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Abstract This paper presents experimental results on non-
linear vibrations of a combined structure with segments of
beams and a disc, which is a fundamental model of a micro
scanner. Both ends of the structure are clamped for deflec-
tion and one of the ends of the structure is constrained with
an axial spring. Under an axial tensile force, the structure
is excited with lateral periodic acceleration. Sweeping the
excitation frequency, nonlinear frequency response curves
are obtained. In the typical frequency region, non-periodic
responses are generated. The responses are inspected by the
Fourier spectrum, the Poincaré projection, the maximum
Lyapunov exponents and the principal component analy-
sis. The non-periodic responses are confirmed as chaotic
responses coupled with torsional and the lowest flexural
modes of the combined structure.
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1 Introduction

Micro electromechanical system (MEMS) is widely used for
sensors or actuators in electronic appliances and information
appliances. One of the MEMS structures is a micro scan-
ner. The micro scanner has a shape of a combined structure
with segments of beams and a plate. As the plate, a rectan-
gular or a circular plate is used. Thickness of the structure
is sufficiently thin to a length of the structure. With resonant
responses of a torsional mode of the structure, the structure
reflects light beam to a wide range. If a torsional angle of
the resonant responses is large, nonlinear coupled vibrations
between the torsional mode and the flexural mode might be
generated on the structure by the nonlinear vibrations. Fur-
thermore, chaotic responses might be generated in a specific
condition of forcing amplitude and frequency. These non-
linear or chaotic responses of the micro scanners reduce the
quality of scanning. To design themicro scanner having good
accuracy, it is important to investigate nonlinear vibrations
of the structure.

The micro scanner consists of segments of beams and a
plate. The nonlinear vibrations of a beam have been investi-
gated by many researchers. Yamaki et al. [1,2] investigated
nonlinear frequency responses of a clamped–clamped beam
by changing a initial axial displacement. Nagai et al. [3] con-
ducted experiments on nonlinear vibrations, especially on
chaotic vibrations, of a post-buckled beam with clamped–
clamped boundary conditions. Chaotic vibrations of the post
buckled beam are analyzed byMaruyama et al. [4] in detail to
investigate modal contributions in the chaotic response. The
nonlinear vibrations of a plate are also investigated by many
researchers. Nonlinear vibrations of a clamped rectangular
plate subjected to in-plane displacement are investigated ana-
lytically and experimentally by Yamaki et al. [5,6]. Chang
et al. [7] analyzed a nonlinear and chaotic vibrations of a
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simply supported rectangular plate. Onozato et al. [8] con-
ducted experiments on chaotic vibrations of a rectangular
plate subjected in-plane compressive force. Nonlinear vibra-
tions of a clamped circular plate is analyzed by Sridhar et
al. [9,10]. Experimental and analytical studies of nonlinear
vibrations of a clamped circular plate subjected to initial in-
plane displacement are reported by Yamaki et al. [11,12].
The dynamic responses of a micro scanner are investigated
by some researches. Khatami and Rezazadeh [13] analyzed
dynamic responses of a torsional mirror subjected to electro-
static force and mechanical shock. Shabani et al. [14] ana-
lyzednonlinear vibrations of a electro static torsional actuator
near the pull-in condition. Ataman and Urey [15] and Ata-
man et al. [16] investigated nonlinear frequency responses of
comb-driven micro scanners. In theses studies, an analytical
model of the micro scanner is assumed to be combination of
springs and a rigid plate. For the experimental studies on non-
linear vibrations of the micro scanner, it seems to the authors
that detailed investigation of the nonlinear vibrations coupled
with the torsional and flexural modes has not been reported.

As mentioned above, nonlinear coupling between the tor-
sional vibration and the flexural vibration should be made
clear to improve the design of micro scanners. To the best
of the author’s knowledge, nonlinear vibration analyses on
complex-shaped structures are not developed at present.
Thus, it would be important to show the conditions of the
generation of nonlinear coupled vibration and modal contri-
bution of the torsional and the flexural modes by the experi-
ment. These experimental results would be valuable founda-
tions to develop the analysis on nonlinear vibrations of the
complex-shaped structures.

In this paper the nonlinear vibrations of the combined
structure with segments of the beams and the disc are investi-
gated. The structure is fundamentalmodel of amicro scanner.
Both ends of the structure are clamped for deflection. One
of the ends of the structure is elastically constrained with the
axial spring. The structure is subjected to axial forces by the
axial spring. First, natural frequencies of the torsional mode
and the lowest flexural mode of the structure aremeasured by
changing the axial forces. Under typical tensile axial forces,
the configuration of the structure and characteristics of restor-
ing force of the structure are obtained. Next, the structure is
subjected to periodic acceleration laterally under the axial
tensile force. A frequency response curve is obtained by
sweeping excitation frequency. Non-periodic responses are
generated in a typical frequency. The responses are inspected
by theFourier spectrum, thePoincaré projection and themax-
imum Lyapunov exponents. To investigate the modal contri-
bution to the non-periodic responses, the principal compo-
nent analysis is adapted to the time histories with a length of
long time period. The time histories are measured at multiple
positions, simultaneously. Furthermore, time histories of the
contribution ratio are obtained from calculations of principal

component analysis with time histories cut out from the time
histories with a length of long time period.

2 Combined structure

The combined structure and its fixture are shown in Fig. 1.
The dimensions and the material properties of the structure
are shown in Table 1. The structure consists of two seg-
ments of beams and a segment of a disc. The segment of
the disc is located at the center of the structure. Both ends of
the structure are clamped on the fixture. The length between
clamped edges is L = 157.5 mm. The breadth of the beam
is b = 13.5 mm and the diameter of the disc is D = 99 mm.
The ratio of the diameter of the disc to the length between
the clamped edges is D/L = 0.63. The corners between the
beam and the disc are smoothed with radius 10mm. For the
test specimen of the structure, a phosphor-bronze sheet with
the thickness h = 0.15 mm is used. Material properties of
the sheet are measured as the Young’s modulus E = 81 GPa
and the mass density ρ = 8.5 × 103 kg/m3. To improve
measuring accuracy of the deflection, the both surfaces of
the structure are painted with acrylic lacquer of white color.
The thickness of the structure including the painted layer is
h′ = 0.21 mm. The Cartesian coordinate system is defined
by x-axis along the longitudinal direction, y-direction along
the clamped edge and z-axis vertical to the surface of the
structure.

The fixture consists of two fixing devices which are the
rigid block and the movable table. The rigid block is firmly

Fig. 1 The combined structure and the fixture
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Table 1 The dimensions and the material properties of the structure

The length between clamped edges L = 157.5 mm
The breadth of the beam b = 13.5 mm
The diameter of the disc D = 99 mm
The thickness h = 0.15 mm
Young’s modulus E = 81 GPa
The mass density ρ = 8.5 × 103 kg/m3

The spring constant of the elastic plates ks = 13 × 103 N/m

fixed on the base frame by bolts. The movable table has
two parallel elastic plates as an axial spring on the slide
block. The slide block can move on the base frame to the
x-direction by turning a screw. One end of the structure is
fixed on the on the rigid block and the other end is fixed
on the movable table. Consequently, the boundary condi-
tion of the structure is clamped laterally at the both ends
and elastically constrained in the axial direction. When the
slide block moves in x-direction, the axial force nx is loaded
on the structure. The axial force can be calculated from the
strainmeasured by strain gauges which are glued on the axial
springs. The spring constant of the elastic plates is measured
as ks = 13×103 N/m from the relation between deflections
of the elastic plates and concentrated forces.

3 Procedure of experiments

3.1 Measurement of fundamental poroperties

As fundamental properties of the structure linear natural fre-
quencies, modes of vibration, configuration of the structure
and characteristics of restoring force of the structure are
obtained under the gravitational force. First, the linear nat-
ural frequencies of the lowest flexural mode and the torsional
mode are obtained. Applying periodic acoustic pressure on
the structure, resonant response with small amplitude is gen-
erated on the structure. The resonant response is measured
by a laser displacement sensor and is inspected by a digital
voltmeter and a spectrum analyzer. The natural frequencies
of the structure are obtained by an inspection of the ampli-
tude of the resonant response. Under the acoustic pressure at
the natural frequency, the modes of vibration are obtained by
scanning the amplitude and the phase difference between the
response and acoustic pressure. By changing the axial force,
the natural frequencies are measured. Then, the configura-
tion of the structure and characteristics of restoring force are
measured under some axial forces. The configuration of the
structure is measured by the laser displacement sensor. As
the characteristics of restoring force, the relation between the
static deflection W̄s and a concentrated force Qs is obtained.
The concentrated force is loaded on the structure by a load
cell. Pressing the structure with the load cell, the structure

Fig. 2 Schematic diagram of vibration apparatus

Fig. 3 Actual view of vibration apparatus

deflects to an equilibrium position of elastic force between
the structure and the load cell. At the equilibrium position,
the static deflection and the concentrated force are recorded.

3.2 Procedure of vibration test

A schematic diagram and an actual view of vibration test
apparatus are shown in Figs. 2 and 3, respectively. Whole
instruments of the vibration test are numbered from 1 to 16.
The excitation is provided by the instruments as numbered
from 1 to 5. The exciter controller 1 (B&K 1050) gener-
ates a sinusoidal periodic signal, where the frequency of the
periodic signal can be swept with the resolution of 1 mHz.
The periodic signal is amplified with the power amplifier
2 (B&K 2708). The electromagnetic exciter 3 (B&K 4802)
drives the exciter head 4 (B&K 4818). The electromagnetic
exciter has the maximum amplitude of periodic force 1780
N. The structure is fixed on the exciter head through the
base frame. Periodic acceleration is loaded on the structure
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through the fixture. The accelerometer pickup 5 (B&K 4371)
fixed on the base frame detects the acceleration acting on the
structure. The signal of the acceleration is fed back to the con-
troller 1. Then, during a sweep of the excitation frequency,
the amplitude of periodic acceleration can be kept to a pre-
scribed constant level larger than the lower limit depending
on the weight of a fixture and a specimen (approximately
2m/s2 for this specimen).

Dynamic deflectionsW of the structure aremeasuredwith
the instruments of the laser displacement sensor from 6 to 8
(Keyence LC2400 series). The laser displacement sensors
can measure the response at most 5kHz. Relative displace-
ment of the structure to the base frame is detected with the
laser displacement sensors 6 and 7. The sensor 6 detects the
periodic displacement of the base frame. The sensor 7 mea-
sures the dynamic deflection of the structure and the periodic
displacement of the base frame. The controller 8 subtracts the
two signals. With this subtraction, the pure dynamic deflec-
tion of the structure can be detected. The laser displacement
sensors 7 are set on the sliding table 9 and the sensor moves
above the surface of the structure. The instruments from 10 to
16 are the measuring devices of signal processing and data
analysis. Nonlinear frequency response of the structure is
obtained by sweeping the excitation frequency. The dynamic
deflections of the structure detected by the laser sensors are
transformed to the amplitude in a root mean square value
with the digital voltmeter 10 (ADCMT 7461A). The excita-
tion frequency applied on the structure is counted with the
digital frequency counter 11 (Advantest TR5822) through
the periodic signal from the exciter controller 1. The ampli-
tude of the dynamic response and the excitation frequency
are transferred to the computer 12 (Dell inspiron). Then,
the nonlinear frequency response curve is obtained. In the
experiment, the excitation frequency is swept with the sweep
rate 0.01Hz/sec to avoid transient effects on the nonlinear
response. Time histories of nonlinear response at multiple
positions are recorded simultaneouslywith themulti-channel
recorder 13 (YOKOGAWA DL750) and are transmitted to
the computer 12. The multi-channel recorder has a resolu-
tion of 16-bit. With the computer the Fourier spectrum, the
maximumLyapunov exponents and results of principal com-
ponent analysis are obtained. The Poincaré projection of the
response is obtained by the following step. Dynamic deflec-
tion of the response is transformed to velocity by the dif-
ferentiation amplifier 14. The set of the deflection and the
velocity is recorded sequentially once in every period of the
excitation. Synchronized with the period of excitation accel-
eration, a pulsating signal is generated with the phase meter
15 (B&K 2971) and the delayed pulse oscillator 16 (NF Elec.
Instr.1930). The set of aforementioned deflection and veloc-
ity of the nonlinear response is recorded by themulti-channel
recorder in each trigger by the pulsating signal and is trans-
mitted to the computer as the Poincaré projection.

3.3 Evaluation of nonlinear and chaotic vibrations

The nonlinear and the chaotic responses of the structure are
evaluated by the Fourier spectrum, the Poincaré projection,
the maximum Lyapunov exponents and results of principal
component analysis. By calculations with the time histories
the Fourier spectrum, themaximumLyapunov exponents and
results of principal component analysis are obtained.

The Fourier spectrum detects frequency components
involved in the time history of the response. The Poincaré
projection of the chaotic response shows the distributed pat-
tern. The maximum Lyapunov exponents λmax can deter-
mine whether a non-periodic response is chaos. If the maxi-
mum Lyapunov exponents converge to a positive value as an
increase of embedding dimension, the response can be con-
firmed as chaos. The maximum Lyapunov exponents are cal-
culatedwith the procedure proposed byWolf et al. [17]. In the
experiment, e-dimensional pseudo-phase space is composed
with time-delay coordinates from a time histories, where e is
the embedding dimension [18]. A component of the pseudo-
phase space is a sequential time history chosen partially from
the time response which has a fixed time delay from the for-
mer component. A trajectory in the pseudo-phase space is
constructed from the single time response of the structure
from an arbitrary start time. Two trajectories, which initially
have sufficiently small distance, are selected as the fiducial
trajectory and the nearby trajectory. The exponential growth
rate of the distance between the two trajectories is calculated
in each infinitesimal time interval. The exponential growth
rate is averaged in the long time interval, then the maximum
Lyapunov exponents can be estimated. The principal compo-
nent analysis [19] enables the estimation of themodal pattern
and corresponding contribution ratio in the response of the
structure. In the principal component analysis, the covariance
matrix of the simultaneous time histories of the response at
multiple positions on the structure is calculated. The covari-
ance matrix is transformed to an orthogonal matrix, which
results in the eigenvalue problem of the covariance matrix.
The eigenvector φi represents the modal pattern and the cor-
responding eigenvalue denotes the contribution of the modal
pattern to the response. Contribution ratio μi is the ratio of
eigenvalues of the i th modal pattern to the all modal patterns.

3.4 Thermal control

The fundamental properties and the dynamic responses of
the structure are affected by changes of the temperature of
the base frame and the structure. To avoid changes of the
fundamental properties and dynamic response, the tempera-
tures of the base frame and the vicinity of the structure are
controlled.

The structure is set in an air chamber which is surrounded
by air-formed sheet. The temperature in the chamber is con-
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trolled by an air conditioner and an electric heater. Conse-
quently, the temperature in the vicinity of the structure is sta-
bilized. The base frame of the structure is warmed because
heat of the exciter is conducted through the exciter head. To
avoid conduction of the heat, a cooling plate is set between
the base frame and the exciter head. The cooling plate has
holes which water run through. Changing the temperature
of the water, the temperature of the base frame is stabilized.
Through the experiments, the temperatures of the base frame
and the vicinity of the structure are controlled within the
20 ± 1 ◦C.

3.5 Non-dimensional notations

To discuss the results of the experiments, the following non-
dimensional notations are introduced:

ξ = x/L , η = y/D,

[ws, w̄s, w] = [Ws, W̄s,W ]/h,

nx = Nx L
2/E I, [ps, pd ] = [g, ad ]ρAL4/E Ir,

qs = QsL
3/E Ir,

[ωex, ωmn] = [ fex, fmn](2π/	0), τ = 	0t.

In the foregoing, r = √
I/A and 	0 = (1/L2)

√
E I/ρA

are used, where I and A indicate the moment of inertia of
cross section and the area of the segments of the beam, respec-
tively. In the above notations, ξ andη are the non-dimensional
coordinate along x-axis and y-axis, respectively. The symbol
ws indicates non-dimensional notation of the static deflec-
tion Ws from the z = 0, while the symbols w̄s and w indi-
cate non-dimensional notations of the static deflection W̄s

and the dynamic deflection W from the equilibrium position
under the gravitational force and the axial force, respectively.
Notation nx is the non-dimensional axial force where Nx

represents the force on the cross section. The notations ps
and pd are the non-dimensional gravitational acceleration g
and the non-dimensional amplitude of the periodic accelera-
tion ad . The notation qs is the non-dimensional concentrated
force. The symbols ωex and ωmn are the non-dimensional
excitation frequency and the linear natural frequencies of
the mode (m, n). The indices m and the n show the num-
ber of nodal lines which are perpendicular to the ξ and
η directions, respectively. The symbol τ denotes the non-
dimensional time.

4 Experimental results and discussion

4.1 Fundamental properties of the structure

Changing the axial forces on the structure, the linear natural
frequencies are measured. Relation between the axial forces
and the linear natural frequencies is shown in Fig. 4. The

Fig. 4 Natural frequencies of the structure under axial forces nx

(a)

(b)

Fig. 5 Configurations of the structure under axial tensile forces, a
along the ξ direction at η = 0, b along the η direction at ξ = 0.5

ordinate show the natural frequencies ωmn of mode (m, n).
The abscissa indicates the axial forces. Natural frequencies
of the mode (0, 0) and the mode (0, 1), which correspond to
the lowest flexural mode and the torsional mode, are marked
by circles and squares, respectively. To load the axial com-
pressive force on the structure, the axial force nx is decreased
from nx = 0 to the negative direction. As the decrease of the
axial force nx , the natural frequencyω00 is slightly decreased
first and then is increased after ω00 shows a minimum value
at nx = −7. In contrast, the natural frequency ω01 takes a
minimum value when the structure is subjected to the axial
tensile force. The absolute value of the axial compressive
force nx = −7, to which the ω00 shows the minimum value,
is taken as a critical force ncr = 7 of the buckling.

The configuration of structure and the characteristics of
restoring force of the structure are measured under the axial
force nx = 0, 350 and 700, which correspond to nx/ncr = 0,
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(a)

(b)

Fig. 6 Characteristics of the restoring force of the structure, a w̄s is
measured at (ξ, η) = (0.3, 0) under qs at (ξ, η) = (0.5, 0), b w̄s is
measured at (ξ, η) = (0.5,−0.45) under qs at (ξ, η) = (0.5, 0.45)

50 and 100, respectively. Fig. 5a and b show the configura-
tion of the structure. The static deflection ws under axial
force nx/ncr = 0, 50 and 100 is marked as circles, squares
and triangles, respectively. In the Fig. 5a, which shows the
configuration of the structure along the ξ direction at η = 0,
the static deflection at the center of the structure is about 8
times to the thickness of the structure under the axial force
nx/ncr = 0. Increasing the axial tensile force, the static
deflection decreases to about the thickness of the structure
under the axial tensile force nx/ncr = 50 and 100. The con-
figuration of the structure is almost symmetrical with respect
to ξ = 0.5 in the 3 cases of the axial force nx/ncr = 0,
50 and 100. Configuration of the structure along the η direc-
tion at ξ = 0.5 is shown in Fig. 5b. Under the axial force
nx/ncr = 0, direction of the static deflection at both edges
of the structure is different with respect to η = 0. Increasing
the axial tensile force, the static deflection of the both edges
shows same direction due to decrease in the deflection at
the η = 0. Furthermore, a difference of the static deflection
between both edges decreases.

Figure 6a and b shows characteristics of restoring force
of the structure. The abscissa shows the static deflection
w̄s , while the ordinate shows the concentrated force qs .
The static deflections w̄s under axial force nx/ncr = 0,
50 and 100 are marked by circles, squares and triangles,
respectively. In Fig. 6a, the static deflection w̄s is mea-
sured at (ξ, η) = (0.3, 0) under the concentrated force at
(ξ, η) = (0.5, 0) to obtain the characteristics of the restor-
ing force corresponding to the lowest flexural mode. As can

Table 2 The modes of vibration and the natural frequencies of the
structure under nx/ncr = 100

mode (m,n) mode (0,1) mode (0,0)

be seen in Fig. 6a, the characteristics of restoring force have
slight nonlinearity under the axial force nx/ncr = 0, 50
and 100. The gradient of the restoring force increases as
an increase of the axial tensile force. In Fig. 6b, the static
deflection w̄s is measured at (ξ, η) = (0.5,−0.45) under
the concentrated force at (ξ, η) = (0.5, 0.45) to obtain the
characteristics of the restoring force corresponding to the
torsional mode. Under the axial force nx/ncr = 0, increas-
ing the concentrated force qs to the positive direction the
restoring force shows large gradient of curve. Decreasing
the concentrated force to the negative direction, the gradient
of curve of restoring force decreases. Under the axial tensile
force nx/ncr = 50 and 100, the structure shows almost linear
characteristics of restoring force. Furthermore, the restoring
forces in the each axial tensile force nx/ncr = 50 and 100
are almost similar. Thus, the effect of increase in the axial
tensile force on the characteristics of restoring force of the
structure is small.

Under the axial tensile force nx/ncr = 100, the structure
shows themost symmetric configuration and slight nonlinear
characteristics of restoring force in the three cases of the
axial forces. In the experiment, the excitation of the structure
is conducted under the axial tensile force nx/ncr = 100.
The linear modes of vibration and the natural frequencies of
the structure under the axial tensile force nx/ncr = 100 are
shown in Table 2. In the table, a dashed line indicates a nodal
line.

4.2 Frequency response curve

Applying the axial tensile force nx/ncr = 100 to the struc-
ture, the frequency response curve is obtained under excita-
tion amplitude pd = 3 × 103 (ad = 4m/s2). The excitation
frequency is swept near the natural frequency of the mode
(0, 0). The frequency response curve, which is measured at
(ξ, η) = (0.7, 0.3), is shown in Fig. 7. The ordinate indicates
the amplitude wrms of the dynamic deflection w with a root
mean square value. The abscissa indicates the excitation fre-
quency ωex. The linear natural frequency of the mode (0, 0)
is also indicated by the circle on the abscissa. The frequency
response curve shows large amplitude resonances with the
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Fig. 7 Frequency response curve under pd = 3 × 103

(a)

(b)

(c)

Fig. 8 The nonlinear response a time history, b Fourier spectrum, c
Poincaré projection under pd = 3 × 103, ωex = 40.6

type of a hardening spring. It can be observed that the non-
linearity of the frequency response curve is strong even for
this relatively lower amplitude of excitation. Furthermore,
non-periodic response can be seen along the large amplitude
resonances. In this experiment, the non-periodic response at
the excitation frequency ωex = 40.6 is examined in detail.

Fig. 9 MaximumLyapunov exponent related to embedding dimension
under pd = 3 × 103, ωex = 40.6

4.3 Nonlinear vibrations

The time history, the Fourier spectrum and the Poincaré pro-
jection of the dynamic response are obtained under excitation
frequencyωex = 40.6. Themeasured point of the response is
selected at (ξ, η) = (0.7, 0.3). The dynamic deflection w is
shown in Fig. 8a related to the time ratio τ/τe normalized by
excitation period τe. The envelope of the dynamic response is
irregularly modulated. The Fourier spectrum of the dynamic
response is shown in Fig. 8b. The ordinate shows the ampli-
tude A of the spectrum scaled by decibel, while the abscissa
denotes the non-dimensional frequency ω. The linear nat-
ural frequencies of the structure are indicated by the circles
on the abscissa. Broadband spectra can be seen in Fig. 8b.
Distinguished peak spectra of the response are detected at
the excitation frequency ωex and the vicinity of the half of
the excitation frequency (1/2)ωex. The Poincaré projection
is show in Fig. 8c, in which the response of the dynamic
deflection w and the velocity w,ωτ are potted. Points of the
projection are distributed in wide region.

The maximum Lyapunov exponents λmax are calculated
from the time history, which is measured at the position
(ξ, η) = (0.7, 0.3) and under the excitation frequency
ωex = 40.6. The maximum Lyapunov exponents λmax are
shown related to the embedding dimension e in Fig. 9. As
the embedding dimension increases at e = 10, the maximum
Lyapunov exponent λmax is converged to λmax = 1 to 1.3. As
the maximum Lyapunov exponent is converged to the posi-
tive value, the dynamic response is confirmed as the chaotic
response.

To investigate the modes of vibration and related con-
tribution ratio, which contribute to the chaotic response,
principal component analysis is applied to the time his-
tories of the response. Under the excitation frequency
ωex = 40.6, the time histories are measured at the posi-
tion (ξ, η) = (0.1, 0.05), (0.3,−0.3), (0.5, 0), (0.7, 0.3) and
(0.9,−0.05), simultaneously. The length of the time histo-
ries used in the principal component analysis is selected as
1,500 times to the excitation period τe. The modal patterns
and related contribution ratios μi are shown in Table 3. The
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Table 3 Contribution ratio and modal patterns to the chaotic response
under pd = 3 × 103, ωex = 40.6

ith μi [%] Modal patterns

1 76.9

2 22.2

3 0.7

4 0.1

5 0.08

Fig. 10 Time histories of the contribution ratios corresponding to
mode (0, 0) and mode (0, 1) under pd = 3 × 103, ωex = 40.6

modal patterns are presented by height and direction of black
cones in the figure which corresponds to the components of
the eigenvector φi . The modal pattern corresponding to the
mode (0, 0) shows the largest contribution ratioμ1 of 76.9%
to the chaotic response. The modal pattern corresponding to
the mode (0, 1) shows second larger contribution ratio μ2 of
22.2 %. The third to fifth larger contribution ratios are rela-
tively small. Thus, themode (0, 0) andmode (0, 1) contribute
to the chaotic response, predominantly.

To investigate the time histories of the contribution ratios
of the mode (0, 0) and mode (0, 1), the principal component
analysis is adapted to time histories with short time intervals,
which are cut out from the time histories with the length of

1500τe. Length of the short time intervals is taken as 30τe.
The time histories of the contribution ratios are shown in
Fig. 10. The contribution ratios of the modal patterns corre-
sponding to the mode (0, 0) and mode (0, 1) are marked as
circles and squares, respectively. The circles and squares are
plotted in the middle of the short time intervals. The chaotic
response involves three kinds of response. When the time
ratio τ/τe is 0–210 and 330–660, the modal pattern corre-
sponding to the mode (0, 0) shows dominant contribution
ratio of about 90 %. When the time ratio τ/τe is 210–330,
the modal patterns corresponding to the mode (0, 1) and
modes (0, 0) contribute to the chaotic response, predomi-
nantly. When the time ratio τ/τe is 660–990, contribution
ratio of the modal patterns corresponding to the mode (0, 0)
and the mode (0, 1) is exchanged irregularly.

5 Conclusion

Experimental results are presented on nonlinear vibrations
of the combined structure with segments of the beams and
the disc. The structure is subjected to axial tensile force.
Under lateral periodic acceleration, the nonlinear responses
of the structure are measured in the vicinity of the linear
natural frequency of the lowest flexural mode. Main results
are summarized as follows:

1. The chaotic response coupled with the lowest flexural
mode and the torsional mode is generated on the struc-
ture in the vicinity of the natural frequency of the lowest
flexural mode.

2. Applying principal component analysis to the time his-
tories of the chaotic response divided into the short time
intervals, the chaotic response involves three kinds of
responses: The response with the dominant contribution
of the lowest flexural mode, the response with predom-
inant contribution of the lowest flexural mode and the
torsional mode and the response with exchange of contri-
bution between the lowest flexuralmode and the torsional
mode.
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