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Abstract This paper proposes a new boundary layer slid-
ing mode control design for chatter reduction. The control
scheme uses a discontinuous control outside the boundary
layer and switches over to uncertainty and disturbance esti-
mator (UDE) based control inside. The problem of large ini-
tial control underlying the method of UDE, is also addressed
with a modified sliding surface. The overall stability of the
system is proved and the results are verified on an illustrative
example and application to flexible joint system. The results
show that the proposed method exhibits much better control
performance than the baseline SMC using ‘sat’ function, for
reduced chattering.

Keywords Sliding mode control · Uncertainty and
disturbance estimator · Chatter · Flexible joint

1 Introduction

Sliding mode control (SMC) is an effective strategy for con-
trolling systems with significant uncertainties and unmea-
surable disturbances [1–5]. The control however is discon-
tinuous and requires the bounds of uncertainties and distur-
bances. In many situations, these bounds are hard to find,
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which result in overestimation and consequently a large con-
trol. Additionally, the discontinuous control leads to chat-
ter. The chatter is undesirable because it causes excessive
wear and tear of components and can excite fast unmodelled
dynamics. The chatter in control and states is amajor concern
in the practical implementation of SMC [6,7].

The most popular method for chatter control is the bound-
ary layer control [8,9] in which the control is discontinu-
ous outside a boundary layer, but is continuous inside. The
method tries to strike a trade off between invariance of system
trajectories and smoothness of control.

Lee and Utkin [10] use state-dependent or equivalent-
control-dependent, magnitude of the discontinuous control
for chatter suppression. A variety of other strategies like
filtering of control signal [11], time varying feedback gain
[12,13], Euler time-discretization [14], integration of control
signal [15,16], fuzzy logic [17], neural network [18], quanti-
tative feedback theory [19] have been proposed in literature
to address the problem of chattering. The methods of chat-
tering suppressions related to higher order sliding modes can
be found in [20–22],

A combination of SMC with methods that give estimates
of uncertainty and disturbance enables the reduction of dis-
continuous component of control, thereby suppressing the
chatter significantly. The uncertainty and disturbance esti-
mator (UDE) [23] is one such strategy for estimating slow
varying uncertainties. This method has been applied to SMC
[24] and in applications like load frequency controller [25],
flexible joint [26], robotic control [27] to name a few. In [25–
27] the focus is on estimation accuracy rather than chatter;
and sliding surface used has the shortcoming of resulting in
large initial control.

A strategy for chatter control based on UDE is proposed
in this paper. The control scheme uses a discontinuous con-
trol outside the boundary layer and switches over to UDE
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based control inside. The method of UDE results in a large
initial control for systems with non-zero initial conditions.
The strategy proposed here will handle this drawback in a
novel way. The stability of the system inside the boundary
layer is proved.

In this paper, UDE is used to estimate the lumped uncer-
tainty comprising of uncertainty in plant as well as input
matrix and unknown disturbance. The main contributions of
this paper are as follows:

(i) The class of disturbances considered here is signifi-
cantly larger.

(ii) The sliding surface is modified to circumvent the prob-
lem of large initial control.

(iii) No knowledge of bounds on uncertainties and distur-
bances is required.

(iv) The ultimate boundedness of estimation error (ẽ) and
sliding variable (σ ) is guaranteed inside the boundary
layer.

The paper is organized as follows: Sect. 2 describes the
discontinuous sliding mode control design. A control based
on uncertainty and disturbance estimation using UDE is
explained in Sect. 3. Section 4 gives the stability analysis.
The performance is illustrated by a numerical example in
Sect. 5 followed by application to flexible joint system in
Sect. 6 and conclusion in Sect. 7.

2 Sliding mode control

Consider an uncertain single input single output (SISO) sys-
tem,

ẋ = A x + b u + ΔA x + Δb u + d(x, t) (1)

where x is the state vector, u is the control input, A and b are
known constant matrices, ΔA and Δb are uncertainties and
d(x, t) is the unknown, unmeasurable disturbance.

Assumption 1 The uncertainties ΔA,Δb and disturbance
d(x, t) satisfy matching conditions given by,

ΔA = bD, Δb = bE, d(x, t) = bv(x, t) (2)

where D and E are unknown matrices of appropriate dimen-
sions and v(x, t) is an unknown function.

TheEq. (2) is thewell-knownmatching condition required
to guarantee invariance and is an explicit statement of the
structural constraint stated in [28]. The system (1) can now
be written as,

ẋ = A x + b u + b e(x, t) (3)

where e(x, t) = D x+E u+v(x, t) is the lumpeduncertainty
comprising of uncertainties in A and b as well as external
disturbance.

Assumption 2 The lumped uncertainty e(x, t) is bounded
by a known function,

|e(x, t)| = ρ(x, t) (4)

where ρ(x, t) is a known positive scalar function.

For a sliding surface,

σ = s x (5)

the control that ensures sliding is given by,

u = un + ueq (6)

where

ueq = −(sb)−1(s Ax + kσ) k > 0 (7)

and

un = −ρ(x, t) sgn(σ sb) (8)

The control given by (8) is discontinuous. Since discon-
tinuous control is objectionable, a commonly used smooth
approximation of un is given by,

un =
{

−ρ(x, t) sgn(σ sb), |σ sb| > ε
−ρ(x,t)

ε
, |σ sb| ≤ ε

(9)

where ε is a small positive number. The well known draw-
backs of the smooth approximation are that a small ε retains
invariance but may result in chatter while large ε suppresses
chatter but results in significant loss of invariance.

3 A new smooth control inside the boundary layer

A smoothing approach using uncertainty and disturbance
estimator (UDE) is used for chatter suppression. The key
idea in UDE based control is to approximate and estimate
the uncertainty using a filter of right bandwidth. The oppo-
site of estimate is then used in control to negate the effect of
the uncertainty [23,24]. The following assumption is needed
to ensure that ẽ (i.e. e − ê) is bounded.

Assumption 3 The lumped uncertainty e(x, t) is continuous
and satisfies,∣∣∣∣∣d

( j)e(x, t)

dt ( j)

∣∣∣∣∣ ≤ μ for j = 0, 1, 2, . . . , r (10)
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where μ is a small positive number.

The lumped uncertainty e(x, t) can be estimated as,

ê = e G f (s) (11)

where G f (s) is a strictly proper low-pass filter with unity
steady state gain and sufficiently large bandwidth.

Using (3) and (5)

σ̇ = s A x + s b u + s b e (12)

Using (6) and (7) in (12)

σ̇ = s b un + s b e − k σ (13)

e = (sb)−1(σ̇ + kσ) − un (14)

The control strategy in UDE is to estimate lumped uncer-
tainty e as ê (11) and use −ê as a component in control; to
cancel the effect of e. Let

un = −ê (15)

Using (11), (14) and (15),

un = −(sb)−1(σ̇ + kσ)
G f (s)

1 − G f (s)
(16)

Specially for a choice of G f (s) given by,

G f (s) = 1

1 + τ s
(first order filter) (17)

where τ is a small positive constant,

un = −(sb)−1 1

τ

(
σ + k

∫
σ

)
(18)

From Eqs. (11) and (17)

˙̃e = −1

τ
ẽ + ė (19)

From Eqs. (13) and (15)

σ̇ = −k σ + s b ẽ (20)

Remark 1 If ė = 0, ẽ goes to zero asymptotically, otherwise
it is ultimately bounded. As a consequence σ → 0, if k > 0
and τ > 0. If ė is not small, but ë is small, i.e j = 2 in
(10), then the accuracy of estimation can be improved by
estimating e as well as ė.

The ultimate boundedness of ẽ and calculation of bound
is discussed in Sect. 4. The improvement obtained using an
higher order filter is derived in Sect. 3.3 and shown in the
results. The proposed estimator does not need any knowledge
of the size of the uncertainty. It can estimate slow varying

lumped uncertainties accurately, if τ is chosen to be a small
constant. However a small τ results in a large control un at
t = 0, since σ(0) may not be a small number in general.
To circumvent this problem, a modified sliding surface is
proposed.

3.1 Modified sliding surface

The conventional sliding surface is modified as,

σ ∗ = σ − σ(0) e−αt (21)

where α is a user chosen positive constant.
It may be noted that at t = 0, the modified sliding variable

σ ∗(0) = 0 for any σ(0) and σ ∗ → σ as t → ∞.

3.2 Design of control

From (3) and (21),

σ̇ ∗ = s A x + s b u + s b e + σ(0) α e−α t (22)

selecting control,

u = ueq + un (23)

and

ueq = −(sb)−1(s A x + σ(0) α e−α t + k σ ∗) (24)

Working on lines similar to Sect. 2, it is straightforward to
obtain,

un = −(sb)−1 1

τ

[
σ ∗ + k

∫
σ ∗

]
(25)

The advantage of (25) is that even for small τ , un is not
large, since σ ∗ is small for all t ≥ 0. It may be noted that u is
continuous for all t ≥ 0 and therefore the control is chatter
free.

Remark 2 The control developed in this section is different
from the one developed in [25]. The definition of the sliding
variable is different andwhile the control in [25] requires real
time integration to find the values of the sliding variable, the
proposed control does not require such an integration.

3.3 Control using second order UDE

With reference to Remark 1, the accuracy of estimation can
be improved by using a second order UDE. The uncertainty
(e) and its derivative (ė) can be estimated using a second
order filter of the form,

G f (s) = 1 + 2τ s

τ 2s2 + 2τ s + 1
(26)
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where τ is a small positive constant.
Using (22), (23) and (24)

σ̇ ∗ = s b un + s b e − k σ (27)

e = (sb)−1(σ̇ ∗ + kσ ∗) − un (28)

Using (11), (15) and (28),

un = −(sb)−1(σ̇ ∗ + kσ ∗)
G f (s)

1 − G f (s)
(29)

With G f (s) as in (26),

un = −(sb)−1
(
2

τ
σ ∗ + 2τk + 1

τ 2

∫ t

0
σ ∗ + k

τ 2

∫ t

0

∫ t

0
σ ∗

)
(30)

3.4 Proposed control

The proposed boundary layer SMCwith first order UDE, for
chatter reduction can be written as,

ueq = −(sb)−1(s A x + σ(0) α e−α t + k σ ∗) (31)

un =
⎧⎨
⎩

−ρ sgn(σ s b), |σ sb| > ε

−(sb)−1 1

τ

(
σ ∗ + k

∫
σ ∗

)
, |σ sb| ≤ ε

(32)

4 Stability

The estimation error ẽ and sliding variable σ are ultimately
bounded. Here the general case when j = 1 in (10) is con-
sidered. The bounds on ẽ and σ are found by considering the
Lyapunov function as,

V (σ, ẽ) = 1

2
σ 2 + 1

2
ẽ2 (33)

Taking derivative of V (σ, ẽ) along (19) and (27)

V̇ (σ, ẽ) = −kσ 2 + s b σ ẽ − 1

τ
ẽ2 + ẽ ė (34)

≤ −kσ 2 + |sb| |σ | ‖ẽ‖ − 1

τ
‖ẽ‖2 + ‖ẽ‖μ (35)

Using Young’s inequality [29],

ab ≤ a2 + b2

2

for any real a and b, one can obtain

V̇ (σ, ẽ) ≤ −kσ 2 + |sb|
2

(
|σ |2 + ‖ẽ‖2

)
− 1

τ
‖ẽ‖2 + ‖ẽ‖ μ

(36)

V̇ (σ, ẽ) ≤ −|σ |2
(
k − |sb|

2

)
− ‖ẽ‖2

(
1

τ
− |sb|

2

)
+ ‖ẽ‖ μ

(37)

V̇ (σ, ẽ) ≤ −|σ |2
(
k − |sb|

2

)
− ‖ẽ‖

[
‖ẽ‖

(
1

τ
− |sb|

2

)
− μ

]
(38)

With

(
k − |sb|

2

)
> 0 and

(
1

τ
− |sb|

2

)
> 0, the system

will be ultimately bounded. Using (38), the bound on ẽworks
out to be,

‖ẽ‖ ≤ μ(
1

τ
− |sb|

2

) (39)

Similarly the bound on σ works out to be,

|σ | ≤ |sb|μ
k

(
1

τ
− |sb|

2

) (40)

Thus ‖ẽ‖ and |σ | are ultimately bounded and the bounds can
be lowered using control parameters k and τ .

5 Numerical example

The following continuous system is considered to illustrate
the results:

A =
[

0 1
−2 −3

]
, b =

[
0
1

]
;

ΔA =
[

0 0
−1 −2

]
, Δb =

[
0

−0.4

]
;

ΔA and Δb are the uncertainties in the plant. The initial
conditions for the plant are x0 = [1 0]T and control gain
is k = 5. The disturbances considered are sinusoidal and
sawtooth as shown in Fig. 1.

The discontinuous control is approximated with continu-
ous approximation inside the boundary layer using sat func-
tion. The sliding plane used is σ = 4x1+x2. The well known
trade-off between smoothing and invariance is verified for
varying values of ε; for both sinusoidal as well as sawtooth
disturbance. It is clearly evident that the chatter is dependent
on the value of ε. The RMS values of σ for different values
of ε are tabulated in Table 1.

The control performance is illustrated in Fig. 2 for a sinu-
soidal disturbance and boundary layer width of ε = 0.02.
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Fig. 1 Disturbances considered. a Sinusoidal, b triangular

Table 1 Variation in σ for different values of ε

Boundary layer RMS value of σ

width – ε For sinusoidal For sawtooth

0.02 0.0004524 0.02545

0.2 0.03646 0.1908

2 0.5244 0.4639

The states are shown in Fig. 2a, while a magnified view of
the same graph is shown in Fig. 2b. It can be seen that for
this case, the evolution of states inside the boundary layer
depends on the disturbance acting. The sliding variable is
shown in Fig. 2d. The chattering is evident in Fig. 2d.

The sat function is replaced by a first order UDE with
filter time constant τ . The sliding plane is modified as
σ ∗ = σ − σ(0) e−αt so that initial control is within lim-
its. The Fig. 3 shows that the modified sliding variable
(σ ∗ = σ −σ(0) e−αt ) significantly reduces the initial control
as compared to the conventional sliding plane (σ = sx .)

The state tracking, control and sliding variable for a first
order UDE with τ = 0.001 s is shown in Fig. 4a–d.

The results clearly demonstrate that, use of first orderUDE
in comparison to sat function reduces the chatter by a sub-
stantial amount.

The RMS values of σ with modified sliding plane and first
order UDE, for ε = 0.02 in Table 2 validates the same.

The results can be improved further by using a second
order filter. The results with such a filter for τ = 0.001 s are

Fig. 2 States, control and sliding variable—sat function. a Plant states
xplant , b magnified plant states xplant , c control u, d sliding variable σ

Fig. 3 Comparison of control. a Conventional sliding plane, b modi-
fied sliding plane

shown in Fig. 5, which shows that the improvement is indeed
significant.

It is evident from Figs. 4d, 5d, that chattering is signifi-
cantly reduced. The disturbance considered in these results
is sinusoidal. The same results are observed for constant as
well as sawtooth disturbance.

The value of τ has a direct effect on chatter mitigation,
for a given boundary layer width ε. The value of τ and order
of filter directly affect the accuracy of uncertainty estimation
and consequently affect the achievable chatter reduction. The
same can be seen in Fig. 6.

The RMS values of σ with ε = 0.02 clearly demonstrates
that UDE scores in comparisonwith sat function. The chatter
is reduced as the order of UDE is increased. The value of τ =
0.001 s and sinusoidal disturbance is considered (Table 3).
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Fig. 4 States, control and sliding variable—first order UDE. a Plant
states xplant ,bmagnified plant states xplant , c control u,d sliding variable
σ

Table 2 Variation in σ with first order UDE

Time constant RMS value of σ

τ For sinusoidal For sawtooth

0.001 0.0001926 0.01641

0.01 0.01697 0.1434

0.1 0.4947 0.5625

6 Application to flexible joint system

The problem of joint flexibility has received considerable
attention as the major source of compliance in most present
daymanipulator designs. This joint flexibility typically arises
due to gear elasticity, shaft windup, etc., and is impor-
tant in the derivation of control law. Unwanted oscillations
due to joint flexibility, imposes bandwidth limitations on
all algorithm designs; based on rigid robots and may cre-
ate stability problems for feedback controls that neglect
joint flexibility. A feedback linearization (FL) based con-
trol law made implementable using extended state observer
(ESO) is proposed for the trajectory tracking control of
a flexible joint robotic system in [30]. Controller design
based on the integral manifold formulation [31], adaptive
control [32], adaptive sliding mode [33] and back-stepping
approach [34] are some other approaches reported in the
literature. In this work, a model following SMC is pro-
posed to control flexible joint manipulator with uncertainty
and disturbance. A nonlinear disturbance is considered here

Fig. 5 States, control and sliding variable—second orderUDE. a Plant
states xplant ,bmagnified plant states xplant , c control u,d sliding variable
σ

Fig. 6 Effect of τ and filter order on chatter mitigation. a First order
UDE (τ = 0.01s), b first order UDE (τ = 0.1s), c second order UDE
(τ = 0.01s), d second order UDE (τ = 0.1s)

and the plant model is controlled to follow the desired
states and the uncertainty and disturbance is estimated with
UDE.
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Table 3 Variation in σ with different approximations

Approximation RMS value of σ

Sat function 4.524 × 10−4

First order UDE 1.926 × 10−4

Second order UDE 6.475 × 10−5

The equations of motion for the Quanser’s Flexible Joint
module as given in [35] are,

θ̈ + F1θ̇ − Kstiff

Jeq
α = F2Vm

θ̈ − F1θ̇ + Kstiff(Jeq + Jarm)

Jeq Jarm
α = −F2Vm (41)

where,

F1
Δ= ηmηgKt KmK 2

g + BeqRm

JeqRm
and

F2
Δ= ηmηgKt Km

JeqRm

The parameters are : θ is motor load angle, α is link joint
deflection, ηm is the motor efficiency, ηg is the gearbox effi-
ciency, Kt is the motor torque constant, Km is the back EMF
constant, Kg is the gearbox ratio, Beq is the viscous damp-
ing coefficient, Rm is the armature resistance, Jeq is the gear
inertia, Kstiff is the spring stiffness, Jarm is the link inertia,
and Vm is the motor control voltage.

Considering the output of the system as y = θ + α, the
dynamics (41) in terms of y and θ is re-written as,

ÿ = Kstiff

Jeq
F3y − Kstiff

Jeq
F3θ (42)

θ̈ = Kstiff

Jeq
y − Kstiff

Jeq
θ − F1θ̇ + F2Vm (43)

where F3
Δ=

(
1 − Jeq + Jarm

Jarm

)
.

Defining the state variables as, x1 = y, x2 = ẏ = ẋ1,
x3 = θ , x4 = θ̇ = ẋ3, the dynamics (42)–(43) become,

ẋ1 = x2

ẋ2 = Kstiff

Jeq
F3(x1 − x3)

ẋ3 = x4

ẋ4 = Kstiff

Jeq
(x1 − x3) − F1x4 + F2Vm (44)

The state space form for (44) can be written as,

ẋ = A x + B Vm (45)

where, ẋ = [ẋ1 ẋ2 ẋ3 ẋ4]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
Kstiff

Jeq
F3 0 −Kstiff

Jeq
F3 0

0 0 0 1
Kstiff

Jeq
F3 0 −Kstiff

Jeq
F3 −F1

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎣

0
0
0
F2

⎤
⎥⎥⎦

For the desired output, the relative output y can be dif-
ferentiated in proper manner. In order to satisfy the model
following conditions, the above system (45) is converted to
phase variable form by using the transformation,

Z = T x

Then the Eq. (45) can be written as in [30],

ż = A z + B Vm (46)

where, ż = [ż1 ż2 ż3 ż4]T

A =

⎡
⎢⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1

0 −KstiffF1
Jarm

−Kstiff(Jeq + Jarm)

Jeq Jarm
−F1

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎣

0
0
0

KstiffF2
Jarm

⎤
⎥⎥⎥⎥⎦

The nominal values of the various flexible joint parame-
ters are from [35]: Ksti f f =1.248Nm/rad, ηm = 0.69, ηg =
0.9, Kt = 0.00767Nm, Kg = 70, Jeq = 0.00258kgm2,
Jarm = 0.00352kgm2, Rm = 2.6
. The initial conditions
are x(0) = [0 0 0 0].
⎡
⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 −10007 −837 −28

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0
0

10007

⎤
⎥⎥⎦ Vm (47)
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Fig. 7 States, control and
sliding variable (τ =10ms). a
Plant and model state x1, b plant
and model state x2, c plant and
model state x3, d plant and
model state x4, e control u, f
sliding variable σ

0 1 2 3 4 5 6 7 8 9 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x 1 &
 x

m
1

time in sec

Plant
Model

(a)

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x 2 &
 x

m
2

time in sec

Plant
Model

(b)

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x 3 &
 x

m
3

time in sec

Plant
Model

(c)

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

x 4 &
 x

m
4

time in sec

Plant
Model

(d)

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

co
nt

ro
l

time in sec

(e)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

6

σ

time in sec

(f)

The model to be followed is assumed as;⎡
⎢⎢⎣
ẋm1

ẋm2

ẋm3

ẋm4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 −560 −320 −85

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xm1

xm2

xm3

xm4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0
0

160

⎤
⎥⎥⎦ Vm (48)

with initial conditions are xm(0) = [0 0 0 0]. The dis-
turbance d(t) = 2 sin(t), is sinusoidal with amplitude 2 and
frequency 1 rad/s and uncertainty in the plant is 40%.

The simulation results are shown in Figs. 7, 8 for τ =
10ms and τ = 1ms respectively. The value of k = 5 is
considered.

Figures 7a–d and 8a–d are the plant and model states
i.e. displacement, velocity, acceleration and jerk. The con-
trol torque required and the sliding variable (σ ) are also
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Fig. 8 States, control and
sliding variable (τ = 1 ms). a
Plant and model state x1, b plant
and model state x2, c plant and
model state x3, d plant and
model state x4, e control u, f
sliding variable σ
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shown. The figure reveals the ability of the controller, to
drive the system to follow the reference model. It is eas-
ily observed that system is robust even in presence of
parameter variations and external disturbance. The tracking
and robustness is improved as τ is decreased from 10 to
1 ms.

7 Conclusion

In this paper, a boundary layer SMC design for chatter reduc-
tion is proposed. The control scheme uses a discontinu-
ous control outside the boundary layer and switches over
to uncertainty and disturbance estimator (UDE) based con-
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trol inside the boundary layer. The use of UDE gives a bet-
ter trade-off inside the boundary layer and this trade-off is
improved by using a higher order UDE. The initial control is
within limits, irrespective of the uncertainty. The results show
improvement to the tune of 20–40% over the conventional
chatter control method using saturation function inside the
boundary layer. It is proved that the ultimate boundedness
of uncertainty estimation error and sliding variable inside
the boundary layer is guaranteed, and that the bounds can
be lowered by appropriate choice of design parameters. The
theoretically expected results are verified by computer sim-
ulation in MATLAB SIMULINK environment. The efficacy
of the design is also confirmed on an application to flexi-
ble joint system in robotic control. The controller is able to
force the plant to follow the given model inspite of parameter
variations.
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