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Abstract We investigate the dynamics of a driven Van
der Pol–Duffing oscillator circuit and show the existence of
higher-dimensional chaotic orbits (or hyperchaos), transient
chaos, strange-nonchaotic attractors, as well as quasiperiodic
orbits born from Hopf bifurcating orbits. By computing all
the Lyapunov exponent spectra, scanning a wide range of the
driving frequency and driving amplitude parameter space,
we explore in two-parameter space the regimes of different
dynamical behaviours.
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1 Introduction

Electronic circuits exhibiting chaotic behaviour have attrac-
ted wide attention because they provide excellent platform
for practical implementation of chaotic oscillators (see for
example Ref. [1–17] and references therein). Among the sev-
eral chaotic circuits, the Van der–Pol Duffing oscillator is
a very prominent and important classical model circuit that
has been extensively studied in the context of several specific
problems ranging from global bifurcation structures, control
and synchronization (see for example Ref. [5–9,18]).

The Van der Pol–Duffing oscillator can be used as a model
in physics, engineering, electronics, biology, neurology and
many other disciplines [19,20]. King et al. [8,9] proposed
a schematic circuit of Van der-Pol Duffing oscillator which
is equivalent to Chua’s autonomous circuit but with a cubic
nonlinear element [2] and can be described by the following
set of autonomous dimensionless differential equations:

ẋ = −m
(
x3 − αx − y + μof

)
, ẏ = x − y − z, ż = βy

(1)

where the overdots stands for the differentiation with respect
to normalized time τ ; x, y and z corresponds to the re-scaled
form of the voltages across C1, C2 and the current through L
respectively (1). α, β and μ are the parameters of the system.
System (1) exhibits rich dynamical behaviours including a
double-scroll chaos for the system parameters: α = 0.35,
β = 300, μof = 0, and m = 100 [8,9].

In 2005 and 2007, Fotsin et al. [5–7] proposed a modified
Van der Pol-Duffing oscillator (MVDPD) circuit by adding a
series resistance of the inductor RL , thus yielding the dimen-
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sionless equation:

ẋ = −m
(
x3−αx−y+μof

)
, ẏ = x−y−z, ż = βy−γ z (2)

where the additional parameter, γ is associated with the effect
of the resistance of the inductor on the system dynamics. With
γ = 0.2, system (2) exhibits the same double-scroll attractor
similar to system (1) and when μof �= 0, a one scroll chaotic
attractor was found [5]. Recently, Matouk and Agiza [21]
introduced another modification by adding to the Van der
Pol– Duffing oscillator circuit described by the autonomous
system (1) a resistor in parallel with the inductor, giving rise
to a new system which takes the form:

ẋ = −m(x3 − αx − y), ẏ = x − μy − z, ż = βy. (3)

The modified circuit by Matouk and Agiza [21] has some
advantages in that all the dynamics of the oscillator are dis-
played in a small range by varying the new systems para-
meter, μ arising from the parallel resistance. Furthermore, a
complete description of the regions in the parameter space
for which multiple small periodic solutions arise through the
Hopf bifurcations at the equilibria in system (3) was recently
analyzed in detail by Braga et al. [22]. Very recently, a sim-
ilar work was done for the Chua’s circuit by Prebianca et
al. [14].

All of the above Van der Pol–Duffing oscillator circuit
models deal with self-oscillatory (i. e. autonomous) sys-
tems. In this paper, we investigate the dynamics of a nonau-
tonomous unified Van der Pol– Duffing oscillator (UVDP)
circuit by introducing a changeable electrical power source
(acting as subject to a periodic driving force) [10]. We exam-
ine the combined effects of the series and parallel resis-
tances as shown in Fig. 1, as well as the periodic driving.
Systems with periodic forcing are often used for practi-
cal applications, in areas such as communications. Much
effort has also been keenly devoted to understanding the
dynamics of nonautonomous oscillators driven from equi-
librium by a variety of external forcing because determinis-
tic influences often arise in practice as in cellular dynamics,
blood circulation, and brain dynamics [23,24]. The model
we investigate exhibit more complex and richer dynamics
as the amplitude and frequency of the forcing is varied.
Besides various chaotic and periodic orbits, our system also
show chaos-hyperchaos transitions, coexisting attractors, as
well as Hopf bifurcations in which quasiperiodic orbits are
born. We first present in Sect. 2, the unified and period-
ically forced Van der Pol–Duffing oscillator (UVDP) and
discuss its basic dynamical properties. Sections 3 and 4 are
devoted to the local and global bifurcation structures and
chaotic behaviour respectively; while Sect. 5 concludes the
paper.

Fig. 1 Driven Van der Pol–Duffing oscillator circuit

2 Description of the model

2.1 Driven Van der Pol–Duffing oscillator circuit

The periodically driven Van der Pol–Duffing oscillator con-
sidered here can be modeled by the circuit shown in Fig. 1,
in which a series resistance R is added to the C2 branch of
the circuit, while another resistance Rp is placed parallel to
it. In addition, a periodic signal generator G, acting as peri-
odic driving force is connected to the left end of the circuit as
shown. By applying Kirchhoff’s laws to the various branches
of the circuit of Fig. 1, and noting that the i(v) characteris-
tics of the nonlinear resistor (N) is approximated by the cubic
polynomial i(V1) = aV1 + bV 3

1 , (a < 0, b > 0) [21], we
obtain the following set of equations:

dV1

dt
= − 1

C1

(
1

R
+ a

)
V1 + V2

RC1
− b

C1
V 3

1 ,

dV2

dt
= V1

RC2
− μV2

RC2
− iL

C2
+ iG

C2
sin ωt,

diL
dt

= V2

L
− RL

L
iL . (4)

Making appropriate rescaling of Eq. (4) by setting x =
V1

√
bR, y = V2

√
bR, z = iL

√
bR3, τ = t

RC2
,

m = C2
C1

, α = −(1 + aR), β = R2C2
L , γ = RL RC2

L ,

a0 = R(
√
bR)IG , � = ω

RC2
and μ = R+Rp

Rp
,

we obtain the following dimensionless equation:

ẋ = −m(x3 − αx − y),

ẏ = x − μy − z + a0 sin ωτ,

ż = βy − γ z. (5)

System (5) is a three-dimensional nonautonomous system;
where the new parameters ω and a0 are the frequency and
amplitude of the periodic driving force, respectively. Thus,
our model system (5) has four Lyapunov exponents, allowing
for hyperchaotic behaviour, i.e. with the possibility of hav-
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ing two positive Lyapunov exponents along with one zero
and one negative. Beginning with the pioneering work of
Rössler [25], the study of hyperchaos has witnessed tremen-
dous research interest in the last three decades, in the fields
of nonlinear circuits [10,25–27], secure communications
[28–30], nonlinear optics [31], control and synchronization
[24,32,33], to mention a few. Due to its great potential
in technological applications, the generation of hyperchaos
from nonlinear systems has recently become one focal topic
for research [10,24,34,35]. Our goal here is to investigate the
effect of ω and a0 on the dynamics of (5) and show that under
periodic driving, the modified Van der Pol–Duffing oscillator
would exhibit richer dynamical complexities, including the
existence of hyperchaos.

2.2 Equilibria and their stability

To examine the stability of system (5), we first obtain the fixed
points by solving the general equation F(u̇) = 0, where F
is the nullcline and u is the vector space containing x , y and
z. It appears that for α(μγ + β) + γ < 0, we have only one
fixed point S0(0, 0, 0) and, for α(μγ +β)+γ > 0, we have
three fixed points, namely S1(−p,−γ q,−βq), S0(0, 0, 0)

and S2(p, γ q, βq) where

p =
√

α(μγ + β) + γ

μγ + β
; q =

√
α(μγ + β) + γ

(μγ + β)3 . (6)

In both cases, by considering the Jacobian matrix of one
of these equilibria and calculating their eigenvalues, we can
investigate the stability of the equilibrium point based on the
roots of the characteristic equation

S3 + b0S
2 + b1S + b2 = 0 (7)

where b0 = μ + γ −m
(
3x2

0 − α
)
, b1 = μγ + β +m

(
3x2

0 −
α
)(

μ + γ
) − m, and b2 = −m

(
3x2

0 − α
)(

μγ + β
) + mγ .

We know that the fixed points are stable if the real parts of
the roots of the characteristics equation are all negative. Oth-
erwise, the fixed points are unstable. Using Routh-Hurwitz
criterion [36], for the sign of the real part of the roots, we
obtain that the real parts of the roots are negative if and only if
all the other coefficients b0, b1 and b2 are positive and all the
determinants �1 = b0b2 − b1 and �2 = b2(b0b2 − b1) also
positive. Before analyzing the stability status of each point,
it is important to consider the practical process of modeling
system 4 (see Sect. 2.1). It is clear that only α can take on
negative or positive values. The other parameters are always
positive. Focussing on the fixed point S0, the analysis leads
us to the conclusion that for 0 < α <

μ+γ
m this fixed point is

always stable. The other fixed points S1 and S2 can be stable
or unstable depending on the choice of space parameter of the
system. Therefore the stability condition should be checked

according to the criteria defined above before any use is made
of the system.

3 Local bifurcations and attractors

The numerical results that follows were performed using
the standard fourth order Runge-Kutta routine with step-size
h = 2π/(Nω), where N = 100 is an integer. The Lyapunov
exponents were computed using the Wolf et al.’s algorithm
[37] which requires the linearized version of Eq. (5) for small
variations from the trajectory in tangent space and the Gra-
ham Smith’s orthonormalization procedure allows us to com-
pute the complete spectrum from maximal to minimal. For
clarity and brevity, we will present only the first two expo-
nents, namely λ1 and λ2 which determine exclusively the sys-
tem’s behaviours; while the full spectra would be considered
in analyzing the global bifurcation in parameter phase space.
Unless otherwise stated, the following parameters were fixed:
α = 0.35, β = 300, and m = 100; while the other parame-
ters, namely μ, γ , a0 and ω were varied for the different
cases considered. In the absence of the forcing we obtain the
Fotsin and Woafo model when μ = 1.0, and γ = 0.2 [6,7];
whereas, when μ > 1.0 and γ = 0 we have the Matouk and
Agiza model [21].

We begin by considering the case for μ = 1.0 and
γ = 0.2. We set ω = 10 and display in Fig. 2 the bifurca-
tion diagram as function of the driving amplitude a0 (upper
panel (a)) and the corresponding maximal (λ1) and second
(λ2) Lyapunov exponents in the same range ofa0 (lower panel
(b)). Clearly, we observe four distinct regimes corresponding
to different transitions, and denoted by I, II, III and IV. Notice
that when a0 = 0, a double-scroll chaotic attractor exist [6,7]
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Fig. 2 Bifurcation diagram of the local maximum of x and the cor-
responding Lyapunov exponents as function of the driving amplitude,
a0. α = 0.35, β = 300, m = 100, γ = 0.2, μ = 1.0, and ω = 10.
In b, solid line denotes the first Lyapunov exponents, while dotted line
denotes the second Lyapunov exponents
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for the chosen parameters. However, when a0 increases grad-
ually, the chaotic attractor loses it stability and undergoes a
variety of bifurcations from regions (I) to (IV) which is termi-
nated in a controlled systems of period-1 orbit. In particular,
regimes I and III show several interesting dynamical transi-
tions including the existence of hyperchaotic solution which
we will describe below.

In Fig. 3, we display a zoom of the Lyapunov expo-
nents corresponding to region I of Fig. 2. The first (maxi-
mal) Lyapunov exponent, λ1 is positive for a0 ≤ 1.8 and
drops to zero at a0 ≈ 1.8. The second Lyapunov exponent
λ2 oscillates marginally around zero for a0 < 0.5, positive
for 0.5 ≤ a0 ≤ 1.57 and for a0 > 1.57, drops to nega-
tive. Obviously, the system has two positive Lyapunov expo-
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Fig. 3 Zoom of the Lyapunov exponents as function of the driving
amplitude, for region I in Fig. 2 for the same set of parameters

nents in the amplitude interval 0.4 ≤ a0 ≤ 1.6, indicating
instability in two directions and signalling hyperchaotic state
[25]; one positive and one negative Lyapunov exponents for
1.6 ≤ a0 ≤ 1.8 (chaos); and one zero and one negative Lya-
punov exponents for 1.8 ≤ a0 ≤ 7.8 –a signature of quasi-
periodicity. The existence of hyperchaotic behaviour implies
that the system exhibits anomalous instability. Thus, a change
in a0 to a value within this regime switches the system from
chaos → hyperchaos → chaos → quasiperiodicity (a limit
cycle) for the same orbit as the system transits from region I
to region II.

Apparently, the chaos-hyperchaos transition at a0 ≈ 0.4 is
accompanied by the so-called attractor splitting (or reverse
attractor merging) crises earlier reported by Grebogi et al.
[38,39] and well classified by Ott [40]. Here, the double-
scroll chaotic attractor, corresponding to the unforced sys-
tem, and shown in Fig. 4(a) breaks up into two branches,
which eventually merge as a0 further increases during the
hyperchaos-chaos transition, forming another structurally
different chaotic attractor. The a0 range for which two
branches of chaotic band exist in the bifurcation structure
corresponds to the hyperchaotic regime. Our detailed numer-
ical simulations show that the hyperchaotic behaviour in the
forced system arises due to attractor splitting crises, though
the branching point depends on the value of ω. Further-
more, we observed that the chaos-quasiperiodic transition
is accompanied by boundary crisis at a0 > ac0 ≈ 1.762
in which a chaotic attractor collides with an unstable peri-
odic orbit on its basin boundary [38–41]; and consequently
replaced by a chaotic transient, wherein the orbit spends a
very long time in the neighbourhood of the non-attracting
chaotic set before leaving; and thereafter moves on to the

Fig. 4 Attractors for different
a0 and for the parameters
α = 0.35, β = 300, m = 100,
γ = 0.2, μ = 1.0, and ω = 10.
a Phase portrait of a
double-scroll chaos for a0 = 0,
b phase portrait of a
hyperchaotic attractor for
a0 = 1.51, c Poincaré section
a0 = 1.72 and d Poincaré
section for a0 = 1.51 depicting
attractor splitting in the
hyperchaotic state
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Fig. 5 Time Series of a transient chaos fora0 = 1.77. Other parameters
are: α = 0.35, β = 300, m = 100, γ = 0.2, μ = 1.0, and ω = 10. The
initial phase is t ≤ 580
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Fig. 6 Enlarged bifurcation diagram of the local maximum of x and
the corresponding Lyapunov exponents as function of the driving ampli-
tude, for region III in Fig. 2 for the same set of parameters. (Color figure
online)

stable quasi-periodic state that governs its long-time motion.
Figure 5 shows a typical chaotic transient motion for a0 =
1.77. During the initial phase (t ≤ 580), the motion appears
very irregular and quite indistinguishable from motion on a
chaotic attractor and for t ≥ 580, the system is in a stable
quasiperiodic motion. Inside this narrow parameter window,
attractors may co-exist and the length of time during which
the orbit spends in the initial chaotic phase depends on the
value a0 as well as the initial conditions. For instance, for
a0 = 1.78, the initial transient phase is longer, t ≈ 950.

With increasing a0, a different scenario is observed. Fig-
ure 6 shows the enlarged portion of Fig. 2 in the regime III.
Here, we find multiple transitions beginning with a sudden
loss of stability by the limit cycle in the broad range of the
driving amplitude, namely 1.8 ≤ a0 ≤ 7.8 (region II) and
the appearance of alternating periodic orbits, first a period-10
attractor (shown in Fig. 7(a) for a0 = 7.836 together with
a limit cycle at a0 = 7.5), followed by various orbits of
higher periodicity (typically n > 10, where n is the period
of the orbit) spanning the entire regime 7.8 ≤ a0 ≤ 9.5.
This sequence is however terminated with the emergence of

a chaotic band in the range 9.13 ≤ a0 ≤ 9.58 where λ1

is typically positive. A typical chaotic attractor in this band
for a0 = 9.45 is shown in Fig. 7(b). Following the chaotic
band, a period-17 orbit (see Fig. 7(c)) born in the large win-
dow loses its stability in a bifurcation at a0 ≈ 9.92 with the
birth of a strange nonchaotic attractor of quasiperiodic orbits
exemplified by the orbits in Fig. 7(d) for a0 = 9.95. Notice
that the strange nonchaotic attractor in Fig. 7(d) has structural
resemblance with the chaotic attractor in Fig. 7(b). However,
the attractor in Fig. 7(b) has one positive Lyapunov exponent
(λ1 = 0.212) and one negative (λ2 = −0.706), whereas
λ1 = 0, andλ2 = −0.479 for the attractor in Fig. 7(d). As
a0 increases further pass a0 ≈ 10.05, we find that the region
10.1 ≤ a0 ≤ 10.35 is dominated by quasiperiodic orbits
of invariant curve, which undergoes Hopf bifurcation to a
period-1 orbit. Deformation and lost of smoothness of the
invariant curve takes place around a0 ≈ 10.0 before its final
destruction as a0 decreased–giving rise to the strange non-
chaotic attractor.

4 Global bifurcation structure

In the previous section, we examined the local bifurcations
with a0 being the bifurcation parameter. The bifurcations
may also be investigated using ω as the bifurcation parameter.
However, a global view of this system can conveniently be
captured by simultaneously scanning a wide range of the
forcing parameters, i.e. bifurcations ina0−ω parameter space
plane. Here, we employ the Lyapunov spectrum formed by
all the Lyapunov exponents λn(i = 1, 2, 3, 4) as a tool for
constructing the dynamical system parameter space diagram.
The nature of the attractor can be characterized by the values
of these four Lyapunov exponents. The system is considered
hyperchaotic (HC), if λ1,2 > 0, λ3,4 ≤ 0, chaotic (CH) if
λ1 > 0, λ2,3,4 ≤ 0, quasi-periodic oscillation on a torus
T 2 or limit cycle (QP), if λ1 = 0, λ2,3,4 ≤ 0; and periodic
orbit or a fixed point (PO) when λi < 0(i = 1, 2, 3, 4).
Keeping the above characteristic properties, and with the aid
of GramSchmidt orthonormalization, we computed all the
Lyapunov exponents by applying the Wolf et al.’s algorithm
[37] as done previously. We remark that due to the non-exact
computation of the exponents, we consider an exponent null
if its value is within the interval −0.0005 ≤ λ ≤ 0.

Shown in Fig. 8 are typical two-parameter space plots
showing clearly different regions of hyperchaos (HC), chaos
(CH), quasiperiodic (QP) orbits and periodic orbits (PO).
For μ = 1.0 on the left panel, both hyperchaotic and chaotic
orbits can show up by making appropriate choice of the exter-
nal forcing parameters. In the low frequency regime, ω < 3,
the dynamics are largely dominated by HC and CH orbits for
nearly all forcing amplitudes, a0. As the frequency increases
pass ω ≈ 3.0, QP and PO orbits begin to appear, dominating
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Fig. 7 Poincaré sections
showing various attractors
during the transitions from
regions II to IV of Fig. 2 for the
same set of parameters and for
increasing a0. a Limit cycle
(closed dotted curve) for
a0 = 7.5 together with
period-10 orbit (open points) for
a0 = 7.836 (Note that there are
two repeated overlapping
points), b new chaotic attractor
for a0 = 9.45, c period-17 orbit
for a0 = 9.745 and d strange
non-chaotic attractor for
a0 = 9.95
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Fig. 8 Two Parameter space diagram obtained from the Lyapunov
spectra, indicating the behavior of the driven Van der Pol–Duffing cir-
cuit for α = 0.35, β = 300, m = 100, γ = 0.2, and μ = 1.0, showing
different regions of hyperchaos (dotted blue), chaos (dotted red), qua-
siperiodic (dotted green) and periodic (elsewhere—white) orbits. In a
μ = 1.0 and b μ = 1.5. (Color figure online)

a wide range of the parameter space. For ω = 10, we find
that HC orbits lies within the low amplitude regime, typical
a0 < 2.0; while higher values of a0 will drive the system to
QP states.

For further increase in ω up-to ω ≈ 17.0, we observe
phase locking at ω = ω0 ≈ 17.0, where the harmonic force
locks with oscillations of the system—the consequence being
stabilization to periodic state. The periodic state is a stable
stationary solution in the parameter space (i.e. mode locking
regions) where the frequency of the oscillator coincides with
the forcing frequency. This region, called synchronization
region, or resonance (or Arnold) tongue occurs when a self-
excited oscillation interacts with a driving force, resulting in
an adjustment of the oscillation [42,43].

Finally, it would be significant to examine the effects of the
parallel resistance, Rp in Fig. 1 denoted by the dimensionless
quantity, μ in Eqs. 4 and 5. In Fig. 8(b), we illustrate the effect
of μ on the global dynamics of the driven oscillator. We find
that forμ = 1.5, chaotic (CH) and hyperchaotic (HC) regions
are replaced by periodic orbits—Implying that the parallel
resistance could act as a simple control input in the system.
The parameter space is largely dominated by periodic orbits
with some visible regions of chaos and hyperchaos behaviour.

5 Conclusions

In this paper, we have reported on the influence of an external
periodic signal on the familiar double-scroll chaotic attrac-
tor of the autonomous Van der–Pol Duffing oscillator circuit
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by introducing to the circuit a periodic signal source. As
the external forcing parameters are varied, new dynamical
behaviors emerge, including hyperchaos arising from attrac-
tor splitting, quasiperiodicity, strange-nonchaotic attractors
and periodic orbits of higher periodicity. The regimes of
existence of different dynamical behaviors in two-parameter
space of the driving force were identified with the aid of
two parameter bifurcation diagram computed using com-
plete spectra of the Lyapunov exponents. By comparison, we
find that the modified model presented by Fotsin et al. [5–7]
show more complex behavior when periodically driven than
the Matouk model [21,44]. For instance, in a wide range of
ω − a0 parameter space, adjusting the value of the parallel
resistance Rp in the circuit of Fig. 1, denoted by the dimen-
sionless parameter μ, in Eq. 5, drives the system to periodic
states—implying that variation in Rp would initiate chaos
control in the systems. Thus, chaotic behaviour could be con-
veniently tamed in practical experiment, whereby Rp act as
a simple limiter. This is very important for practical applica-
tions where chaos is undesirable. On the other hand, when Rp

is absent, that is μ = 1, the system would be more complex
in the presence of the driving signal, presenting also chaos
and hyperchaos in larger parameter space. In communication
systems where security is important, such high complexities
are significant for secure communication applications.
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