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Abstract In this paper, a cholera epidemic model with peri-
odic transmission rate has been considered and discussed. It
is shown that the disease free equilibrium point is globally
asymptotically stable and also seen that the cholera disease
is disappeared if the basic reproduction number is less than
one. When the basic reproduction number is grater than one,
then the endemic equilibrium is globally asymptotically sta-
ble. Finally, numerical simulations have been given for the
existence of the analytical results.

Keywords Cholera disease · Epidemic model · Local
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1 Introduction

The cholera, a waterborne gastroenteric infection, remains a
significant threat to public health in the developing countries.
It is caused by the bacterium Vibrio cholerae. It is typically
transmitted through water and food that have been contam-
inated with fecal matter from a person who is infected with
the disease. Now-a-days, several number of mathematical
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models have been developed for understanding the dynamics
of cholera disease. A mathematical model for cholera epi-
demic occurred in the European Mediterranean region had
been developed and discussed by Capasso [1] in 1973. In this
model, Capasso used two differential equations to describe
the dynamics of infected people in the infected region and the
dynamics of the bacterium V. cholerae. Codeco [2] extended
the model of Capasso by introducing one additional equation
of susceptible human population and described the dynamics
of the persistence of the disease cholera. After that Codeco’s
modelwas extended byHartley [3] including hyperinfectious
vibrio bacterium. Again, Hartley’s mathematical model was
analysed by Liao and Wang [4].

Cholera disease is typically seasonal due to climatic fac-
tors, physical and many biological factors. It is observed that
in Bangladesh the seasonality of cholera exhibits two peaks
per year and differs from that of other diarrheal diseases [5].
Cholera disease typically increases from November to Janu-
ary and April to May. In the same time, the seasonal cholera
disease is occurred in the peak form in April, May and June
[6] in every year. There are many research papers on the
cholera disease such as [7–13] etc.

It is known that the bacteriophage might control the nat-
ural population of pathogens. Moreover, the recent studies
in marine microbiology also have revealed the elegant bal-
ance between bacteriophage and their mycobacterial prey.
In 2009, Nelson et al. [14] explored that in a closed exper-
imental system, the transmission of V. cholerae may be
minimized when these two factors such as bacteriophage and
bacterium are combined in the aquatic environments. There-
fore, the dynamical interaction between bacteriophage and
bacterium in pond water suggests that a model of cholera
transmission should incorporate a measure for the rapid
decay of bacterial culturability and predation by bacterio-
phage.
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There are two hundreds species that infect V. cholerae
known as vibriophage. In 2006 a mathematical model was
described by Jensen et al. [15] in the role of bacteriophage
in the control of cholera outbreak. They suggests that either
bacteria in the environmental reservoir are hyperinfectious
or most victims ingest bacteria amplified in food or drink-
ing water contaminated by environmental water carrying
few viable V. cholerae. The consequent reduction of bac-
teria numbers in the effluent might fully account for the
decline in disease incidence and density of phage prey-
ing on these bacteria. In this interpretation, the outbreak
drives the changes in phage populations, rather than the
reverse. They showed that the large numbers of phage to
the reservoir at the time of the bacterial bloom decreases
the size of the epidemic. If there are few number of phage
such 105 virion per liter or less then there is virtually no
effect on the epidemic. There are many research papers
on baceriophage dynamics such as [16–19] etc. A cholera
epidemic model of an optimal cost effectiveness study on
Zimbabwe cholera seasonal data from 2008 to 2011 was
developed by Sardar et al. [20] in 2013. We have modified
this model by introducing the bacteriophage and discussed
the dynamical behavior of the proposed cholera epidemic
model.

In this paper, the dynamical behavior of the interaction
between cholera pathogen V. cholerae and bacteriophage
has been discussed. Then, the extinction and uniform per-
sistence of the disease have been explored here. Also, the
existence and stability of positive ω-periodic solution have
been discussed precisely. Finally, a numerical simulations
have been presented to support the analytic results of the
proposed model.

2 Model formulation

In this paper, it is considered that an area is effected with
V. cholerae. So, the population N (t) at time t , consists of
three kinds of populations such as (i) susceptible human
S(t), (ii) infected human I (t) and (iii) recovered human R(t)
i.e., N (t) = S(t) + I (t) + R(t). Here, the bacterial popu-
lation at time t is also considered of two types such as: (i)
hyper-infectious bacteria BH (t) and (ii) low-infectious bac-
teria BL(t). Also here, the population of bacterio-phage P(t)
has been introduced.

Now, the susceptible population is increased (i) by a con-
stant recruitment of newborn at a rate �H and (ii) by those
recovered persons who loses their temporary immunity to
cholera at a rate w. It is reduced by getting infected on con-
tact with hyper-infectious and low-infectious bacterium at a
rates βH (t) BH

KH+BH
and βL(t) BL

KL+BL
respectively and also

decreased by natural death at a rate μd , where βH (t) and
βL(t) have been defined in this paper as follows:

βH (t) = βH0

(
1 + δcos

(
2π t

365

))

βL(t) = βL0

(
1 + δcos

(
2π t

365

))

and δ is the amplitude of seasonality.
Here, infected human is increased by those susceptible

humans who get infected in contact with hyper-infectious
and low-infectious vibrios and decreased by (i) those who
are recovered from cholera at a rate γ , (ii) those who die
due to cholera infection at a rate μc and (iii) those who die
naturally at a rate μd .

Again, recovered human population is increased by those
infected people who get recovery from the disease at a rate
γ . It is observed that the recovered population is reduced due
to the loss of natural immunity to cholera at a rate w and due
to the natural dies at a rate μd .

Hyper-infectious bacterium is enriched from the amount
of hyper-infectious V. cholerae bacterium in the contam-
inated aquatic environment due to infected human feces,
vomiting etc. at a rate ξ .

It is assumed that hyper-infectivity bacterium losse their
hyper-infectivity at a rate χ . Here, it is also assumed that the
both bacterium populations decrease by the consumption of
phage (bacterio phage). The number of phage produced per
infected bacterium (burst size) is denoted by β1. The death
rate of phage in the reservoir is w1 per day. Therefore, under
the above considerations amathematicalmodel ofV. cholerae
has been suggested as follows:

dS

dt
= �H + wR − βH (t) BH S

KH+BH
− βL (t) BL S

KL+BL
− μd S

d I
dt = βH (t) BH S

KH+BH
+ βL (t) BL S

KL+BL
− (μd + μc + γ )I

dR
dt = γ I − (w + μd )R
dBH
dt = ξ I − χBH − γ1BH P

dBL
dt = χBH − δL BL − γ1BL P
dP
dt = β1γ1(BH + BL )P − w1P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The initial conditions are taken as S(0) ≥ 0, I (0) ≥
0, R(0) ≥ 0, BH (0) ≥ 0, BL(0) ≥ 0, P(0) ≥ 0.

Theorem 1 The solution of the proposed model (1) (S(t),
I (t), R(t), BH (t), BL(t), P(t)) is uniformly and ultimately
bounded i.e., there exists a positive real number M such that
(S(t), I (t), R(t), BH (t), BL(t), P(t)) ≤ (M, M, M, M, M,

M) for t ≥ T where T is a fixed time.

Proof From the first three equations of proposed model (1),
it is obtained that

d(S + I + R)

dt
= �H − μd(S + I + R) − μc I

≤ �H − μd(S + I + R) (2)
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Solving Eq. (2) by using standard comparison theorem [21],
there exists t1 > 0 such that S + I + R ≤ �H

μd
for all t ≥ t1.

Then, we have

S ≤ �H

μd
, I ≤ �H

μd
and R ≤ �H

μd
, for all t ≥ t1. (3)

Again, from the fourth equation of the proposed model (1),
it is obtained that

dBH

dt
≤ ξ

�H

μd
− χBH − γ1BH P

≤ ξ
�H

μd
− χBH (4)

Hence, again solving Eq. (4) by using standard comparison
theorem, there exists t2 ≥ t1 such that

BH (t) ≤ �H

χμd
, for all t ≥ t2. (5)

From the fifth equation of the proposed model (1), it is
obtained that

dBL

dt
≤ ξ�H

χμd
− δL BL − γ1BL P

≤ ξ�H

χμd
− δL BL (6)

Again, also solving Eq. (6) by using standard comparison
theorem, there exists t3 ≥ t2 ≥ t1 such that

BL(t) ≤ ξ�H

μdδL
, for all t ≥ t3. (7)

Again, from the sixth equation of the proposed model (1), it
is obtained that

dP

dt
≤ β1γ1

(
ξ�H

χμd
+ ξ�H

μdδL

)
P − w1P (8)

Hence, solving Eq. (8) by using standard comparison theo-
rem, there exists T ≥ t1, t2, t3 such that

P(t) ≤ e

(
β1γ1ξ�H

μd

(
1
χ

+ 1
δL

))
. (9)

From Eqs. (3), (5), (7) and (9), let us define M = max

{�H
μd

,
ξ�H
χμd

,
ξ�H
δLμd

, e
(

β1γ1ξ�H
μd

( 1
χ

+ 1
δL

))}.
Thus it follows that, S(t) ≤ M , I (t) ≤ M , R(t) ≤ M ,

BH (t) ≤ M , BL(t) ≤ M and P(t) ≤ M for all t ≥ T .
Therefore, the solution of the system are uniformly and ulti-
mately bounded.

3 Local stability of disease free periodic
equilibrium point

Let (Rn, Rn+) be the standard ordered n-dimensional Euclid-
ean spacewith a norm ||.||. For u, v ∈ Rn , we denote u ≥ v if
u−v ∈ Rn+; u > v, if u−v ∈ Rn ; u � v, if u−v ∈ I nt (Rn+).

Let A(t) be a continuous, cooperative, irreducible and ω

periodic n×n matrix function. Then φA(t) be a fundamental
solution matrix of

dx

dt
= A(t)x (10)

Let ρ(φA(ω)) be the spectral radius of φA(ω). According to
Perron–Frobenius theorem, ρ(φA(ω)) is the simple principal
eigenvalue of φA(ω) and it admits an eigenvector v∗ which
is grater than equal to zero vector.

Lemma 1 (Zhang and Zhao [22]) Let s = 1
ω
lnρ(φA(ω)),

then there exists a positive ω periodic function v(t) such that
estv(t) is a solution of (10).

In the following, we calculate the basic reproduction num-
ber of proposed system (1). It is easy to see that the proposed
system (1) has exactly one disease free equilibrium point
E0(S0, 0, 0, 0, 0, 0) where S0 = �H

μd
.

Now, F(t) =
⎡
⎣ 0 βH (t)�H

KHμd

βL (t)�H
KLμd

0 0 0
0 0 0

⎤
⎦,

V (t) =
⎡
⎣ (γ + μc + μd) 0 0

−ξ χ 0
0 −χ δL

⎤
⎦

Let Y (t, s) is an 3 × 3 matrix solution of the system

dY (t, s)

dt
= −V (t)Y (t, s) (11)

for any t ≤ s, Y (s, s) = I where I is an 3×3 identity matrix.
Let Cω be the ordered banach space of all ω periodic

functions from R to R3 which is equipped with maximum
norm ||.||∞ and the positive cone C+

ω = {φ ∈ Cω : φ(t) ≥
0, for all t in R}. Now, using Eq. (11) we consider the linear
operator L : Cω −→ Cω by

(Lφ)(t) =
∫ +∞

0
Y (t, t − a)F(t − a)φ(t − a)da (12)

for any t ∈ R and φ ∈ Cω.
Finally, from the Eq. (12) we define the basic reproduction

number R0 for the system (1) as the spectral radius of L
i.e., R0 = ρ(L) which has been motivated by the concept
of next generation method introduced in the article of [23–
25]. From the above discussion, the following theorem for
the local asymptotically stability of disease free equilibrium
E0(S0, 0, 0, 0, 0, 0) has been obtained.
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Theorem 2 (Wang and Zhao [23]) The following statements
are valid

1. R0 = 1 if and only if ρ(φF−V (ω)) = 1
2. R0 > 1 if and only if ρ(φF−V (ω)) > 1
3. R0 < 1 if and only if ρ(φF−V (ω)) < 1

Thus,we can say that the disease free equilibrium E0(S0, 0, 0,
0, 0, 0) is locally asymptotically stable if R0 < 1 and unsta-
ble if R0 > 1.

4 Global stability of disease free periodic
equilibrium point

Theorem 3 If R0 < 1, then the disease free periodic state
is globally asymptotically stable.

Proof From second, fourth and fifth equations of the system
(1) we have

d I

dt
= βH (t)

BH S

KH + BH
+ βL(t)

BL S

KL + BL

−(γ + μd + muc)I

≤ βH (t)
BH

KH + BH

�H

μd
+ βL(t)

BL

KL + BL

�H

μd

−(γ + μd + muc)I

≤ βH (t)
�H BH

KHμd
+ βL(t)

�H BL

μd KL

�H

μd

−(γ + μd + muc)I (13)
dBH

dt
≤ ξ(t)I − χBH (14)

dBL

dt
≤ χBH − δL BL (15)

Then, for all t ≥ 0, hence 0 ≤ S(t) ≤ �H
μd

, BH (t) ≥ 0,
BL(t) ≥ 0 and P(t) ≥ 0. Now, from the Eqs. (13), (14) and
(15) we consider the following auxiliary system:

d I

dt
= βH (t)

�H BH

KHμd
+ βL(t)

�H BL

μd KL

�H

μd

−(γ + μd + muc)I
dBH

dt
= ξ I − χBH

dBL

dt
= χBH − δL BL

which can be written as

dX

dt
= (F(t) − V (t))X (16)

where X = (I (t), BH (t), BL(t))T .

Then using above Lemma 1, there exists a positive ω-
periodic function X̄(t) such that X (t) = est X̄(t) is a solution
of the above Eq. (16) where s = 1

ω
lnρ(φF−V (ω)). Again,

from Theorem 2, we know that for R0<1, ρ(φF−V (ω))<1,
so s must be a negative constant. Therefore, when t → ∞,
we have X (t) → 0.

i.e., lim
t→∞ I (t) = 0, lim

t→∞ BH (t) = 0 and lim
t→∞ BL(t) = 0.

i.e., lim
t→∞ R(t) = 0, lim

t→∞ P(t) = 0 and lim
t→∞ S(t) = �H

μd

Hence, the above implies that the disease free equilibrium
point E0 is globally asymptotically stable.

5 Uniform persistence of the disease

Theorem 4 If R0 > 1, there exists a positive constant ε such
that for all initial value (S(0), I (0), R(0), BH (0), BL(0),
P(0)) ∈ {(S, I, R, BH , BL , P) ∈ R6+ : I > 0, BH >

0, BL > 0}, the solution of system (1) satisfies the following

lim
t→∞ in f I (t) ≥ ε, lim

t→∞ in f BH (t) ≥ ε and lim
t→∞ in f BL(t) ≥ ε.

i.e., for R0 > 1, the disease in system (1) is uniformly per-
sistent.

Proof Let us consider the sets X = R6+, X0 = {(S, I, R, BH ,

BL , P) ∈ R6+ : I > 0, BH > 0, BL > 0} and ∂X0 = X\X0.
Next, we define a poincare map P : R6+ −→ R6+ satisfying
P(x0) = u(ω, x0),∀x0 ∈ R6+ where u(t, x0) be the unique
solution of system (1) satisfying u(0, x0) = x0.

At first,we show that P is uniformly persistentwith respect to
(X0, ∂X0). It is easy to see from the system (1) that X and X0

are positively invariant. Moreover, ∂X0 is relatively closed
set in X . Now fromTheorem 1, it follows that the solutions of
the system (1) are uniformly and ultimately bounded. Thus,
the semiflow P is point dissipative on R6+ and P : R6+ → R6+
is compact by Theorem 3.4.8 in [26]. Then, it follows that P
admits a global attractor which attracks every bounded set in
R6+. Now, we define another set M∂ as

M∂ = {(S(0), I (0), R(0), BH (0), BL(0), P(0)) ∈ ∂X0 :
Pm(S0, I0, R0, BH 0, BL0, P0) ∈ ∂X0,∀m ∈ N ∪ 0}.

Next, it is claimed that

M∂ = {(S, 0, R, 0, 0, P) : S ≥ 0, R ≥ 0, P ≥ 0}.

In fact, it is obvious that

{(S, 0, R, 0, 0, P) : S ≥ 0, R ≥ 0, P ≥ 0} ⊆ M∂
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For any (S(0), I (0), R(0), BH (0), BL(0), P(0)) ∈ ∂

X0/{(S, 0, R, 0, 0, P) : S ≥ 0, R ≥ 0, P ≥ 0}, if
I (0) = 0, BH (0) = 0, BL(0) > 0 it is clear that S > 0
and BL > 0 for all t > 0. Now from the second equa-
tion of (1) we have İ (0) = βL(t) S(0)BL (0)

KL+BL (0) > 0 ⇒
I (0) > 0. Thus from the fourth equation of (1) we have
ḂH (0) = ξ I (0) > 0 else if I (0) = 0,BL(0) = 0 and
BH > 0. Then similarly we can show that İ (0) > 0 and
BH (0) > 0 and similarly for other cases also. Therefore,
if (S(0), I (0), R(0), BH (0), BL(0), P(0)) /∈ {(S, 0, R, 0,
0, P) : S ≥ 0, R ≥ 0, P ≥ 0} then (S(t), I (t), R(t),
BH (t), BL(t), P(t)) /∈ ∂X0 for simultaneously small t > 0.
This implies that M∂ ⊆ {(S, 0, R, 0, 0, P) : S ≥ 0, R ≥
0, P ≥ 0}. Therefore, we have M∂ = {(S, 0, R, 0, 0, P) :
S ≥ 0, R ≥ 0, P ≥ 0}. Clearly, E0 is one fixed point of P in
M∂ . If (S(t), I (t), R(t), BH (t), BL(t), P(t)) is a solution of
system (1) initiating from M∂ , it then follows from (1) that
S(t) → S0, I (t) → 0, R(t) → 0, BH (t) → 0, BL(t) →
0, P(t) → 0 as t → ∞. So any solution of (1) initiating in
M∂ will remain into M∂ .

We will now show that {E0} is an acyclic covering of E0.
It is enough to show that {E0} isolated invariant subset of M∂

i.e., Ws(E0) ∩ X0 = ∅, where Ws(E0) is the stable set of
E0.

Let x0 = (S(0), I (0), R(0), BH (0), BL(0), P(0)) ∈ X0,
then by the continuity of solutionwith respect to initial values
∀x ∈ (0, �H

μd
), then there exists ξ > 0 such that ∀x0 ∈ X0

with ||x0 − E0|| ≤ ξ , it follows that ||u(t, x0)−u(t, E0)|| ≤
ε∀t ∈ [0, w]. To show x0 ∈ X0 ⇒ x0 /∈ Ws(E0), it is
enough to show that lim

m→∞ d(Pm(x0), E0) ≥ ξ for somem >

0. If not let ∃x0 ∈ X0 such that lim
m→∞ d(Pm(x0), E0) < η for

allm > 0. This implies that ||u(t, Pm(x0))−u(t, E0)|| ≤ ε,
∀t ∈ [0, w].

To show, x0 ∈ X0 ⇒ x0 /∈ Ws(E0), it is enough to show
that lim

m→∞ sup d (Pm(x0), E0) ≥ ξ for some m > 0. If not

let ∃x0 ∈ X0 such that lim
m→∞ sup d (Pm(x0), E0) ≥ η for all

m > 0. This implies that ||u(t, Pm(x0)) − u(t, E0)|| < ε,
∀t ∈ [0, w]. For any t ≥ 0, let t = mw + t1 where t1 ∈
[0, w] and m = [ t

w
] which is the greatest integer less than

or equal to t
w
. Then, we have ||u(t, Pm(x0)) − u(t, E0)|| =

||u(t1, Pm(x0)) − u(t, E0)|| ≤ ε, ∀t ∈ [0, w].
By selecting (S(t), I (t), R(t), BH (t), BL(t), P(t)) =

u(t, x0), it follows that

�H

μd
− ε ≤ S(t) ≤ �H

μd
+ ε, 0 ≤ I ≤ ε, 0

≤ R ≤ ε, 0 ≤ BH ≤ ε, 0 ≤ BL ≤ ε, 0 ≤ P ≤ ε

for all t ≥ 0. Then, we have S(t)
KH+BH

≥ ( �H
μd KH

− ε
KH+ε

) and
S(t)

KL+BL
≥ ( �H

μd KL
− ε

KL+ε
). Therefore, from system (1) we

have

Table 1 The parameters used in the simulations

Parameters Values Unit References

�H 15 day−1 Assumed

μd 5.48 × 10−5 day−1 [3]

μc 0.015 day−1 [3]

γ 0.004 day−1 [3]

ξ 100 Cells/L day−1 [2]

χ 33.6 Cells/L day−1 [20]

γ1 1.4 × 10−9 L/virion/day [16]

δL 0.2333 day−1 [2]

β1 100 Virion/cell [17]

w 0.025 day−1 Assumed

w1 0.5–7.9 Virion/day [15]

d I

dt
≥ βH (t)

(
�H

μd KH
− ε

KH + ε

)
BH

+βL(t)

(
�H

μd KL
− ε

KL + ε

)
BL (17)

dBH

dt
= ξ I − χBH (18)

dBL

dt
= χBH − δL BL (19)

Then, from Eqs. (17),(18) and (19) a matrix Mε(t) can be
obtained as follows:

Mε(t) =
⎡
⎣0 βH (t) ε

KH+ε
βL(t) ε

KL+ε

0 0 0
0 0 0

⎤
⎦

Already, from Theorem 2, it is known that as R0 > 1 so
ρ(φF−V (ω)) > 1, choosing ε is very very small such that
ρ(φF−V−Mε (ω)) > 1. Again, by Lemma 1 and the stan-
dard comparison principle, there exists a positive ω periodic
function f2(t) such that j (t) ≥ f2(t)es2(t) where j (t) =
(I (t), BH (t), BL(t))T and s2 = 1

ω
lnρ(φF−V (ω)) > 0. This

implies that

lim
t→∞ I (t) = ∞, lim

t→∞ BH (t) = ∞ and lim
t→∞ BL(t) = ∞

which is a contradiction in M∂ . Hence, Ws(E0) ∩ X0 = ∅.
Then, by Theorem 1.3.1 [26] we obtain that P is uniformly
persistent with respect to (X0, ∂X0). Thus, by Theorem 1.3.1
[26] it follows that the solution of (1) is uniformly persistent.

6 Periodic solution

In this section, the existence and stability of a positive peri-
odic solution of the system (1) have been investigated in
Theorem 5 as follows:
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Fig. 1 The graphical structure
of solution of the proposed
system (1) near the disease free
equilibrium point when R0 < 1
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Theorem 5 If R0 > 1, then the system (1) admits a positive
ω-periodic solution which is globally asymptotically stable.

Proof Wehave alreadyproved inTheorem3 that the poincare
map, P : R6+ −→ R6+ of the system (1) is point dissipative
and compact as well as P is uniformly persistent with respect
to (X0, ∂X0). Then, it follows from Theorem 1.3.6 [26] that
the poincare map P has a fixed point (S̃, Ĩ , R̃, B̃H , B̃L , P̃) ∈
I nt (R6+). Hence, u(t, (S̃, Ĩ , R̃, B̃H , B̃L , P̃)) ∈ I nt (R6+) for
all t > 0. Thus, (S̃, Ĩ , R̃, B̃H , B̃L , P̃) is a positive ω−
periodic solution of system (1) due to the definition of the
semiflow P . ��

Let X̃ = (S̃, Ĩ , R̃, B̃H , B̃L , P̃) be positive ω-periodic
solution of system (1) and X (t) = (S(t), I (t), R(t),
BH (t), BL(t), P) be any solution of system (1) initiating
from nonnegative initial values. Then, a Lyapunov function
is defined as follows:

L(S, I, R, BH , BL , P) = |S(t) − S̃(t)| + |I (t) − Ĩ (t)|

+ |R(t) − R̃(t)|+ μd

ξ
|BH (t)− B̃H (t)|

+ μd

ξ
|BL(t) − B̃L(t)| + |P(t) − P̃(t)| (20)

Now, the right upper derivative D+L(t) of Eq. (20) of the
system (1) is obtained as follows:

D+L(S, I, R, BH , BL , P) = sign(S(t) − S̃(t)){
βH (t)

B̃H S̃

KH + B̃H
+βL(t)

B̃L S̃

KL+ B̃L
−βH (t)

BH S

KH + BH

−βL(t)
BL S

KL+BL
+w(R − R̃) − μd(S − S̃)

}

+ sign(I (t) − Ĩ (t)){
βH (t)

BH S

KH +BH
+βL(t)

BL S

KL + BL
−βH (t)

B̃H S̃

KH + B̃H

−βL(t)
B̃L S̃

KL + B̃L
− (γ + μc + μd)(I (t) − Ĩ (t))

}
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Fig. 2 The representation of
solution of the proposed system
(1) near the endemic
equilibrium point when R0 > 1
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+ sign(R(t) − R̃(t))
{
γ (I (t) − Ĩ (t))

− (w + μd)(R(t) − R̃(t))
}

+ sign(BH (t)

− B̃H (t))
μd

ξ

{
ξ(I (t) − Ĩ (t)) − χ(BH (t) − B̃H (t))

− γ1(B̃H P̃ − BH P)
}

+ sign(BL(t)

− B̃L(t))
μd

ξ

{
χ(BH (t)− B̃H (t))−δL(BL(t) − B̃L(t))

− γ1(B̃L(t)P̃(t) − BL(t)P(t))
}

+ sign(P(t) − P̃(t))

×
{
β1γ1(BH (t)P(t) − B̃H (t)P̃(t))

+β1γ1(BL(t)P(t)− B̃L(t)P̃(t))−w1(P(t)− P̃(t))
}

≤ −μd |S(t) − S̃(t)| − μc|I (t) − Ĩ (t)| − μd |R − R̃|
−μdδL

ξ
|BL(t) − B̃L(t)| − w1

β1
|P(t) − P̃(t)|

≤ −K (|S(t) − S̃(t)| + |I (t) − Ĩ (t)| + |R − R̃|
+|BL(t) − B̃L(t)| + |P(t) − P̃(t)|) (21)

where K = min{μd , μc,
μdδL

ξ
, w1

β1
}.

Now, integrating the above Eq. (21) from t̄ to ∞, it is
obtained that

L(t) + K
∫ ∞

t̄
(|S(t) − S̃(t)| + |I (t) − Ĩ (t)| + |R − R̃|

+|BL(t) − B̃L(t)| + |P(t) − P̃(t)|)ds
≤ L(t̄) (22)

provided that t > t̄ . Then, from Eq. (22) it follows that

sup
t→∞

K
∫ ∞

t̄
(|S(t) − S̃(t)| + |I (t) − Ĩ (t)| + |R − R̃|

+|BL(t) − B̃L(t)| + |P(t) − P̃(t)|)ds
≤ L(t̄)

K
< +∞

i.e., lim
t→∞ |S(t) − S̃(t)| = 0, lim

t→∞ |I (t) − Ĩ (t)| = 0,

lim
t→∞ |R(t) − R̃(t)| = 0,
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Fig. 3 The limit cycle of the proposed system (1) with respect to the bacteriophage

lim
t→∞ |BH (t) − B̃H (t)| = 0, lim

t→∞ |BL(t) − B̃L(t)| = 0

and lim
t→∞ |P(t) − P̃(t)| = 0.

Therefore, the solution (S̃(t), Ĩ (t), R̃(t), B̃H (t), B̃L(t), P̃(t))
is globally asymptotically stable.

7 Numerical simulations

For numerical simulation to illustrate the proposed mathe-
matical model, the standard software MATLAB 2010a has
been used. After finding the value of R0 numerically using
the parametric values in Table 1, it has been shown that when
disease persists and disappears from the human population.

Now, using the following initial values of the state vari-
ables such as S(0) = 800,000, I (0) = 800, R(0) =

100, BH (0) = 3,000,000, BL(0) = 3,000,000, P(0) =
300,000 and also taking KH = 109, KL = 109, δ =
0.75, BH0 = 0.2143, BL0 = 0.2, Fig. 1 has been drawn
from which it is observed that when R0 = 0.6043 < 1, then
it is confirmed that the disease free equilibrium point of the
system (1) is globally asymptotically stable. Therefore, it is
concluded that the cholera disease will be disappeared from
the human population when the basic reproduction number
must be less than one in the presence of bacteriophage.

Again, using the following initial values of the state vari-
ables such as S(0) = 8000, I (0) = 800, R(0) = 100,
BH (0) = 30,000, BL(0) = 30,000, P(0) = 3000 and also
KH = 109, KL = 109

7 , δ = 0.75, BH0 = 0.2143, BL0 =
0.2, Fig. 2 has been drawn from which it is observed that
when R0 = 4.2030 > 1, then it is confirmed that the disease
persists in the system (1) and it is globally asymptotically sta-
ble. Therefore, it is concluded that the cholera disease will be
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positively persisted in the human population when the basic
reproduction number is grater than one in the presence of
bacteriophage.

Using the same parametric values and initial condition that
is used in Fig. 2, Fig. 3 has been drawn and from this fig-
ure it is seen that the limit cycle of each population such
as susceptible human, infected human, recovered human,
hyper-infectious V. cholerae bacteria and low-infectious V.
cholerae bacteria with respect to bacteriophage is stable.
Again, it is known that the stable limit cycles are example of
attractors. So, they imply self-sustained oscillations i.e., the
closed trajectory describes perfect periodic behavior of the
system and any small perturbation from this closed trajectory
causes the system to return to it, making the system stick to
the limit cycle.

8 Conclusion

In this paper, a cholera epidemic model with periodic trans-
mission rate has been discussed. Here, the total human
population is divided into three subpopulations such as
(i) susceptible human (ii) infected human (iii) recovered
human and total bacterial population into three subpopula-
tions such as (i) hyper-infectious V. cholerae bacterium (ii)
low-infectious bacterium (iii) bacteriophage. A transmission
model that accurately predicts the magnitude of an emerg-
ing outbreak would provide public health authorities with
useful information to appropriately scale their responses.
Interventions that target vital steps in transmission might be
effective for the prevention of the outbreak. Host immunity,
pathogen hyperinfectivity and phages are all factors that can
be leveraged for outbreak control. The disease free equilib-
rium point is globally asymptotically stable and the cholera
disease is disappeared if the basic reproduction number is
less than one. It is observed that when the basic reproduction
number is grater than one, then the endemic equilibrium is
globally asymptotically stable and the disease persists in the
human population. It is also observed that the system has
a stable limit cycle with respect to bacteriophage and this
closed trajectory describes perfect periodic behavior of the
proposed system. So, Numerical simulations of the mathe-
matical model supports our analytical results.
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