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Abstract In this work, a nominal-plus-neighboring-
optimal control approach is suggested for the treatment of
cancer using the adoptive cellular immunotherapy. The main
goal of this therapy is to minimize both tumor concentration
and treatment costs while restoring natural defense mecha-
nisms and activating immune response. In the presence of an
additional initial concentration of cancer cells, the biological
effects of the introduction of a neighboring-optimal treatment
in addition to the existing nominally therapy are explored and
investigated. The optimal control problem is presented by
defining appropriate objective functions. The Pontryagin’s
maximum principle and the Pontryagin procedure are both
used to obtain optimal solutions for subsequently provid-
ing nominal and neighboring-optimal control configurations.
The optimal systems are derived and solved numerically
using an adapted iterative method with a Runge–Kutta fourth
order scheme.
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1 Introduction

Cancer is a pathology characterized by abnormally high and
uncontrolled growth of cells within an organ or body tis-
sue. Cells proliferate indefinitely and are responsible for the
formation of masses called tumors. Without treatment, this
abnormal cell clusters lead to the destruction of the organ,
and involve cell migration to other areas; this is the stage
of generalization of cancer through metastasis, which corre-
spond to the transfer of pathogenic organisms or malignant
cells in a part of the body remote from the primary hearth of
the tumor. Themost common treatments are surgical ablation
[1], chemotherapy [2–5], radiotherapy [6] and immunother-
apy [7–11].

The choice of an optimal therapeutic strategy is mainly
conditioned by an understanding of the evolution of the dis-
ease, in order to design treatments tailored according to each
clinical case. In this context, mathematical modeling proves
to be a very effective tool for best use of the large num-
ber of biological and pharmacological information available.
Note that many mathematical models have been interested in
dynamics [12], evolution [13] and treatment [14,15] of some
types of cancers such as brain cancer [16], bladder cancer
[17–19] and prostate cancer [20].

Recent scientific studies [21–23] have proposed methods
of finite duration optimal therapies to treat cancer and limit
the development of tumor cells using theoretical and numeri-
cal approaches based on the state-dependent Riccati equation
(SDRE)-based optimal control method [24–26]. The results
of these studies have also shown the essential interest of
changing the dynamics of the cancer model to have finite
duration treatment.

The effector cells (B-cells, T-cells, interleukin) belong to
the immune system, and are involved in the fight against
anomalies while defending the organism against external
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infections, and abnormal proliferation of some cells of the
human body. Interleukin-2 (IL-2) [27,28] is an immune sys-
tem cytokine which enables stimulation of the lymphocyte
proliferation and the cell differentiation between foreign and
personal cells.

The cancer immunotherapy is a treatment being increas-
ingly used. This type of treatment is based on themechanisms
normally used by the immune system of human body.
Immunotherapy seeks to mobilize the immune system for
fighting against tumors using natural body defenses to kill
subsequently cancer cells.

The adoptive immunotherapy [29–32] involves injection
of T-cells which are activated in-vitro into the patient’s body.
An adoptive cellular immunotherapy strategy [9] and [33,34]
involves the withdrawal of a number of cells which have
infiltrated the tumor (Tumor infiltrating lymphocytes (TIL))
[35] and that have further been activated for tumor cell
recognition. Starting from a fresh biopsy of the patient’s
tumor, specific T-cells of the tumor are progressively selected
in vitro, using different types of cell cultures, as well as
interleukin-2 doses.

In this work, a nominal-plus-neighboring-optimal control
approach [36] is proposed with the objective of treating can-
cer using adoptive cell immunotherapy. Indeed, an optimal
control problem is formulated via suitable objective func-
tions summarizing all biological objectives of the adopted
treatment strategy. First, in order to highlight the impor-
tance of this treatment strategy, an optimal nominal treatment
approach [33] is presented and applied for an initial con-
centration of cancer cells. Then, the initial tumor load
is increased until the nominal strategy is no longer opti-
mal. Subsequently, a neighboring treatment is introduced
in addition to the existing nominal treatment, to counteract
the progression of cancer, and to minimize the concentra-
tion of tumor cells. Finally, the biological results for this
newnominal-plus neighboring-optimal therapy are discussed
and explored. The nominal–optimal control is characterized
using the Pontryagin’s maximum principle [37,38]. How-
ever, the Pontryagin procedure [26] is followed to obtain
optimal configuration of the neighboring control, in the form
of a linear feedback control law [39]. Concerning the numeri-
cal resolutionof optimal systems, an adapted iterativemethod
based on the forward backward sweep method (FBSM) [40–
42] is developed using a Runge–Kutta fourth order scheme.

Indeed, the nominal therapy adopted in this study to treat
cancer, is designed to maximize the efficiency of treatments
used and to minimize subsequently the side effects and the
overall cost of nominal therapy, thereby reducing the tumor
cells concentration, stimulating the immune cells and lim-
iting the tumor progression, which involves a significant
improvement of the quality of life for cancer patients. The
Pontryagin’s maximum principle [37,38] derived from the
optimal control theory allows characterizing the nominal

optimal control that accurately defines the optimal treatment
schedule used. It is observed that for a small increase in
the initial estimate of tumor cells concentration, the com-
bination of the nominal therapeutic process and the natural
immune response has easily succeeded in eliminating can-
cer cells. However, if the increase in the initial estimate of
cancer cells concentration is widely important, the adopted
nominal therapy is no longer optimal and the introduction
of a new treatment approach becomes necessary to satisfy
the system optimality. The tumor grows abnormally caus-
ing a deterioration of the patient’s general condition. Thus,
the treatment process must be adjusted to adapt to change of
the tumor initial state. In this paper, it is shown that the lin-
ear feedback control [39] in addition to the nominal control
enables providing complete and effective treatment which
satisfies the optimality of the studied system with the new
tumor initial state. The Pontryagin’s procedure [26] allows
to prove the existence of an optimal trajectory associatedwith
the neighboring control which relates to the resolution of a
specific state-dependent Riccati equation [25,26] and [36] in
the optimal control problem. The steepest-descent method is
used to generate successive approximations of the optimal
control u∗(t). A number of 10–20 iterations are needed to
obtain an optimal solution for the control u(t) [36], which
manages tominimize the objective function J (u) relating to a
system of ordinary differential equations. Hence the interest
to implement the iterative forward backward sweep method
[40–42] using a Runge–Kutta [43] fourth order scheme with
a view to solve the optimal system with a minimum number
of iterations.

This paper is organized as follows: Sect. 2 describes
the basic mathematical model of cancer treatment using
the ACI immunotherapy. The analysis of both nominal and
neighboring-optimal control problems, are also presented in
the same section. In Sect. 3, the adapted iterative method
is introduced and the numerical simulations are discussed.
Finally, the results of this therapeutic approach are explored
in the conclusion in Sect. 4.

2 Mathematical model

2.1 Presentation of the treatment model

In this section, an optimal control approach modeling the
cancer treatment of an existing work [9] which describes the
tumor–immune interaction is presented. Note that this basic
model studying the dynamics and evolution of immune cells
in the presence of tumor cells, represents an important ref-
erence in the field of biomathematics relating specifically
to cancer modeling which obviously aroused the interest
of specialists in analysis (Kirschner et al. [44], Starkov et
al. [45], Banerjee et al. [46]) and optimal control (Hamdache
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et al. [33], Burden et al. [34]). The prospects of application
of optimal control theory to this global dynamics model, are
far from being completed, hence the importance of this work
which presents a nominal-plus-neighboring-optimal control
approach to treat cancer. Three compartments characterizing
the different populations are defined as follows: x(t), the acti-
vated immune cells (effector cells), y(t), the tumor cells and
z(t) the concentration of IL-2 cells in the single tumor-site
compartment. The equations that describe the interactions of
these three state variables are given in [9]:

dx

dt
= cy − μ2x + p1xz

g1 + z
+ u(t),

dy

dt
= r2y(1 − by) − axy

g2 + y
, (1)

dz

dt
= p2xy

g3 + y
− μ3y.

where the control function u(t) represents the adopted treat-
ment using adoptive cellular immunotherapy (ACI) with
Tumor infiltrating lymphocytes (TIL).

The system given by (1) is non-dimensionalized using an
appropriate scaling [9] which is indispensable [46] to numer-
ically solve the state equations (1). Thus, it is assumed that the
normalized initial data [9] for state system (1) are measured
in colony-forming unit (c.f.u) and satisfy at t = 0:

x0 = 1 ≥ 0, y0 = 1 ≥ 0, z0 = 1 ≥ 0. (2)

where the parameters units are in day−1, except of g1, g2,
g3 and b, which are in volumes. The descriptions of model
parameters (1) are listed in the Table 1.

The terms
p1xz

g1 + z
,
axy

g2 + y
and

p2xy

g3 + y
are expressed in the

Michaelis–Menten form and model respectively: The satu-
rated effects of the immune response, the tumor cells loss
and the IL-2 source produced by effector cells. However,

Table 1 The description of parameters and terms used

Parameters Descriptions

c Tumor antigenicity rate

μ2 Natural mortality rate of effector cells

p1 Stimulation rate of effector cells by IL-2 cells

g1 Half saturation for proliferation term

r2 Tumor cells growth rate

b Tumor cells volume of change

a Tumor cells loss rate

g2 Half-saturation for cancer clearance

p2 Self-limiting production rate of IL-2 cells

g3 Half-saturation of production

μ3 Natural mortality rate of IL-2 cells

the logistic term r2y(1 − by) represents the rate of change
of tumor cells. Notice that the model parameters a, p1 and
p2 and volumes b, g1, g2 and g3 are derived from scientific
experiments [9,46]. The control function u(t) represents an
external source of active immune cells (effector cells) using
the adoptive cellular immunotherapy (ACI) [9]. Lympho-
cytes are isolated from the tumor site after their activation.
Then, these tumor infiltrating lymphocytes (TIL) undergo
an important amplification in order to inject them back intra-
venously into the patient’s tumor site [9]. The possible values
of the control function u(t) representing the drug amount are
between 0 and λ = 1000 units per day during the 350days of
treatment period [34]. Note that the works [18] and [33] have
proposed therapeutic approaches allowing the introduction
of a control isoperimetric constraint representing the total
dose of immunotherapy that can be administered continu-
ously to the cancer patient during a given treatment period.
In addition, the study [19] examines the biological and clin-
ical effects observed in the patient during the administration
of immunotherapeutic agents following a pulse vaccination
process in order to treat bladder cancer.

2.1.1 The nominal optimal control problem

The main objective of the proposed therapeutic approach for
the treatment of cancer, is to minimize both tumor concen-
tration and treatment costs based on the ACI immunotherapy
involving a logic activation of immune response cells. Thus,
the problem comes down tominimize the following objective
function:

J (u) = 1

2

∫ T

0

(
y2(t) + Wu2(t)

)
dt, (3)

where the positive parameter W balances the terms size and
it represents a weight factor characterizing a patient’s level
of acceptance of the treatment [34]. Note that the objective
function (3) is defined in a manner to maintain the same
order of potency (k = 2) for all terms within the integrand
to ensure more consistency to the following optimal con-
trol problem. The objective function elements are squared to
amplify the effects of large variations and tominimize contri-
butions of small variations [36]. Mathematically, an optimal
control u∗ ∈ U is sought such that:

J (u∗) = min
u∈U J (u), (4)

where U is the control set defined by

U = {u Lebesgue − measurable, 0 ≤ u(t) ≤ λ, t ∈ [0, T ]},
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The control system (1) is rewritten implicitly as follows:

X
′
(t) = F(t, X (t), u(t)),

X (0) = X0 given. (5)

where X (t) =
⎛
⎝ x(t)

y(t)
z(t)

⎞
⎠ is the state vector and u(t) is the

control function. Thus, the objective function (3) relating to
control u(t) takes the general form:

J (u) = 1

2

∫ T

0
(XT (t)QX (t) + uT (t)Ru(t)),

J (u) =
∫ T

0
G(t, X (t), u(t))dt. (6)

where R = W and the matrix Q =
⎛
⎝0 0 0
0 1 0
0 0 0

⎞
⎠

The Pontryagin’s maximum principle [37,38] provides
necessary conditions for the optimal control problem (4).
This principle converts the problemoffinding a controlwhich
minimizes the objective function J (3) subject to the state sys-
tem (1)with initial conditions (2), to a problemofminimizing
the Hamiltonian H:

H(t, X∗, u∗, ψ) = min
u∈U H(t, X∗, u, ψ), (7)

Thus, in order to characterize the optimal control u∗, it is
sufficient to derive the Hamiltonian H instead of deriving
the objective function J . In general form, the Hamiltonian
H is defined starting from the formulation of the objective
function (3) as follows:

H(t, x, y, z, u, ψ) = G(t, X (t), u(t))

+ψT F(t, X (t), u(t)) (8)

where ψ(t) =
⎛
⎝ψ1(t)

ψ2(t)
ψ3(t)

⎞
⎠ is the adjoint variable vector.

Explicitly, we have,

H(t, x, y, z, u, ψ) = 1

2
×

(
y2(t) + Wu2(t)

)

+ψ1

[
cy − μ2x + p1xz

g1 + z
+ u(t)

]

+ψ2

[
r2y(1 − by) − axy

g2 + y

]

+ψ3

[
p2xy

g3 + y
− μ3y

]
. (9)

The ψi where i = 1, 2, 3 are adjoint variables.

Note that the convexity with respect to the control u is
correct for aminimization problem considering the following
second order condition [26]:

∂2H
∂u2

= W ≥ 0

The existence of a control solution is verified using a clas-
sical existence result [37]. Thus, the following properties
must be checked:

1. The class of all initial conditions with a control u in the
admissible control set U along with each state equation
being satisfied (1) is not empty;

2. The control set U is convex and closed;
3. The right-hand side of the state system (1) is continuous,

is bounded above by a sum of the bounded control and
the state, and can be written as a linear function of u with
coefficients depending on time and the state;

4. The integrandG(t, X (t), u(t))of the objective functional
J (u) is convex on U ;

5. There exist constants b1, b2 > 0 and α > 1 such that
the integrand G(t, X (t), u(t)) is bounded below by b2 −
b1(|u|2) α

2 as follows:

G(t, X (t), u(t)) ≥ b2 − b1(|u|2) α
2 . (10)

Proof Since the system (1) has bounded coefficients and any
solutions are bounded on the finite time interval [0, T ] [34], a
result from [47] is used to obtain the existence of a solution of
the state system (1). The admissible control set U is convex
and closed by definition. The state system (1) is bilinear in
the control and each right-hand side of this state system (1)
is continuous since each term has a nonzero denominator
and can be written as a linear function of u with coefficients
depending on time and state. Furthermore, the fact that all
variables x , y, z and u are bounded on [0, T ] implies the
rest of the third condition. Finally, in order to verify that the
integrand g(t, X, u) is convex on U , the following property
must be checked:

G(t, X, (1 − α)u + αv) ≤ (1−α)G(t, X, u)+αG(t, X, v)

(11)

where u, v ≥ 0 and α ∈ [0, 1]. ��
In addition, It is noticed that there exist a constant α > 1

and positive numbers b1 and b2 satisfying:

G(t, X (t), u(t)) ≥ y2(t) + Wu2(t) ≥ b2 − b1(|u|2) α
2 .

(12)

where b2 depends on the upper bounds on y and by analogy
we set b1 = W and α = 2.
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Using the Pontryagin’s maximum principle [38] and the
optimal control existence result [37], the following theorem
is obtained:

Theorem 1 Given optimal control u and solutions x, y and
z of the corresponding state system (1), there exists adjoint
variables ψ1, ψ2 and ψ3 satisfying the following equations:

ψ
′
1 = −

[
ψ1

(
−μ2 + p1z

g3 + z

)
− ψ2ay

g2 + y
+ ψ3 p2y

g3 + y

]
,

ψ
′
2 = −

[
y + ψ1c + ψ2(r2 − 2r2by) − ψ2g2ax

(g2 + y)2
+ ψ3g3 p2x

(g3 + y)2

]
,

ψ
′
3 = −

[
ψ1g1 p1x

(g1 + z)2
− ψ3μ3

]
. (13)

with transversality conditions

ψi (T ) = 0, i = 1, 2, 3.

Using the penalty multipliers ω1(t), ω2(t) ≥ 0 [34] satisfy-
ing:

ω1(t)u(t) = 0

and

ω2(t)(1 − u(t)) = 0

The optimal control u∗ is represented by:

u∗(t) = min

(
λ,max

(
0,

−ψ1(t)

W

))
. (14)

Proof Due to the convexity of integrand G(t, X (t), u(t)) of
the objective function J (3), and to the existence of an optimal
couple (X∗, u∗) which minimizes the objective function J
(3) relating to the state system (1), the adjoint equations (13)
can be obtained using Pontryagin’s maximum principle such
that:

ψ
′
1 = −∂H

∂x
,

ψ
′
2 = −∂H

∂y
, (15)

ψ
′
3 = −∂H

∂z
,

The optimal control u∗ can be solved from the following
optimality condition:

∂H
∂u

= ψ1(t) + Wu(t) = 0 (16)

By the bounds on the admissible control setU and using the
penalty multipliers [34], it is easy to obtain u∗ in the form

of (14). However, an uniqueness theorem [34,48] is used to
prove that the solution to the optimal system is unique for T
sufficiently small. ��

2.1.2 The neighboring-optimal control problem

The strengthening and consolidation of the nominal therapy
in the presence of an additional initial amount of cancer cells
can be based on the introduction of an neighboring-optimal
therapy. The actual state and control histories X (t) and u(t)
can be expressed as sums of the optimal histories X∗(t) and
u∗(t) derived from the nominal optimal control problem (4),
and deviations ΔX (t) and Δu(t) from those histories as fol-
lows:

X (t) = X∗(t) + ΔX (t)

u(t) = u∗(t) + Δu(t) (17)

The state system (5) can be expanded as:

Ẋ(t) = Ẋ∗(t) + ΔẊ(t)

= F(X∗(t) + ΔX (t), u∗(t) + Δu(t))

Ẋ(t) 	 F(X∗(t), u∗(t)) + A(t)ΔX (t) + B(t)Δu(t) (18)

Thus, using the formulation (5), the perturbations dynam-
ics can be approximately expressed by the following linear
equation:

ΔẊ(t) = A(t)ΔX (t) + B(t)Δu(t) (19)

where A(t) and B(t) are the Jacobian matrices evaluated
along the nominal optimal history and calculated using

respectively
∂F

∂X
and

∂F

∂u
.

The matrix A(t) is

⎛
⎜⎜⎜⎜⎜⎝

−μ2 + p1z

g1 + z
c

p1xg1
(g1 + z)2

− ay

g2 + y
r2(1 − 2by) − axg2

(g2 + y)2
0

p2y

g3 + y

p2xg3
(g3 + y)2

− μ3 0

⎞
⎟⎟⎟⎟⎟⎠

The vector B(t) is defined such that: B(t) =
⎛
⎝ 1
0
0

⎞
⎠

The objective function relating to the neighboring-optimal
control problem is the second variation of the nominal cost
function (6) and it is redefined as a function of the perturba-
tion variables ΔX (t) and Δu(t):
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Δ2 J (ΔX (t),Δu(t)) =
∫ T

0
G(t,ΔX (t),Δu(t))dt,

Δ2 J (ΔX (t),Δu(t)) = 1

2

∫ T

0
(ΔX (t)T (t)QΔX (t)

+Δu(t)T (t)RΔu(t))dt,

Δ2 J (ΔX (t),Δu(t)) = 1

2

∫ T

0
(Δy2(t) + WΔu2(t))dt.

(20)

The new cost function (20) can be expressed as follows:

Δ2 J (ΔX,Δu) = 1

2

∫ T

0

(
ΔXT

ΔuT

)(
Q 0
0 R

)(
ΔX
Δu

)
dt

(21)

Using (8) and (21), the Hamiltonian relating to the
neighboring-optimal control problem is formulated as:

H(t,ΔX (t),Δu(t),Δψ) = 1

2
× [ΔX (t)T (t)QΔX (t)

+Δu(t)T (t)RΔu(t)]
+ΔψT (t)[A(t)ΔX (t)

+ B(t)Δu(t)]. (22)

where Δψ is the 3th order costate vector for the linearized
system (19).

Thus,

H(t,ΔX (t),Δu(t),Δψ(t)) = G(t,ΔX (t),Δu(t))

+ΔψT (t)[A(t)ΔX (t)

+ B(t)Δu(t)] (23)

The condition concerning the second partial derivative ofH
with respect to u(t), which is R(t), is positive definite, is
sufficient to ensure a minimization problem.

Linear quadratic problem:

An initial point ΔX (0) ∈ R
3 is fixed, the objective of this

problem is to determine the trajectories starting fromΔX (0)
and which minimize the cost function Δ2 J (ΔX (t),Δu(t)).

Note that:

||ΔX (t)||2Q = ΔX (t)T (t)Q(t)ΔX (t),

||Δu(t)||2R = Δu(t)T (t)R(t)Δu(t). (24)

so that,

Δ2 J (ΔX (t),Δu(t)) = 1

2

∫ T

0
(||ΔX (t)||2Q

+ ||Δu(t)||2R)dt (25)

Let introduce the following assumption:

∃α > 0 | ∀Δu(t) ∈ L2([0, T ],R3) such that:

∫ T

0
||Δu(t)||2Rdt ≥ α

∫ T

0
Δu(t)T (t)Δu(t)dt. (26)

Theorem 2 Under the assumption (26), there exists a unique
minimizing trajectory for the LQ problem.

Proof Consider a minimizing sequence (Δun)n∈N of neigh-
boring controls which is bounded in L2([0, T ],R3) [49].
Consequently, this sequence converges weakly to a neigh-
boring control Δu in L2 [49]. Note that ΔXn (resp. ΔX ) is
the trajectory associated to a neighboring control Δun (resp.
Δu) over [0, T ]. Using the method of variation of constants
[49], ∀t ∈ [0, T ],

ΔXn(t) = M(t)ΔX0 + M(t)
∫ T

0
M(s)−1B(s)Δun(s)ds

(27)

where M(t) is the matrix solution [49] of:

Ṁ(t) = A(t)M(t), M(0) = I d. (28)

Note that the sequence (ΔXn) converges simply to the appli-
cation ΔX over [0, T ]. Thus, passing to the limit in formula
(27) allows to obtain, ∀t ∈ [0, T ],

ΔX (t) = M(t)ΔX0 + M(t)
∫ T

0
M(s)−1B(s)Δu(s)ds

(29)

Therefore,ΔX is a solution of the system associated with the
neighboring controlΔu. Notice that, sinceΔun converges to
Δu in L2, the following inequality is satisfied [49]:

∫ T

0
||Δu(t)||2Rdt ≤ lim inf

∫ T

0
||Δun(t)||2Rdt (30)

involving subsequently that:

Δ2 J (ΔX,Δu) ≤ lim inf ΔJ (ΔXn,Δun) (31)

which shows the existence of an optimal trajectory [49] since
(Δun)n∈N is a minimizing sequence. Finally, the fact that the
function Δ2 J is strictly convex is necessary and sufficient
to show the uniqueness of an optimal trajectory [49] which
completes the proof of the theorem. ��

Theorem 3 Under the assumption (26), for all ΔX (t) ∈ R
3

there exists a unique optimal trajectory ΔX (t) associated to
neighboring control Δu(t) for the problem (19),(20). The
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neighboring-optimal control is characterized as a linear
feedback control law [39]:

Δu∗(t) = −R−1B(t)Δψ(t)

= −R−1B(t)P(t)ΔX (t) (32)

= −C(t)ΔX (t),

where C(t) is the feedback gain vector, Δψ(t) is the corre-
sponding adjoint vector for the linearized system (19) and
P(t) is the solution the following matrix Riccati equation
[49] over a finite interval [0, T ]:

Ṗ(t) = −P(t)A(t) − AT (t)P(t)

+ P(t)B(t)R−1(t)BT (t)P(t) (33)

− Q(t).

where P(T)=0.
The optimal control u(t) characterizing the total therapy

applied at time t can be expressed in the form:

u(t) = u∗(t) − C(t)[X (t) − X∗(t)] (34)

Proof For connecting the perturbed costate Δψ(t) with the
perturbed stateΔX (t) over the finite interval [0, T ], the Ric-
cati transformation [50,51] is introduced:

Δψ(t) = P(t)ΔX (t) (35)

where P(t) is the Riccati coefficient matrix. ��
The optimality conditions (15) and (16) remains valid [36]

and can be subsequently applied to the variational system
(19),(20) and (23). Using (16), the neighboring-optimal con-
trol Δu∗(t) is formulated as:

Δu∗(t) = −R−1B(t)Δψ(t) (36)

The Riccati transformation (35) provides a new formulation
of the neighboring-optimal control Δu∗(t):

Δu∗(t) = −R−1B(t)P(t)ΔX (t) (37)

The adjoint (costate) equation is obtained according to the
optimality condition (15):

Δψ̇(t) = −Q(t)ΔX (t) − AT (t)Δψ(t) (38)

Substitute the neighboring-optimal control relation (36) in
the perturbed state equation (19) to obtain the following
canonical system of equations [26]:(

ΔẊ∗(t)
Δψ̇∗(t)

)
=

(
A(t) −E(t)

−Q(t) −AT (t)

) (
ΔX∗(t)
Δψ∗(t)

)
(39)

where E(t) = B(t)R−1(t)BT (t)

Differentiating (19) with respect to time t ,

Δψ̇(t) = Ṗ(t)ΔX (t) + P(t)ΔẊ(t) (40)

Using the Riccati transformation (35) in the perturbed state
and costate systems (19) and (38), respectively, the following
system of equations is obtained:

ΔẊ(t) = A(t)ΔX (t) − B(t)R−1B(t)ΔX (t),

Δψ̇(t) = −Q(t)ΔX (t) − AT (t)P(t)ΔX (t). (41)

Now, substituting perturbed state and costate relations (41)
in (40), the following equality is satisfied:

0 = Ṗ(t)ΔX (t)+P(t)[A(t)ΔX (t)−B(t)R−1B(t)ΔX (t)]
+ Q(t)ΔX (t) + AT (t)P(t)ΔX (t),

= [Ṗ(t) + P(t)A(t) + AT (t)P(t) + Q(t)

−P(t)B(t)R−1B(t)]ΔX (t). (42)

Note that the relation (38) is verified for all t ∈ [0, T ] and for
any initial stateΔX (0) [26]. Since the function P(t) does not
depend on the initial state, therefore it satisfies the following
matrix differential equation:

Ṗ(t) + P(t)A(t) + AT (t)P(t) + Q(t)

−P(t)B(t)R−1B(t) = 0 (43)

This matrix equation (43) is generally known as the matrix
Riccati equation [26,49] and can be expressed in the form:

Ṗ(t) = −P(t)A(t) − AT (t)P + P(t)E(t)P(t) − Q(t),

(44)

where E(t) = B(t)R−1(t)BT (t)
Finally, using the Riccati transformation (35) and the

transversality conditions (13) on Δψ , the final condition on
P(t) satisfies the following relationship:

Δψ(T ) = P(T )ΔX (T ) = 0 (45)

Thus,

P(T ) = 0 (46)

Using (17) and (37), the optimal control u(t) characterizing
the total therapy applied at time t can be expressed in terms
of u∗(t), X (t) and X∗(t) as follows:

u(t) = u∗(t) + Δu(t)

= u∗(t) − R−1B(t)P(t)ΔX (t),

= u∗(t) − C(t)ΔX (t),

= u∗(t) − C(t)[X (t) − X∗(t)]. (47)
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Table 2 The different parameters and values used

Parameters Descriptions

c 0 � c � 0.05(day−1)

μ2 0.03 (day−1)

p1 0.1245 (day−1)

g1 2 × 107 (Volume)

r2 0.18 (day−1)

b 1 × 10−9 (Volume)

a 1 (day−1)

g2 1 × 105 (Volume)

p2 5 (day−1)

g3 1 × 103 (Volume)

μ3 10 (day−1)

where C(t) = R−1B(t)P(t) is the feedback gain vector
which is calculated along the nominal-optimal therapeutic
history [36].

3 Numerical simulation

3.1 Summary of parameters and values used

In various similar work, a fairly wide range of values is pro-
posed for modeling the treatment of cancer [7,8,10,17,19].
In general, it is always complex to attribute a set of general
settings to patients with various types of cancer and repre-
senting different clinical cases. One of the main objectives
of the study elaborated by Kirschner [9] was to find a spe-
cific set of values assigned to the model parameters which
ensures the complete control [9] of the disease and allows
eventually the introduction of treatment strategies for can-
cer. However, since the main purpose of this study is to
use the optimal control theory for finding nominal–optimal
and neighboring-optimal therapeutic strategies based on the
adoptive cellular immunotherapy (ACI), the parameters val-
ues found in [9,33,34] are kept and it is specified that the
stability properties [9] of the state system (1) are stored for
these parameters which are rearranged in the Table 2. Finally,
note that the experimental time required for obtaining satis-
factory therapeutic results is T = 350 days [9].

3.2 Numerical method

Different numerical techniques [52] are employed to solve
the optimal system corresponding to the nominal–optimal
control problem (4) for finding u∗ that minimizes the cost
function J (u) (3). Equations of the optimal systems (1 and
13) characterizing the studied model describe a two-point
boundary value problem [53]. The numerical resolution of

this non-linear system provides an iterative solution since
the state system is solved with initial conditions (2) and the
adjoint system is solved with final conditions (13). In this
work, the forward backward sweep method (FBSM) [40–42]
is implemented to illustrate the nominal–optimal numeri-
cal solutions. Concerning the neighboring–optimal control
problem whose aim is to minimize the objective function
Δ2 J (ΔX,Δu) (20), in order to find a numerical solution
to the matrix differential Riccati equation, many numerical
approaches are proposed [26,49,54,55]. However, the use of
these same methods for the resolution of the state-dependent
Riccati equation (33) [25,26,36] manifests the presence of
many complexities for finding directly a solution for this
type of equation when the matrix A(t) depends on the state
variables (1). For this, other numerical techniques are consid-
ered [40,41]. Indeed, an adapted iterative forward backward
sweep method is extended and developed using a Runge–
Kutta [43] fourth order scheme view to finding numerical
optimal solutions relating to nominal u∗ and neighboring
Δu∗ controls. This newdevelopment allows surpassingmany
of the difficulties and inadequacies of the existing numerical
methodologies, and provides a computational algorithm that
has been very effective in developing the numerical simu-
lations in this work. Here the vector approximations for the
state X = (X1, . . . , XN+1), costate ψ = (ψ1, . . . , ψN+1)

and perturbed state �X = (ΔX1, . . . , ΔXN+1).

Algorithm

Step 0:

• Make an initial guess for the nominal control u and the
neighboring control �u over the finite interval [0, T ],

Step 1:

• Use the initial condition on X : X1 = X (0) and the
stored values for u.

• SolveX forward in time according to its state differential
system (1).

Step 2:

• Use the transversality conditions on ψ : ψN+1 = ψ(T )

and the stored values for u and X.
• Solve ψ backward in time according to its adjoint differ-
ential system (13).

Step 3:

• Use the initial condition on �X : ΔX1 = ΔX (0) and
the stored values for u, �u, X and ψ .

• Solve�X forward in time according to its perturbed state
linear time-varying equation (19).

123



354 A. Hamdache et al.

Step 4:

• Use the final conditions on P: PN+1 = P(T ) and the
stored values for u, �u, X, ψ and �X.

• Solve P backward in time according to its Riccati coeffi-
cient system, solution of state-dependentRiccati equation
(33).

Step 5:

• Update both nominal control u and neighboring control
�u formulations by inserting the new X, ψ , �X and P
values into the characterization of optimal controls u and
�u.

Step 6:

• Check convergence: If the difference of values of these
variables in this iteration and the last iteration is infin-
itesimally small, output the obtained current values as
solutions. If the difference is not considerably small, go
to Step 1.

3.3 Numerical results

Since its introduction in the 1980s, the adoptive cellular
immunotherapy has been the subject of many studies and
experiments [56–60] that investigate the immune system
dynamics and the tumor cells development in the presence
of immunotherapeutic agents derived from this treatment
approach. This immunotherapeutic strategy is an innovative
and promising therapeutic approach [57] for the treat-
ment of various cancers [35,59–62]. The adoptive cellular
immunotherapy stimulates the immune system of patient to
prevent cancer recurrence and treat metastatic cancer. This
treatment approach consists of removing from the cancer

patient the lymphocytes which are subsequently placed in
cell culture for re-injecting them finally in the tumor site
with a view to limit the development of cancer cells. Such
an approach has enabled to bring the clinical response rate
to over 50% for metastatic patients, presenting this approach
of treatment, as one of the most effective [61]. As is the case
for studies that have focused on the the state-dependent Ric-
cati equation and its applications in optimal control theory
[21–23], this work shows the interest of solving the state-
dependent Riccati equation [25,26,36] to obtain an optimal
solution for the feedback neighboring-control [39]. More-
over, the choice of implementation of the iterative forward
backward sweep method [40–42] using a Runge–Kutta [43]
fourth order scheme to solve numerically the optimal systems
has allowed to propose an algorithm able to provide direct
numerical solution of the state-dependent Riccati equation
with a minimum number of iterations and to eventually find
optimal characterizations for controls.

In this work, the main objective of the nominal therapy
relating to the nominal–optimal control problem (4) is to
minimize the concentration of cancer cells by stimulating the
different effector cells of the immune system. In this sense,
the adopted nominal therapeutic strategy provides encour-
aging biological results. Indeed, the concentration of tumor
cells decreases gradually, shortly after the introduction of the
treatment from the 76th day, involving thereafter a total erad-
ication of the tumor exactly from the 150th day of treatment
(Fig. 2). However, the treatment continues its therapeutic
action to deal with any reappearance of tumor cells (Fig. 4). It
is notedwith interest that themechanism of action of immune
response reacts accordingly to the increasing level of cancer
cells by generating significant growth in the concentration
of immune cells (effector cells and IL-2 cells) (Figs. 1, 3).
Taking into account the values attributed to the parameters c
(c = 0.015 day−1) andW (W = 1000 [33]) and the evolution

Fig. 1 The state x(t) (Effector
cells) during the
nominal–optimal therapy where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, c = 0.015 day−1,
W = 1000 and T = 350 days)
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Fig. 2 The state y(t) (Cancer
cells) during the
nominal–optimal therapy where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, c = 0.015 day−1,
W = 1000 and T = 350days)
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Fig. 3 The state z(t)
(Interleukin-2 cells) during the
nominal–optimal therapy where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, c = 0.015 day−1,
W = 1000 and T = 350 days)
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of the nominal–optimal control u∗(t) (Fig. 4), the stability
analysis of the model in presence of an appropriate treat-
ment shows that the problem is located in a region where
the equilibrium E0 is stable [9] and where variables of the
state system x(t), y(t) and z(t) converge to their respective
equilibrium points involving the total eradication of tumor
cells [9] and subsequently confirming the effectiveness of
the nominal–optimal treatment strategy.

In the same biological context, the fact of increasing the
initial estimated concentration of cancer cells by introduc-
ing an additional initial quantity Δy0 generates considerable
changes in the state variables evolution and the populations
dynamics. Indeed, the nominal therapy is no longer opti-
mal involving an important increase in the concentration of
tumor cells which reached the number of 7.7×105 cell units
in the 80th day of treatment (Fig. 6). Despite an observed
decrease in the level of cancer cells in the 80th and the
230th day of treatment, the tumor reappeared and grew once

again (Fig. 6) causing the failure of the nominal therapy.
However, note that the active immune response reacts posi-
tively to any tumor growth by stimulating more effector cells
in the human body and more IL-2 cells in the tumor site
(Figs. 5, 7).

Facing this biological situation, a nominal-plus-
neighboring therapeutic strategy is proposed to treat the can-
cer in the presence of a larger initial quantity of tumor cells.
Indeed, this optimal strategy is based on the fact of intro-
ducing a neighboring therapy (Fig. 12) in addition to the
existing nominal therapy. Effectively, even though the con-
centration of cancer cells reaches a very high level (5.2×105

cell units) at the 88th day of treatment, but the action of the
treatment administered to the cancer patient allows elimi-
nating completely the tumor exactly from the 128th day of
treatment. In the tumor site, the IL-2 cells grow consider-
ably (Fig. 10) to further stimulate lymphocyte proliferation
enabling the increase of the concentration of effector cells
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Fig. 4 The nominal–optimal
control u∗(t) where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, c = 0.015 day−1,
W = 1000 and T = 350 days)
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Fig. 5 The state x(t) (Effector
cells) during the
nominal–optimal therapy with
an additional Δy0 where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 6 The state y(t) (Cancer
cells) during the
nominal–optimal therapy with
an additional Δy0 where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 7 The state z(t)
(Interleukin-2 cells) during the
nominal–optimal therapy with
an additional Δy0 where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 8 The state x(t) (Effector
cells) during the nominal-plus-
neighboring-optimal therapy
with an additional Δy0 where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 9 The state y(t) (Cancer
cells) during the nominal-plus-
neighboring-optimal therapy
with an additional Δy0 where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 10 The state z(t)
(interleukin-2 cells) during the
nominal-plus-neighboring-
optimal therapy with an
additional Δy0 where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u, Δz(0) = 0unit,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 11 The
neighboring-optimal control
Δu(t) where (x(0) = 1c.f.u,
y(0) = 1c.f.u, z(0) = 1c.f.u,
Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 12 The nominal-plus-
neighboring-optimal control
u(t) = u∗(t) + Δu(t) where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 13 The effector cells
feedback gain C1(t) where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 14 The cancer cells
feedback gain C2(t) where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1c.f.u,
Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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Fig. 15 The IL-2 cells
feedback gain C3(t) where
(x(0) = 1c.f.u, y(0) = 1c.f.u,
z(0) = 1c.f.u, Δx(0) = 0c.f.u,
Δy(0) = 1unit, Δz(0) = 0c.f.u,
c = 0.015 day−1, W = 1000
and T = 350 days)
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(Fig. 8) which act directly in the immune response against
the development of tumor cells. The therapeutic process is
characterized by the action of the neighboring therapy during
the first 52days of treatment (Fig. 11) followed in parallel
by the intervention of the nominal therapy from the 53rd
day (Fig. 12) generating a complete eradication of tumor
(Fig. 9). This optimal treatment process subsequently begins
a prevention phase from the 130th day in order to elimi-
nate all possible risk of cancer recurrence (Fig. 12). Note
with interest that the growth of feedback gains relating to
the immune cells action (Figs. 13, 15) and the observed
decrease of feedback gain characterizing the tumor cells evo-
lution (Fig. 14) confirms the effectiveness of the adopted
treatment strategy and justifies the obtained numerical
simulations.

4 Conclusion

In this work, a nominal-plus-neighboring-optimal control
approach was suggested for the treatment of cancer using the
adoptive cellular immunotherapy (ACI). In order to illustrate
the effects of this treatment strategy on the tumor evolution,
a nominal–optimal therapy was adopted for a given initial
concentration of tumor cells. However, it was subsequently
observed that the increase in the initial quantity of cancer
cells has automatically generated the failure of the nomi-
nal treatment approach. Therefore, the introduction of a new
neighboring treatment strategy in addition to the existing
nominal therapy has been effective to eradicate completely
the tumor cells by restoring the active immune response and
by stimulating much more effector cells and IL-2 cells espe-
cially in the tumor site. The Pontryagin’s maximum principle
was used to characterize the formulation of both nominal and
neighboring-optimal controls. An adapted forward backward
sweep method was implemented to solve numerically the
optimal systems. Numerical simulations were presented for
the different adopted therapies to highlight the various bio-
logical changes undergone by the studied populations and the
possible consequences on the dynamics and on the evolution
of state variables.

Finally, it is important to note that the proposed therapeutic
strategy for the treatment of cancer has allowed reaching all
objectives of the optimal control problem and has enabled to
display consistent outcomes particularly compatible with the
stability analysis of themodel. Indeed, the immune system in
presence of the adopted treatment has managed to eliminate
completely the tumor cells while minimizing the overall cost
of the therapy thereby allowing a significant improvement in
the quality of life of cancer patients.
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