ptotal is more non-linear for small values of Ton [17,25,26].
To counter both these problems a velocity based initial learn-
ing technique is proposed in [17]. This technique utilizes the
velocity of the motor to determine the different values of
Ton for which the corresponding values of Pon and Ptotal are
recorded. Further, memory is specifically alloted for learning
the values of Pon and Ptotal for smaller values of Ton . This
velocity based initial learning technique presented in [17] is
less time-consuming and is also found to be more effective
for precision position control.

The EMK developed using either of the initial learning
techniques is used for position control using the iterative
predictive action described in [15]. The EMKhas been devel-
oped to obtain a piece-wise linearization of the non-linear
relationship between Ton and Ptotal . Hence, for any change
in the reference value R, the error between the current steady
state output of the system Yss and the required steady state
value given by R can be considered as the new demand D.

D = R − Yss (5)

The duration Ton of the rectangular input to be applied to the
position control system is predicted using the EMK using
linear interpolation if necessary as shown in Eq. (6). The
input is applied when the motor is at rest and the motor is
then allowed to coast to a halt.

Ton = (Ton1 − Ton2) × (|D| − Ptotal2)

Ptotal1 − Ptotal2
+ Ton2 (6)

where D is current position error and acts as the demand
for the iteration, Ton1 and Ton2 are the corresponding control
values for Ptotal1 and Ptotal2 respectively such that Ptotal1 >

D ≥ Ptotal2 and Ptotal1 and Ptotal2 being the closest values
of Ptotal to D in the EMK.

Since position control is achieved by the accurate predic-
tion of the duration Ton using the learned experiencemapping
of EMK, this is also termed time based control (TBC). Any
errors due to noise, changes in system or prediction inaccu-
racies is considered as the new demand D after the motor
comes to a halt and the value of Ton is predicted again using
the EMKand a new rectangular input is applied to the system.
This iterative predictive action approach is shown in Fig. 2,
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Fig. 2 Simulated response of EMPC with Gaussian noise added to the
control input of the system

where Gaussian noise has been added to the control input.
This results in errors which can be seen in the zoom-in of
the vertical axis. It is clearly seen that EMPC uses multiples
iterations to reduce such errors and to maintain the system
output at the given reference value.

Position based control (PBC) is also developed in [15] to
TBC. Here Pon is predicted using Eq. (7) instead of Ton using
linear interpolation.

Pon = (Pon1 − Pon2) × (|D| − Ptotal2)

Ptotal1 − Ptotal2
+ Pon2 (7)

The voltage Vm is applied to the terminals of themotor till the
shaft is displaced by the predicted Pon value and this is used
for control. PBC has the advantages of reducing errors due
to sensor noise, system noise and minor variations in system
parameters [15,16]. However PBC suffers due to the quan-
tized nature of the position feedback used in digital systems
which is prominent for small values of D. TBC is found to
be effective in such cases [15,16]. Hence a combination of
TBC and PBC is used in [15–17] to achieve accurate posi-
tion control where PBC is used for larger values of D to
reduce errors due to noise, and TBC is used for smaller val-
ues of D to achieve zero steady state error. The boundary
(T Pbdy) is also determined by using the EMK to ensure that
PBC is only used for those values of D where the errors
seen due to the quantized nature of position feedback are
negligible [17].

The use of iterative predictive action ensures that small
errors due to noise are removed. However, significant
changes in system parameters can result in a deterioration
of the performance and can even lead to instability. Hence,
adaptation to system parameter changes is introduced into
EMPC with on-job relearning (OJR) [15–17]. It is ensured
that even in this case, OJR is only used at the end of every
iterative predictive action. Here, the value of the expected
change in steady state which is D is compared with the mea-
sured change in the steady state value for adaptation. The
ratio of expected to measured is calculated as the parame-
ter correction coefficient (PCC), at the end of every iteration
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and is used to correct the prediction of the next iteration. In
order to reduce the effects of noise on adaptation, a weighted
technique is used in [15–17] to calculate PCC as

PCC =
W · Predicted Ptotal

Measured Ptotal
+ PCC

W + 1
(8)

whereW is the weightage given to the latest iteration output.
Two separate PCC variables are used for TBC and PBC to
correct the appropriate prediction variable.

This technique of adaptation results in a quasi-open-loop
control approach where the action that needs to be applied to
the system to achieve the required output is predicted using
past experiences and the resultant response is onlymonitored.
Anydeviation from the expected response is used as feedback
and results in adaptation only after the systemachieves steady
state. The algorithm used for the iterative predictive action
along with OJR is provided in Algorithm 1.

Algorithm 1 Iterative predictive action for the practical posi-
tion control system with OJR where r(t) is the position
reference fed to the system
1: Remove any offset on feedback to get the steady state value Yss =

θ(t = 0) = 0 before start
2: PCCT = 1 � Initialize PCC for TBC to 1
3: PCCP = 1 � Initialize PCC for PBC to 1
4: Initialize WT and WP for required values
5: while Operational, sample at Ts = 0.1 ms do
6: R = r(t), Yss = θ(t)
7: D = R − Yss
8: if D �= 0 then
9: if |D| < T Pbdy then � Use TBC
10: Predict Ton using Eq. (6)
11: Ton = Ton · PCCT
12: t0 = t
13: Apply voltage Vm to motor with appropriate polarity
14: while (t − t0) < Ton do
15: wait
16: end while
17: Applied T erminal V oltage = 0
18: Wait for motion system to settle
19: Calculate PCCT using Eq. (8)
20: else � Use PBC
21: Predict Pon using Eq. (7)
22: Pon = Pon · PCCP
23: Apply voltage Am to motor with appropriate polarity
24: while |θ(t) − Yss | < Pon do
25: wait
26: end while
27: Applied T erminal V oltage = 0
28: Wait for motion system to settle
29: Calculate PCCP using Eq. (8)
30: end if
31: end if
32: end while

A new control action termed bipolar control action is pro-
posed and studied in [17]. Here, the polarity of the voltage

applied to the motor is reversed after t = Ton to actively
brake the position control system. This reversed polarity
voltage is applied till the velocity of the position control
system becomes zero or is negligibly small. This reduces
the displacement of the motor given by Ptotal − Pon in
the 2nd phase as shown in Fig. 1. This is compensated by
applying a rectangular input of larger duration Ton com-
pared to the unipolar control action in order to achieve a
larger Pon and hence achieve the same Ptotal . This bipo-
lar control action decreases the settling time of the system
significantly and the use of maximum terminal voltage Vm
ensures that this results in an optimal settling time for the
position control system. Reference [17] proves that the use
of bipolar control action introduces robustness into EMPC
and reduces the errors seen in control due to changes in
system parameters and also helps in achieving faster adapta-
tion. The use of the bipolar control action results in a small
modification to Algorithm 1 in lines 17 and 27 where the
polarity of the voltage is reversed instead of applying zero
voltage.

The performance of EMPC has been tested by studying
the step responses in [15,16]. Bipolar control action studied
in [17] also analyzes the performance of the control action in
terms of the step response characteristics. The performance
of EMPC for dynamically changing reference r(t) is studied
in this paper. In Fig. 1 it can be seen that the use of active brak-
ing in bipolar control action reduces the overall time required
for the motor to be displaced by Ptotal . This is a useful char-
acteristic for tracking applications as this ensures that a fast
changing reference can be tracked by the controller. Hence
the bipolar control action is considered for trajectory tracking
studies.

A simulation model is developed for the PMDC motor
based position control system in MATLAB in SIMULINK
using the motor specifications of [27]. The inertia and rota-
tional friction blocks present in SimMechanics are used in
the model. It must be noted that since EMPC does not rely on
the accurate mathematical model of the plant for control, the
choice of the frictionmodel used in the friction block ofMAT-
LAB does not affect the performance of EMPC. An encoder
block with an effective resolution of 8192 pulses per rotation
is used for feedback. EMK is initially developed in thismodel
for bipolar control action for inertia I = 3.0 × 10−5 kgm2

and static friction torque F = 20mNm. The EMK is devel-
oped by recording 100 values of Ton , Pon and Ptotal . The
performance of EMPC for various reference curves is ana-
lyzed in terms of the root mean square of the error (ERMS).
This is calculated using the formula given by Eq. (9).

ERMS =
√√√√ 1

N

N∑

i=1

(
(ri − θ(i+ j))2

)
(9)
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where r is the reference position waveform to be followed
and θ is the measured position waveform. j is the offset
introduced to remove the errors seen due to the system time-
constant and delays of measurement. The time-constant of
the system results in a delayed response in any system and
this can lead to an offset seen between r and θ with respect
to time. This is especially true in cases where the reference
changes initially at a rate faster than the time constant of the
system. This can result in a large value of ERMS if directly
calculated evenwhen thewaveform is tracked perfectly. Sim-
ilarly delays inmeasurement and data acquisition can be seen
as errors if θ is directly compared with r . Hence the value of
j is chosen to obtain the minimum possible value of ERMS.
The performance of EMPC is testedwith the developedEMK
for bipolar control action with the same values of I and F as
mentioned before. The tracking responses are obtained for
sinusoidal and triangular references, and selected position
and velocity plots are provided in Figs. 3, 4 and 5.

The results show that EMPC is able to track the ref-
erence well in Figs. 3 and 4 with a low ERMS. However,
the performance deteriorates slightly in Fig. 5 where r(t)
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changes at amuch faster rate. Although bipolar control action
which reduces the time required to achieve the same dis-
placement Ptotal compared to the unipolar control action has
been used, the performance is poor for such fast changes
of reference. The ERMS is significantly higher in this case.
Since OJR can be used for adaptation to changes in system
parameters, the tracking response of EMPC for the same
sinusoidal reference used in Fig. 5 is obtained after increas-
ing the inertia I to 6.7 × 10−5 kgm2. The results provided
in Fig. 6 also shows a similar deterioration in performance.
The increase in inertia further adds to the slow response
of the system and it is seen that the system is unable to
keep up with the changing reference in this case. It must
be noted that the response of Fig. 6 is obtained by using the
same EMK used in Fig. 5, even though the value of I was
increased.

The increase in the value of ERMS seen with either an
increase in inertia or an increase in the rate of change of r(t)
can be explained by the quasi-open-loop control approach
of EMPC. In this approach, it is important that the control
input to achieve the required output is predicted based on
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past experiences. The prediction takes place initially when
the system is at steady state. The predicted action is applied
and the reference and the system response are sampled again
only at the end of the iterative predictive action when the sys-
tem has settled into steady state again as seen in Algorithm
1. This approach works well for step responses as noted in
[15–17]. However in the case of constantly changing r(t),
this introduces a limitation on the performance of EMPC.
Unlike conventional systems, the sampling of r(t) and sub-
sequent error computation are not done continuously at a
high frequency in EMPC. Instead these are done only at the
end of each iteration and hence the rate at which these are
sampled (sampling frequency) depends on the time taken by
the system to reach steady state. With EMPC since maxi-
mum allowed amplitude is used with the rectangular input,
the total time taken to settle is purely dependent on the time
constant of the system. Hence with EMPC, if the sampling
frequencywhich is dependent on the system iswellwithin the
Nyquist criterion for the given changing r(t), then the system
response is good as seen in Figs. 3 and 4. However as the rate
of r(t) change increases, the system response deteriorates as
seen in Figs. 5 and 6.

Corrective action by reference sampling The effect of not
taking corrective action for changes in r(t) till the sys-
tem settles into steady state can be seen in Fig. 7a, b.
Here, two iterations are required to achieve the reference
value which changes when the rectangular input has been
applied. The novel correction technique presented in [18]
samples the system response and corrects the applied action
to improve adaptation to system changes. A similar tech-
nique can be developed to improve the tracking performance
of EMPC where r(t) is sampled at regular intervals and cor-
rective action taken in response to these changes. Hence
this technique is termed ‘corrective action by reference
sampling’.

Similar to the iterative predictive action, the reference and
system output are sampled to obtain the value of D and pre-
dict Ton or Pon . However, with the new technique, the change
in r(t) is sampled even during the 1st phase of the applied
rectangular input. The value of D is recalculated using Eq.
(5) for the new value of R. It must be noted that the value of
Yss does not change since this is the steady state output of the
system. Corrective action is taken by recalculating the value
of Ton or Pon using Eqs. (6) or (7) for the new value of D and
the duration of the 1st phase of the rectangular input which
has already been applied is dynamically modified appropri-
ately. The algorithm for this technique is provided in brief
in Algorithm 2. The effect of this technique is seen in Fig.
7c, d for unipolar control action where the reference changes
when the rectangular input is applied and the duration of the
1st phase is increased in Fig. 7c compared to Fig. 7a and
decreased in 7d compared to Fig. 7b.

It is important to note that r(t) is not sampled and no
corrective action is taken in the 2nd phase. Irrespective of
whether the motor is allowed to coast to a halt using unipolar
control action or whether active braking is used with bipolar
control action, any changes in r(t) is ignored in this phase.
This is as seen in Fig. 7e. This ensures that the prediction and
application of the rectangular input takes place only from the
steady state condition and hence the accuracy of prediction
using the developed EMK is good.

It is also possible that the duration of the input to be applied
for the new value of R is smaller than the current applied
duration. In this case, the 1st phase is ended immediately
and the control action switches to the 2nd phase. This is seen
in Fig. 7f where the system overshoots due to this reason
and the required position is achieved by the next iterative
predictive action.

Algorithm 2 Iterative predictive action using Corrective
action by reference sampling
1: Sample R = r(t), Yss = y(t) at steady state
2: Calculate Ton or Pon and apply correction using PCC
3: Apply voltage to terminals of motor
4: while Rectangular input applied (In 1st phase) sample at Ts =

0.1 ms do
5: Sample new value of R = r(t) at f = 1 K Hz
6: D = R − Yss � where Yss is the latest steady state position
7: if �D �= 0 then
8: Recalculate Ton and Pon for the new value of D
9: end if
10: if (TBC and (t − t0) ≥ Ton) or (PBC and |θ(t) − Yss | ≥ Pon)

then
11: Enter 2nd phase and wait for motion system to settle
12: Calculate PCC
13: end if
14: end while

In Fig. 7, r(t) changes by a large step. However, even in
cases where r(t) changes constantly and in small increments,
the same concept can be applied. This is tested on the same
position control system simulation model used before for
tracking and the results are obtained. It is seen that for the
references used in Figs. 3 and 4, ERMS reduces from 101.22
to 57.42 and 44.78 to 43.67 respectively. However since the
performance of EMPC was good in these cases even without
corrective action by reference sampling, the improvement is
less noticeable visually and hence the response graphs are
not provided. In the case of Figs. 5 and 6, EMPC is unable to
track the reference well. The tracking performance of EMPC
using corrective action is shown for the same references and
load conditions in Figs. 8 and 9. The improvement in tracking
is very clear. The value of ERMS reduces by nearly 40% in
Fig. 8 and by nearly 60 % in Fig. 9. It must be noted that the
same EMK used to obtain the results of Figs. 3, 4, 5, and 6
is used even in Figs. 8 and 9.

123



Experience mapping based prediction controller for the smooth trajectory tracking of DC motors 711

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

15000
Po

si
tio

n
(p

ul
se

s)

0 0.05 0.1 0.15 0.2 0.25 0.30

20

40

Time (s)

A
pp

lie
d

V
ol

ta
ge

(v
ol

ts
)

r(t)
θ(t)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

Po
si

tio
n

(p
ul

se
s)

0 0.05 0.1 0.15 0.2 0.25 0.3−50

0

50

Time (s)

A
pp

lie
d

V
ol

ta
ge

(v
ol

ts
)

r(t)
θ(t)

(b)

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

15000

Po
si

tio
n

(p
ul

se
s)

0 0.05 0.1 0.15 0.2 0.25 0.30

20

40

Time (s)

A
pp

lie
d

V
ol

ta
ge

(v
ol

ts
)

r(t)
θ(t)

(c)

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

Po
si

tio
n

(p
ul

se
s)

0 0.05 0.1 0.15 0.2 0.25 0.30

20

40

Time (s)

A
pp

lie
d

V
ol

ta
ge

(v
ol

ts
)

r(t)
θ(t)

(d)

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

15000

Po
si

tio
n

(p
ul

se
s)

0 0.05 0.1 0.15 0.2 0.25 0.30

20

40

Time (s)

A
pp

lie
d

V
ol

ta
ge

(v
ol

ts
)

r(t)
θ(t)

(e)

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

Po
si

tio
n

(p
ul

se
s)

0 0.05 0.1 0.15 0.2 0.25 0.3−50

0

50

Time (s)

A
pp

lie
d

V
ol

ta
ge

(v
ol

ts
)

r(t)
θ(t)

(f)

Fig. 7 Sampling of reference and prediction correction based on change. a Without reference sampling, b without reference sampling, c with
reference sampling, d with reference sampling, e with reference sampling, f with reference sampling
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Fig. 8 Simulation of EMPC with reference sampling for sinusoidally
changing reference of freq f = 2.0Hz. ERMS = 785.69 pulses

The use of the corrective action by reference sampling
method improves the performance of EMPC by increasing
the sampling frequency of the system. Here the changes in
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Fig. 9 Simulation of EMPC with reference sampling for sinusoidally
changing reference of freq f = 2.0Hz with inertia I = 6.7 ×
10−5 kgm2. ERMS = 727.27 pulses

r(t) are not only sampled at the end of the iterative predic-
tive action when the system achieves steady state, but also
in the 1st phase of the applied rectangular input. As a result,
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the sampling frequency is only partially dependent on the
system time constant in the 2nd phase where r(t) is not sam-
pled. The sampling frequency in the 1st phase is constrained
by the hardware used for control. For the results provided
above, r(t) is sampled in the 1st phase at 1KHz and cor-
rective action taken if necessary. The increase in the overall
sampling frequency results in the Nyquist criterion being sat-
isfied and hence results in the improved performance seen in
Figs. 8 and 9. It must be noted that although the response in
Fig. 9 is obtained with the increase in I , the use of OJR for
adaptation ensures good tracking performance.

3 Smooth position tracking

Although the corrective action by reference samplingmethod
improves the tracking performance of EMPC in terms of
reduced ERMS, the limitation of both the techniques is
that the velocity plots seen in Figs. 3, 4, 5, 6, 8, and 9
shows that the tracking is not smooth. This is due to the
nature of EMPC control where a rectangular input of max-
imum amplitude and predicted duration is applied to the
motor. The amplitude of the applied rectangular input is
not changed irrespective of the magnitude of D. Only the
duration of the 1st phase is varied appropriately. Even in the
case where the reference is sampled and corrective action
taken, this rectangular characteristic of input action remains
unchanged. The use of bipolar control introduces a fur-
ther sharp and jagged nature into the velocity profile since
active braking is used to quickly reduce the velocity of the
motor.

Position tracking requires that a specific displacement be
achieved in a specified interval of time. If this displacement
is achieved at almost a constant rate in that interval, i.e., at a
constant velocity, then the tracking is smooth. However with
EMPC, EMK is developed during initial learning where the
rectangular input is appliedonlywhen themotor is at rest. The
motor accelerates from rest and then is either allowed to coast
to a halt or actively braked depending on the control action
used. Since the motor starts from rest in every iteration, the
durationof the 1st phase is large and increaseswith increasing
rate of change of r(t). However this duration can be reduced
if the motor is not at rest and is already at some velocity
aiding the rotation of the motor in the same direction.

In any time-interval Ts , if the displacement required is
some D, then the constant velocity required for smooth track-
ing is υ = D/Ts . Now if we assume that the motor velocity
at the beginning of the time interval is already υ, then the
input fed to the motor in this interval should be to main-
tain the velocity at this steady state value of υ. The input to
the DC motor can be PWM with the appropriate duty-cycle.
This partially converts the position tracking problem into a
velocity control problem where the required velocity is the

displacement to be covered in that time interval and we could
apply the appropriate duty-cycle PWM and hence track the
position.

Hence, we explore the possibility of using the current
framework and developed experiences of EMK in EMPC for
velocity control predictions and attempt to utilize thismethod
to improve the smoothness of tracking. However prediction
and control of velocity is not part of the current EMPC con-
trol strategy. For the position control system, the value of Ton
or Pon is predicted based on past experiences stored in the
EMK to achieve any required position reference provided.
Similarly, in order to achieve the required velocity, the duty-
cycle of the PWM input to the system should be predicted.
Howeverwhenwe endeavor to achieve this, the core concepts
which require the use of past experiences developed through
direct interaction should not be discarded. At the same time,
if a separate initial learning process needs to be developed for
this purpose, then this will lead to a larger memory require-
ment to store the additional EMK and will also require more
time for interaction and learning. Hence we propose a small
modification to the initial learning used for position control
using the unipolar control action to make the process more
efficient.

In the initial learning technique with unipolar control
action explained in [15,16] or the velocity based initial learn-
ing technique explained in [17], Ton , Pon and Ptotal are
recorded as shown in Fig. 1 and explained in Sect. 2. We
propose that during this process, an additional parameter,
Ttotal also be recorded as part of EMK. Ttotal is the sum of
Ton and the time taken by the motor to coast to a halt after
Ton with the unipolar control action. This is seen in Fig. 1.

Since average velocity is total displacement divided by
total time, we can calculate average velocity as,

Velocity = Ptotal
Ttotal

pulses/s (10)

Similarly, since duty-cycle of the voltage applied is the
percentage of time for which the voltage is maintained at
maximum value, with the unipolar control action we can cal-
culate duty-cycle as

Dty = Ton
Ttotal

(11)

Since the EMK is developed with ‘n’ different values of
Ton , Pon and Ptotal , the above two formulas can be used to
obtain approximate duty-cycle values for ‘n’ different aver-
age velocity values. This is clearly a simplification. However,
for some required steady-state velocity, this can be used to
obtain an estimate of the duty-cycle that should be applied to
the DC motor system using linear interpolation if necessary
as shown in Eq. (12).
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Fig. 10 Plot of expected velocitywhich is predicted using EMKversus
velocity measured in simulation for different values of static friction
torque F with the value of F provided above the plot curves

Predicted Dty = (Dty1 − Dty2) × (υ − Veloci ty2)

Veloci ty1 − Veloci ty2
+ Dty2 (12)

where υ = |D|/Ts
This method of predicting the required duty-cycle using

theEMKdeveloped for position controlwith unipolar control
action is tested in the simulation model. Different EMKs are
developed in the simulation model for static friction torque
values F = 20, 30, 40 and 50mNm with the value of inertia
I = 3.0 × 10−5 kgm2 being constant in all the cases. The
duty-cycle to be applied to the motor for different velocity
υ values is predicted using Eq. (12) and is applied to the
system in each of the cases. Then the resulting steady state
velocity is measured and tabulated. The required and mea-
sured velocity values of the motor are plotted against the
predicted duty-cycle values in Fig. 10, for all the different
values of F . It is clear from Fig. 10 that the expected veloc-
ity and the measured velocity values match well for a large
range of the duty-cycle values with the error greater for low
velocities. This is because static and stribeck friction and
the resultant stick-slip motion are more dominant at lower
velocities. However, the error is not very high and the plots
show that the proposed method can be used to estimate the
duty-cycle for any required steady state velocity of the sys-
tem using the EMK developed for position control using the
unipolar control action.

Thismethod of predicting the duty-cycle can be attempted
for smooth position tracking by converting position tracking
into velocity tracking for the same system. r(t) is sampled
regularly with a fixed sampling interval Ts and the required
velocity is calculated for every sample interval by consider-
ing the error that has to be corrected in the given sample time
Ts . So required velocity in the interval k is given by

υk = rk − θk

Ts
(13)

where r is the position reference used for tracking, θ is the
current position. The implementation of the duty-cycle pre-

diction method involves two steps. The required velocity is
calculated every Ts interval using Eq. (13) and then the duty-
cycle is predicted using Eq. (12) and applied to the system.
In our case this was done at 1KHz resulting in Ts = 1ms.
The PWM frequency of the control input to the motor was
also fixed at 1KHz.

The use of the rectangular input in the previous unipolar
control strategy is similar to using a switch between 100 and
0% duty-cycle. This is even more exaggerated with bipolar
control action since active braking was used. On the other
hand, with the duty-cycle prediction method, the required
velocity as calculated using Eq. (13) changes at each interval
Ts in relation to changes seen in both r(t) and θ(t) and hence
the predicted and applied PWM duty-cycle also changes.
Hence this could result in a smooth position tracking. This
method also completely removes the dependence of the sam-
pling frequency on the system time constant which was the
case before.

However even with this method only the current error
between the reference and the measured position is consid-
ered and velocity feedback is not being used. Further, this
technique does not consider the rate change of r(t) with
time. It must be noted that the duty-cycle predicted is to
maintain steady state velocity and does not consider the
acceleration required. So we propose a small modification
to the calculation of required velocity by introducing the dif-
ferential component taking both change in the positionwhich
is current velocity of the motor and change in r(t) into con-
sideration. So we can calculate required velocity using Eq.
(14) instead of Eq. (13) as

υk = (rk − θk) + (�r − �θ)

Ts
(14)

where �r = (rk − rk−1) and �P = (θk − θk−1).
The performance ofEMPCusing this technique of predict-

ing the duty-cycle using Eq. (12), for the required velocity
calculated in each interval using Eq. (14) is tested in simula-
tion. The performance of EMPC for step changes in reference
has been tested under various circumstances and compared
to the performance of MRAC in [15–17]. Hence, for a com-
parative analysis of the tracking performance, EMPC using
the duty-cycle prediction method is compared with MRAC
and LQG controllers in simulation.

MRAC is a popular adaptive controller in literature andhas
been well studied for various applications [28,29]. MRAC
has been tested on PMDC motor based position control sys-
tems [30–32], and has been used as the reference controller
for performance comparison with EMPC in [15–17]. The
transfer function of the reference model used with MRAC is
the same used for the comparison of step responses of EMPC
with MRAC in [15–17] and is provided below. The value of
α which determines the adaptation rate is chosen to be 10.
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Hm(s) = 1225

(s2 + 70s + 1225)

LQG is a linear optimal and robust controller present in
literature. The linear quadratic regulator is used as part of
the controller with the Kalman Filter (KF) used as an opti-
mal estimator [33]. The design of the LQR and KF for the
control of PMDCmotors is also present in literature [34,35].
Although, LQG with KF is capable of providing robust per-
formance, the performance is dependent on the accuracy of
the estimated system parameter values. Hence an extended
Kalman filter (EKF) can be used to ensure optimal control
[36,37]. This design of the LQG with the EKF is used for
performance comparison with EMPC. The EKF is designed
with the states of the estimator given by

φ =
[
ia ω θ Ra

1

Jm
Tl

]T

which include the system states x and the parametersψ to be

estimatedwhereψ =
[
Ra

1

Jm
Tl

]T

where ia is the armature

current, ω is the angular velocity, θ is the angular position,
Ra is the armature resistance, Jm is the effective inertia as
seen by themotor, Tl is the external active load torque as seen
by the motor. The covariance matrices Q and R of the EKF
are chosen based on the expected variation in the parameter
values to obtain the best possible performance.

The same motor, inertia and rotational friction blocks of
SimMechanics used in the simulation models developed for
EMPC, are used for bothMRAC and LQG. In both the cases,
arbitrarily generated reference is fed to the controllers sep-
arately to allow for the tuning of the controller gains. The
necessary trajectory tracking responses are obtained after
this and used for comparison with EMPC. In the case of
EMPC, the EMK which was developed earlier for unipolar
control action for I = 3.0 × 10−5 kgm2 and F = 20mNm
and used to obtain one of the plots of Fig. 10 is used. The
tracking results are obtained for all the three control tech-
niques considered for the reference and system parameters
used in Figs. 3, 4, and 5 and shown in Figs. 11, 12, and 13
respectively. It can be seen from the velocity plots that the
position tracking is very smooth compared to the previous
two EMPC techniques. Further, it is seen that ERMS is signif-
icantly reduced with the duty-cycle prediction method. The
largest improvement is seen in Fig. 13 where r(t) is easily
tracked compared to the performance of EMPC in Figs. 5
and 8. This is in addition to the smoother tracking which
can be seen in the velocity plots. Also, the tracking perfor-
mance of EMPC using the duty-cycle prediction method is
seen to performbetter than bothMRACandLQG techniques.
EMPC provides tracking with the least value of ERMS, with
the smoothness of tracking also better than both controllers.
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Fig. 11 Simulated results of EMPC using the duty-cycle prediction
method,MRACusing Hm(s) andLQG for sinusoidally changing r(t) of
freq f = 0.5Hz. a EMPC using duty-cycle prediction. ERMS = 6.98
pulses, b MRAC. ERMS = 91.83 pulses, c LQG ERMS = 100.16
pulses

The performance of EMPC using the duty-cycle predic-
tion method is also tested with the increase in inertia I which
was used to obtain the responses given in Figs. 6 and 9. Itmust
be noted that in these two figures, since the value of inertia
I is increased, OJR is used for adaptation. The performance
of the duty-cycle prediction method is shown for the same
reference and system conditions in Fig. 14. It is seen that
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Fig. 12 Simulated results of EMPC using the duty-cycle prediction
method, MRAC using Hm(s) and LQG for triangular pattern of chang-
ing r(t). a EMPC using duty-cycle prediction. ERMS = 24.35 pulses,
b MRAC. ERMS = 4272.4 pulses, c LQG. ERMS = 122.93 pulses

the proposed novel technique improves performance even in
this case with the value of ERMS reducing significantly, even
though no technique similar to OJR is used for adaptation.
This robustness of the duty-cycle prediction method is dis-
cussed later in this section.

All the techniques tested in simulation are implemented on
a practical setup. A PMDC motor actuated position control
setup is used in the laboratory. The air-core DCmotor whose
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Fig. 13 Simulated results of EMPC using the duty-cycle prediction
method,MRACusing Hm(s) andLQG for sinusoidally changing r(t) of
freq f = 2.0Hz. aEMPCusing duty-cycle prediction. ERMS = 111.01
pulses, b MRAC. ERMS = 662.92 pulses, c LQG. ERMS = 361.78
pulses

specificationswere used for simulation is used in the practical
setup [27]. A capacitve encoder with an effective resolution
of 8192 pulses is used for feedback with an electric load
brake used to change the frictional load of the system. EMK
is developed for bipolar control action and unipolar control
action separately using the velocity based initial learning
technique for inertia I = 6.7×10−5 kgm2 and static friction
torque F = 20mNm.During position tracking, the reference
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Fig. 14 Simulation of EMPC for sinusoidally changing reference of
freq f = 2.0Hzwith inertia I = 6.7×10−5 kgm2 using the duty-cycle
prediction. ERMS = 359.73 pulses

is sent to themicrocontroller onwhichEMPC is implemented
from a MATLAB code through the standard UART line at
f = 1KHz. The position and the velocity of themotor is also
sampled at the same rate and sent from the μc back to MAT-
LAB. This sampled position and velocity data is stored in a
.mat file and used to plot the results. The results for sinusoidal
reference change of frequency f = 2.0Hz for the system is
shown in Fig. 15. The velocity plots provide information
about the smoothness of position tracking. For an increased
inertia I = 1.0 × 10−4 kgm2, the response is checked for
sinusoidal reference change of frequency f = 1.0Hz and
the results are shown in Fig. 16. OJR is used for adapta-
tion with the first two techniques in this case. The ERMS is
also provided for all the cases. It is clear from the position

plots and the values of ERMS that the use of corrective action
by reference sampling significantly improves the tracking
performance of EMPC compared to the first method of sam-
pling r(t) only when the motor is at rest. It must be noted
that both these methods use bipolar control action and the
corresponding EMK. However, the technique of duty-cycle
prediction which uses the EMK developed for the unipolar
control action reduces the value of ERMS further while pro-
viding a smooth tracking performance as seen in the velocity
plots.

The robustness of the proposed position tracking tech-
nique using duty-cycle prediction is also tested on the same
experimental setup using an arbitrary position pattern. The
EMK is developed for unipolar control action for inertia
I = 2× 10−5 kgm2 and static friction torque F = 20mNm
and the response along with the reference pattern is shown
in Fig. 17. The system is again tested for increase in inertia
of I = 6.7 × 10−5 kgm2 and increase in static friction of
F = 50mNm separately. It must be noted that in both these
cases, new EMKs are not developed and the EMK devel-
oped prior is used for control. It is seen that with position
tracking using the duty-cycle prediction technique, EMPC
is robust to changes in system parameters and the perfor-
mance is good. The tracking is also smooth and the velocity
of the motor closely follows the reference velocity pattern.
The deviations from the reference are very small. Hence the
performance with parameter changes cannot be evaluated
with visual inspection and we have used ERMS for compari-
son.Without any change of parameters, ERMS is 42.54 pulses.
This increases to 47.99 pulses for increase in inertia and to
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Fig. 15 Implementation of EMPC for sinusoidally changing reference of freq f = 2.0Hz with inertia I = 6.7 × 10−5 kgm2. a EMPC ERMS =
1704.3 pulses, b EMPC with sampling of reference ERMS = 1230.3 pulses, c EMPC with duty-cycle prediction ERMS = 368.3 pulses
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Fig. 17 Position tracking using the duty-cycle prediction method for
arbitrary position pattern. Tracking tested for changes in I and F sep-
arately

123.41 for increase in static friction. Although, the increase
is large for the increased static friction system in percentage
terms, the absolute value itself is quite low and acceptable in
most cases.

As noted earlier with the simulation results, the two tech-
niques which use iterative predictive action utilize OJR at
the end of each iteration for adaptation. Although, no such
adaptation technique is used along with duty-cycle predic-
tion, the results show that this technique is robust to such
parameter changes. Even the results of tracking seen in Figs.
14 and 16 utilize EMKs which were not developed under
the same system conditions. However the robustness of the
duty-cycle prediction technique ensures good tracking per-
formance. The performance is better in terms of ERMS and
smoothness of tracking than the previous two techniques
which use OJR for adaptation .

The robustness of EMPC with the duty-cycle prediction
method to changes in system parameters is due to the nature

of Eq. (14). The first term of the equation uses position
feedback to ensure accurate position tracking. This helps in
compensating for any changes to the frictional components of
the system which would result in a variation in the available
torque. The position feedback ensures that the duty-cycle
is appropriately increased or decreased to accommodate for
these changes and does not allow for significant error accu-
mulation. The second term of Eq. (14) uses velocity feedback
to maintain smooth tracking. This helps in compensating for
any changes in the time-constant of the system which might
result in a change in the acceleration characteristics of the
system. It must be noted that even in these cases the con-
trol strategy of EMPC does not directly operate on the error,
but rather uses Eq. (14) to obtain an estimate of the velocity
requirement with respect to the changing r(t). This velocity
estimate is then used to determine the duty-cycle which itself
is predicted using the experiences of EMK.

4 XY plotter

The concept of smooth position tracking is extremely impor-
tant in applications such as a Cartesian XY plotter. The
position control and tracking on applications like the XY
plotter involves path tracking since it involves more than 1
dimension. A plotter has 2 movement axes and it is essential
with path tracking that the position bemaintained correctly in
2D space. This translates to tracking the position on both the
axes correctly with respect to time and with respect to each
other. ERMS has been used to evaluate the performance of
EMPC in the previous sections. However, since the planned
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path is to be tracked on a 2D plane in a XY plotter, wemodify
Eq. (9) to obtain ERMS appropriately as given in Eq. (15) in
terms of the cartesian distance. A common offset variable is
used for both the X and Y co-ordinates.

ERMS

=
√√√√ 1

N

N∑

i=1

(
((rx )i − (θx )(i+ j))2 + ((ry)i − (θy)(i+ j))2

)

(15)

The techniques discussed in the previous sections are
implemented on the practical XY plotter in the laboratory.
The plotter has a moving base on which the paper is placed.
The axis of movement of the base is considered to be X-axis.
A separate platform moves perpendicular to the base and its
axis of motion is considered as the Y-axis. Both the platforms
are separately powered by their own PMDC motors through
a lead screw mechanism. Since separate motors control the
action of the bases, the axes are decoupled and one does not
affect the other. The lead of both the lead screw mechanisms
is 3mm. Capactive encoders coupled to the shaft of both the
motors are used for feedback. The effective resolution of the
capacitive encoder after 4x decoding is 8192 pulses. This pro-
vides us with a resolution of 0.366µm (3000/8192) on the
linear scale. EMKs are developed separately for both the axes
for both the unipolar and bipolar control action. The EMK
developed with the bipolar control action is used for plotting
using the iterative predictive control method of Algorithm 1
and also the corrective action by reference sampling method
of Algorithm 2. The EMK developed with the unipolar con-
trol action is used for plotting with the duty-cycle prediction
method explained in Sect. 3. For path tracking, the position
reference of both the axes are fed from the MATLAB at
f = 1KHz as in the previous case and the position feedback
data obtained for both the axes at the same rate.

The performance of the techniques is tested on this plotter
for plotting ellipses and straight lines at the appropriate rate
to ensure that the plot is completed in 30s. Appropriate sinu-
soidal waveforms were used to provide the reference for both
the axes in the case of the ellipses while ramp functions were
used to provide the reference for the straight lines. Since,
these are simple plots, only the value of ERMS as calculated
using Eq. (15) are provided in Table 1. ERMS is given in μm
instead of encoder pulses, to provide a clear understanding
of performance of EMPC in terms of the value of ERMS that
can be expected in real world applications. The first four rows
provides the value of ERMS for plotting ellipses and lines at
different speeds/rates.

However these plots were obtained without taking the
maximum possible velocity of the motor and its accelera-
tion profile characteristics into consideration. The effect of
this is clearly seen in the difference in the ERMS values of

Table 1 ERMS in µm for different plots and techniques

Curve EMPC EMPC with sampling
of reference

EMPCwith duty-
cycle prediction

Ellipse 1 654.9 405.7 147.3

Ellipse 2 92.93 79.58 70.63

Straight line a 1253.9 613.5 319.4

Straight line b 179 126 103

Line image 69.05 67.41 32.34

Ellipse 1—major axis = 366.2mm, minor axis = 219.7 mm. Ellipse 1—
major axis = 91.6 mm, minor axis = 54.9mm. Straight line a—X axis
length = Y axis length = 146.48 mm. Straight line b—X axis length =
292.96 mm, Y axis length = 219.72 mm
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Fig. 18 Tracking of a well created reference pattern

Ellipse 1 and Ellipse 2 in Table 1 where although both the
ellipses are plotted in the same total time, the difference in
the size of the ellipses results in smaller value of ERMS for
the smaller ellipse due to the smaller velocities and accelera-
tions required. This is true irrespective of the technique used.
Similar results are noticed with the results of straight lines
’a’ and ’b’ provided in the same table. The importance of
generating a jerk limited trajectory to obtain good tracking
performance is studied in [38]. Hence, a reference pattern is
created by considering the velocity and acceleration charac-
teristics of themotor to plot straight line ’a’ used to obtain the
results of row 3 in Table 1. The results of plotting using the
reference pattern created are provided in row 5 of the same
table. The reference plot used for the X-axis and the resultant
response on the X-axis are provided in Fig. 18. The results
validate the findings of the simulation the implementation
results obtained with a single DCmotor position control sys-
tem.

The technique of duty-cycle prediction is used to plot a
complex figure. The reference along with the measured path
is shown in Fig. 19. The ERMS obtained for plotting this fig-
ure is 415.43µm. The slight increase in ERMS compared to
values in Table 1 is again due to the reference pattern which
does not take the acceleration and maximum velocity capa-
bilities of the system into consideration as stated earlier. The
robustness of the the proposed technique is also tested by
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Fig. 19 Response obtained on a XY plotter

exchanging the EMKs of the 2 axes to plot the same fig-
ure. It must be noted that the inertia of the X-axis base is
more than three times the inertia of the Y-axis base. The
exchange of the EMKs results in a large change in the sys-
tem conditions for each of the axes from the point of view
of the EMKs used.However, it is seen that the value of ERMS

increases only slightly to 508.39µm even though the values
of inertia are changed significantly. It is clear from all the
results obtained that the techniques discussed can be used
for position tracking in practical applications like the XY
plotter. These techniques can also be extended and used in
similar path tracking applications like CNC machines, robot
manipulators, end effectors and others.

5 Summary

The paper studies the performance of the novel controller,
EMPC for trajectory tracking on DC motor position con-
trol setups. The methods of position control using iterative
prediction action as explained in [15,16] using the bipo-
lar control action as explained in [17] are tested. Although
EMPC is able to track the reference well in most cases, its
performance suffers as the rate of change of r(t) increases.
This is due to the quasi open-loop control structure employed
in EMPC which limits the sampling frequency.

This limitation is overcome by the use of the novel correc-
tive action technique which reduces the dependency of the
sampling frequency on the time constant of the system. This
technique improves the performance significantly as seen in
the results in terms of reduced ERMS values. However a limi-
tation of both these techniques is in the use of the rectangular
input applied from steady state resulting in a non-smooth
tracking.

Anovel techniqueof predicting duty-cycle for the required
steady state velocity using the EMK previously developed
for position control with unipolar control action is proposed.
This technique is found to provide better tracking than the

previous two techniques. This is seen in terms of a reduction
in ERMS and also in the smoothness of the tracking which is
seen in the velocity plots. The tracking performance of this
technique is compared with that of MRAC and LQG control
techniques and found to perform better than both the con-
sidered controllers in terms of both ERMS and smoothness of
tracking. Further, the duty-cycle prediction method is seen to
bemore robust and adapting to changes in system parameters
in tracking applications.

All the techniques discussed were implemented on a
practical DC motor position control system. The results of
implementation match the simulation results well in terms of
the reduction of ERMS seen with the novel techniques intro-
duced in this paper and alsowith respect to the smoothness of
tracking seen with the duty-cycle prediction method. Further
all the techniques were implemented for path tracking on a
XY plotter. The results obtained further validate the observa-
tions made using the simulation results. The errors obtained
in plotting are low and prove that the proposed techniques
can be used in practice in the industry for various tracking
applications using DC motors.
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