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Abstract A turning process paradigm is considered to
study multiple regenerative effects in cutting operations. The
workpiece is considered to be a spatially continuous ele-
ment, while the cutter is modeled as a discrete-parameter
element. The resulting system is described by a combined
partial differential equation–ordinary differential equation
(ODE) model with a surface function that is used for updat-
ing the workpiece. The time delay in this model is allowed
to be any integer multiple of the tooth-pass period. Analysis
of this system reveals that the loss of contact between the
workpiece and the cutter results in two principal features,
namely, a non-smooth cutting force and multiple regenera-
tive effects. The model of the spatially continuous work piece
is cast into a system of ODEs through the semi-discretization
method. Subsequent analysis results in a high-dimensional,
non-smooth discrete-time map. Iterations of this mapping
show that the time delay can vary in a wide range, and
due to the multiple regenerative effect, this delay can be as
high as ten times the constant delay value. Through para-
metric studies, it is learned that the system can exhibit sta-
ble cutting behavior, as well as periodic, quasi-periodic,
chaotic and hyperchaotic behavior. With the choice of the
non-dimensional cutting coefficient as a control parameter,
bifurcations of the system responses are examined. The sys-
tem is observed to possess rich dynamics, including mul-
tiple solutions. Supported by computations of correlation
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dimension, Kaplan–Yorke dimension, and Lyapunov spec-
trum, limit cycle, torus, chaotic, and hyperchaotic attractors
are observed to be present in the considered parameter range.
The findings can help further our understanding of multiple
regenerative effects in cutting and drilling operations.
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1 Introduction

In material removal operations, such as boring, turning,
milling, and oil and gas drilling operations, time-delay effects
due to regenerative cutting have been extensively studied.
As a result of the different studies, it is known that a pri-
mary cause of the instability in these systems is tied to time-
delay effects (e.g., [1–19]). Two typical cutting operations,
namely, a turning operation for metal cutting and a drilling
operation used for the retrieval of petrochemicals, are illus-
trated in Figs. 1a, b, respectively. In both of these operations,
the instantaneous chip thickness δ is determined by both the
current and previous position of the cutter or drill bit. In cut-
ting operations, this dependence on the current and previous
states is referred to as the regenerative cutting effect, and this
effect is captured by introducing a time delay into the corre-
sponding models. The representative cutting system, which
is governed by delay differential equations (DDEs), is prone
to self-excited vibrations. In metal cutting systems, chatter
vibrations may occur due to regenerative cutting and lead to
a wavy surface finish on the workpiece (e.g., [20]) or even
poor machining precision. In oil and gas drilling operations,
instabilities originating from the regenerative effect may lead
to undesirable motions such as stick-slip vibrations and bit
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Fig. 1 Systems with regenerative effects: a turning process in metal
cutting and b drilling process in oil and gas exploration

bounce which can both cause excessive tool wear and/or even
expensive drill-bit failures [11,19].

Furthermore, a regenerative cutting process may be sub-
ject to nonlinear effects such as thickness-dependent cut-
ting forces [6,7,12,13,15], dry friction [11,17,18,21], loss
of contact [6–8,11,12,15,17–19], nonlinear structural effects
[9], and varying time-delay effects [6,11,14,19]. Due to the
nonlinearities, bifurcations and chaotic motions can occur
and the system dynamics can become complex. To under-
stand this dynamics, Grabec [20] presented a model with
nonlinear dependence of the cutting force on both veloc-
ity and chip thickness. Loss of contact is also taken into
consideration and the results show that the system exhibits
chaotic motions. Stépán [7] presented a single degree-of-
freedom (DOF) model with a nonlinear cutting force based
on the so-called three-quarter rule. In this model, both the
long and short regenerative effects, which introduce distrib-
uted time delays into the system, are taken into considera-
tion. Tlusty and Ismail [3] introduced a nonlinearity due to
the loss of contact between the cutter and workpiece. With
this effect, the instantaneous chip thickness is determined by
the current and three preceding positions of the cutter. This
is the underlying concept of the so called multiple regen-
erative cutting which may introduce an integer multiple of
the time delay (τ0, 2τ0, 3τ0, . . .) into the system. Balachan-
dran and Zhao [6,10] developed a unified nonlinear model
to study the dynamics of a typical milling process. In this
model, feed rate effects and multiple regenerative effects are
taken into consideration. Based on this model, the stabil-
ity boundary is determined by using time domain simula-
tions. Recently, Litak et al. [15,16] use a statistical 0-1 test
to identify chaotic motions in a nonlinear turning process
based on the model from a previous study [7]. Banihasan
and Bakhtiari-Nejad [22] investigated chaotic motions in
high-speed milling based on a model presented in earlier
studies [6,10]. They considered segmental multiple regener-

ative effects and used Lyapunov exponents to identify chaotic
behavior. Considering dynamics of turning process, Wahi and
Chatterjee [23] developed an ODE–PDE model, in which
both the multiple-regenerative effects and the nonlinear cut-
ting force model based on three-quarter power law are tak-
ing into consideration. Dombovari et al. [24] approximated
the non-smooth delay differential algebraic equation with a
smooth function. The standard numerical continuation pack-
age DDE-BITTOOL is used to analyze bifurcations of the
system responses. It is worth noting that, in all of the studies
cited above, the multiple regenerative effect is not the sole
focus of the work. Hence, here, a study focusing on multi-
ple regenerative effects is presented and the corresponding
nonlinear motions are examined.

This paper is organized as follows. In Sect. 2, an orig-
inal model made up of one PDE and one ODE is con-
structed to investigate the multiple regenerative effect. Fol-
lowing that, an algorithm to study this PDE–ODE system
is developed. A discrete-time map is obtained based on the
semi-discretization method. In Sect. 3, numerical studies
are conducted to illustrate the multiple regenerative effect
and the resulting nonlinear oscillations. The observed high-
dimensional chaotic behavior is analyzed by using Poincaré
sections, Lyapunov spectrum, and dimension calculations.
Finally, based on the findings, conclusions are drawn and
presented in Sect. 4.

2 Modeling and system reduction

2.1 PDE–ODE model for multiple regenerative cutting
system

In order to focus on only the nonlinear dynamics resulting
from the multiple regenerative effect, a simplified model with
one degree-of-freedom is considered for a cutting system. As
shown in Fig. 1, there are many similarities between turn-
ing and drilling operations. Neglecting the state-dependent
delay due to the torsional oscillations [11,18], the equations
of motion of these two systems in the i direction will have
the same form but with different coefficients. In this article, a
turning system is used as an illustrative example and the para-
meters are chosen to be compatible with drilling operations.
Here, the workpiece is assumed to be driven at a constant
angular speed Ω and a constant feed speed V0. By using the
equilibrium position of the mass-spring-damper system as
the zero position of X , the equation of motion of the cutter
or drill bit is an ODE of the form

M Ẍ + C Ẋ + K X = F(X, U, t) (1)

where, M , C , and K are the equivalent mass, damping and
stiffness parameters of the cutting system, respectively. The
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Fig. 2 Multiple regenerative model and the discretization of work-
piece: a cutting during contact and b cutting does not occur during loss
of contact

quantity F(X, U, t) is the cutting force, which is a function
of X , U , and time t . As depicted in Fig. 2, X (t) is the cur-
rent position of the cutter measured along the i direction .
The quantity U (θ, t), which is the so called surface height
function [24], is the instantaneous radius of the workpiece
at angular position θ ∈ [0, 2π ] and at time t . Physically, U
describes the surface of workpiece. As the workpiece moves
at a constant feed rate V0, the cutting depth, which is a func-
tion of X and U , can be written as

δ(X, U, t) = X (t) − [R0 − V0t − U (2π, t)] (2)

The quantity R0 is the position of the rotating center of the
workpiece at time t = 0 along the i direction. Since the cutter
can loose contact with the surface, material is removed from
the workpiece only if δ > 0. Consequently, the cutting force
is a non-smooth function with respect to δ and can be written
as

F(X, U, t) = F̄(δ) =
{−Kcdaδ, δ > 0

0, δ ≤ 0
(3)

The quantity da is the axial depth of cut and Kc is the cutting
coefficient. Here, the cutting force is modeled as a linear
function of the instantaneous depth of cut.

Considering an arbitrary fixed point (θ = θ0 +Ωt) on the
workpiece surface that is being rotated at a constant angular
speed Ω , the radius of this point U (θ(t), t) should be a con-
stant when θ(t) = θ0 + Ωt ∈ [0, 2π ]. Thus, it follows that

dU (θ(t), t)

dt
= ∂U

∂t
+ Ω

∂U

∂θ
= 0 , θ ∈ [0, 2π ] (4)

Equation (4) is the updating rule for the workpiece surface.
As shown in Fig. 2a, when the cutter is removing material,

the radius at the contact point U (0, t) should be relative to
the position of the cutter X (t). When the cutter looses con-
tact with the workpiece, the surface of the workpiece should
be continuous and independent of X (t). Thus, the boundary
condition for the PDE (4) is written as

U (0, t) =
{

R0 − V0t − X (t) , δ(t) > 0
U (2π, t) , δ(t) ≤ 0

(5)

From Eq. (5), it is clear that the boundary condition for the
PDE switches depending on the contact between the cutter
and workpiece. Instead of using a minimum function as in
reference [23], here, a switching boundary condition is used
to introduce the multiple regenerative effects.

The mixed PDE–ODE system given by Eqs. (1)–(5) has
a steady-state response (trivial solution) during which cut-
ting occurs without the cutter vibrations. This steady-state
solution can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X0(t) = −2π Kcda V0

KΩ

δ0(t) = 2πV0

Ω

U0(θ, t) = R0 + V0

Ω
θ − V0t + 2π Kcda V0

KΩ

(6)

To simplify the equations and reduce the number of para-
meters, the equations are cast in non-dimensional form by
using following dimensionless variables:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ = ω0t

x = X − X0

δ0

u = U0 − U

δ0

(7)

The term ω0 =
√

K
M is the radian natural frequency of the

cutting system. On substituting Eq. (7) into Eqs. (1)–(5), the
dimensionless equations of motion are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if u(2π, t) − x < 1 · · · · · ·contactcase
ẍ + 2ζ ẋ + x = κ[u(2π, τ) − x]
u̇ + ωu′ = 0
boundarycondition : u(0, τ ) = x

else · · · · · ·lossofcontactcase
ẍ + 2ζ ẋ + x = κ

u̇ + ωu′ = 0
boundarycondition : u(0, τ ) = u(2π, τ) − 1

(8)

The operation ˙(·) denotes the derivative or partial derivative
with respect to the dimensionless time τ , and (·)′ denotes
the partial derivative with respect to the spatial parameter
θ . The frequency ratio of the drive speed Ω to the natural
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frequency ω0 is denoted by ω. The quantity ζ is the damping
ratio and κ is the dimensionless parameter with respect to the
cutting coefficient Kc and axial depth of cut da . All of these
non-dimensional parameters can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω = Ω

ω0

ζ = c

2
√

M K

κ = Kcda

K

(9)

Equation (8) represents a coupled ordinary-partial differen-
tial system with switching boundary conditions. During the
contact case, the ODE is coupled with the PDE through the
cutting force term, while the PDE is coupled with the ODE
through the boundary condition. In the loss of contact case,
the ODE is a free oscillating system with damping, while the
PDE is a simple shift (rotating) system. There is no coupling
between the ODE and PDE. However, the boundary condition
for the PDE is quite different from that in the contact case.
In this boundary condition, the surface function u(θ, τ ) will
keep on decreasing until u(2π, τ) − x < 1; thus, the bound-
ary condition can help break the status of loss of contact and
the cutter can engage in cutting again. Time-delay effects are
introduced into the cutting system by the PDE used for the
updating of the workpiece surface. In addition, the switching
boundary condition will introduce non-smooth cutting forces
and result in multiple regenerative cutting. If the switching
boundary condition and the loss of contact are not consid-
ered, then Eq. (8) degenerates to the cutting model without
the multiple regenerative effect, which has been studied quite
extensively in the literature (e.g., [7,9,11–15,17,18]).

2.2 From PDE–ODE system to nonlinear map based on
semi-discretization method

In order to solve this ordinary-partial differential system
numerically, the partial differential equation is discretized
into a series of ordinary differential equations based on
the semi-discretization method proposed by Insperger and
Stépán [25,26]. The workpiece surface is segmented by first
discretizing θ into m spatial segments (θ1, θ2, · · · θm), as
shown in Fig. 2. The angle interval [θ i , θ i+1] has a constant
length Δθ , which is given by

Δθ = 2π

m
(10)

It is noted that m + 0.5 is used instead of m to improve the
accuracy in earlier studies [25,26]; however, here, m + 0.5
leads to poor accuracy in the numerical results because of the
multiple regenerative effect (time-varying delay). In a similar
manner to the θ discretization, the dimensionless time τ is

discretized into τ1, τ2, τ3 · · · and [τi , τi+1] is a time interval
of constant length Δτ , which is given by

Δτ = Δθ

ω
= τ0

m
= 2π

ωm
(11)

The quantity τ0 = 2π
ω

is the period of rotation of the work-
piece. During a time step of Δτ , the workpiece rotates by an
angular displacement step of Δθ . As a result of the discretiza-
tion, u(θ, t) is constant in each angle interval [θ i , θ i+1]. Fur-
thermore, ui

j is the resampling in space and time of u(θ, t),
wherein, the indices i and j are the spatial index and tem-
poral index, respectively. Then, the discretization of u(θ, t)
takes the explicit form

u(θ, τ ) ≈ u(θ i , τ j ) = ui
j ,

for θ ∈ (θ i−1, θ i ] and τ ∈ (τi−1, τi ] (12)

Equation (8) is linear in each time interval [τi , τi+1].
Hence, a piecewise linear mapping system corresponding
to Eq. (8) can be obtained based on the zeroth-order semi-
discretization method [25,26] as follows:

⎧⎪⎪⎨
⎪⎪⎩

if um
i − xi < 1 · · · · · ·contactcase

yi+1 = C1 yi

else · · · · · ·lossofcontactcase
yi+1 = C2 yi + D2

(13)

The vector yi has a length m + 2 and the components are
given by

yi = (
xi ẋi u1

i u2
i u3

i · · · um−1
i um

i

)T
(14)

The superscript (·)T denotes the transpose operation of
the associated matrix or vector. The matrices C1 and C2 are
square matrices with m + 2 dimension, while D2 is a vector
of dimension m + 2. Representations of these matrices and
vectors take the following forms:

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P1
0 · · · 0
0 · · · 0

R1

1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P2
0 · · · 0 0
0 · · · 0 0

0 0 0 · · · 0 1
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(16)
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D2 = (
RT

2 −1 0 0 · · · 0 0
)T

(17)

The submatrices P1, P2, R1, and R2 can be written as

Pi = eAi Δτ , Ri = (Pi − I)A−1
i B , i = 1or 2 (18)

where eAi Δτ is the matrix exponential of Ai Δτ . The super-
script (·)−1 denotes the inverse of matrix, and I is the identity
matrix. Matrices Ai and B are the coefficient matrices that
can be constructed from the matrix form of the ordinary dif-
ferential equation in Eq. (8). They can be written as

A1 =
(

0 1
−1 − κ −2ζ

)
(19)

A2 =
(

0 1
−1 −2ζ

)
(20)

B =
(

0
κ

)
(21)

For brevity, here, the authors have just provided the nec-
essary results to make sure that a reader can reproduce the
results of this paper. To help with the full derivation of
Eqs.(13–21), one is referred to reference [26]. Equation (13)
is a nonlinear mapping procedure for the multiple regener-
ative cutting system, and it can be conceptually be visual-
ized as a higher-dimensional tent mapping (e.g., [27]). At
the beginning of each iteration, the value of um

i − xi needs
to be calculated to determine the initial point for the piece-
wise linear mapping. The nonlinear dynamics of this m + 2
dimensional system is studied in the next section.

3 Multiple regenerative cutting effect, nonlinear
responses, and route to chaos

3.1 Numerical studies: tool responses, workpiece surface
finish, and delay variation

The nonlinear multiple regenerative cutting model given by
Eq. (8) or (13) can be used to model both a metal cutting oper-
ation and an oil and gas drilling operation with appropriate
choice of parameters. A linear model, which is a degenerate
form of Eq. (8), can be obtained by neglecting both the non-
smooth cutting force and the multiple regenerative effect.
This degenerate form can be written as

ẍ + 2ζ ẋ + x = κ[x(τ − τ0) − x] (22)

For both metal cutting operations and oil and gas drilling
operations, the damping ratio ζ ranges from 0.02 to 0.1
[7,16,18]. Furthermore, in metal cutting operations, the fre-
quency ratio ω is less than 3, and the dimensionless cut-
ting coefficient κ is related to the cutter, workpiece material,

Fig. 3 Stability boundary in the parameter space of the dimensionless
cutting coefficient and dimensionless drive speed for the linear cutting
model (22). The stable cutting region is shaded

Fig. 4 Tool responses obtained from linear and nonlinear models for
ω = 0.4 and κ = 0.3

and axial depth of cut. In typical oil and gas drilling oper-
ations, the frequency ratio (tooth-pass frequency to natural
frequency) ranges from zero to more than twenty due to the
extremely low natural frequencies of the drill string system.
The coefficient κ which is related to the drill bit and rock
stratum can range from tens to hundreds [28]. Here, as a
representative case, the authors choose ζ = 0.05. Next, the
stability analysis for the linear system is carried out and the
stability lobe structure is shown in the expanded section of
Fig. 3 for ω ∈ [0, 3]. For any parameter values inside the sta-
ble region, distrubances will decay and the system response
will converge to zero and there will be stable cutting. On the
other hand, for any parameters outside the stable region, the
system response will diverge until the cutter looses contact
with the workpiece and nonlinear oscillations follow. The
focus of the rest of this section is on this unstable region and
the associated nonlinear oscillations.

The effects of the non-smooth cutting force and mul-
tiple regenerative effect on the system response are illus-
trated in Fig. 4. For ω = 0.4 and κ = 0.3, the response
obtained from the linear model (22) is in the unstable region,
and this response diverges in time. The response obtained
from the nonlinear model, in which the non-smooth cutting
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Fig. 5 Tool response in the presence of multiple regenerative cutting for ω = 0.4: a κ = 0.1, stable cutting; b κ = 0.12, periodic motion at the
critical point of loss of contact; c κ = 0.42, quasi-periodic motion with loss of contact effects; and d κ = 0.7, chaotic motion

Fig. 6 Fourier transform of the signals in Fig. 5 for ω = 0.4: a κ = 0.1; b κ = 0.12; c κ = 0.42; and d κ = 0.7

force is taken into consideration but the switching boundary
condition is neglected, exhibits characteristics of limit-cycle
motions. The combined model with both the non-smooth cut-
ting force and multiple regenerative effect also leads to a limit
cycle but with a smaller amplitude. Furthermore, simulations
were carried out at a driving speed ratio ω = 0.4, which is a
low driving speed for metal cutting systems. Noting that the

mapping iteration Eq. (13) is numerically stable and accu-
rate for m > 200; here, the authors choose m = 600 for the
number of iterations for the remainder of this work.

Time histories of the tool response obtained for different
values of the coefficient κ are shown in Fig. 5, and the corre-
sponding Fourier transforms of the steady-state signals from
Fig. 5 are shown in Fig. 6. The corresponding updating of
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Fig. 7 Trajectory of cutting
edge (dashed line) and the
updating of workpiece surface
(thick solid lines) at ω = 0.4: a
κ = 0.1, b κ = 0.12, c
κ = 0.42, and d κ = 0.7. The
dashed line denotes the loss of
contact between the cutter and
the workpiece. The starting
points of the cutter on the
workpiece are marked with
triangles, while the ending
points are marked with round
dots

workpiece surface is illustrated in Fig. 7. Solid lines indi-
cate the relative position of the cutting edge while in contact
with the work surface and dashed lines indicate that the tool
has lost contact with the surface in Fig. 7. As κ increases,
the system undergoes a series of motions ranging from sta-
ble cutting to periodic motion to quasi-periodic motion, and
eventually, culminating in chaotic motions. For κ = 0.1,
the system operating point is located in the stable region of
Fig. 3, and the cutter vibration converges to zero (Figs. 5a,
6a) and the cutting edge trajectory on the workpiece surface
is an isometric helix which indicates a smooth workpiece
surface, as shown in Fig. 7a. For κ = 0.12, the system para-
meters are located in an unstable region but very close to
the stability boundary. Initial conditions at this point diverge
and lead to a periodic motion after a long transient time,
as shown in Fig. 5b. In the corresponding Fourier transform
shown in Fig. 6b, there is a base frequency component at
about f0 ≈ 0.17 and a small-amplitude peak occurs at about
0.34. This spectrum indicates that the system exhibits peri-
odic motion. Since κ here is a critical value that is close to
the stability boundary, it is expected that the nonlinearities
due to the loss of contact do not significantly affect the sys-

tem response, and the trajectory of the cutter on the surface
almost coincides with the updating of workpiece as shown
in Fig. 7b. When κ = 0.42, the amplitude of vibrations is
increased and the tool experiences a quasi-periodic motion
in which there is low frequency modulation, as shown in Fig.
5c. The frequency modulation can be seen more clearly in
Fig. 6c. The carrier wave f0 ≈ 0.177 is modulated by low-
frequency oscillations at fs ≈ 0.0061. The small-amplitude
peaks f0 ± fs next to the base frequency f0 result from the
frequency modulation. Since the ratio of f0/ fs is an irrational
number, the system experiences a quasi-periodic motion. At
the same time, the dashed lines are no longer coincident with
the solid lines in Fig. 7c, due to the strong effects from loss of
contact. To generate the results of Fig. 5d, κ is increased fur-
ther to 0.7 and the system goes from a quasi-periodic state
to a chaotic state. The Fourier transform at this parameter
value is no longer discrete but exhibits a continuous spectral
character, as shown in Fig. 6d. This verifies the aperiodic
motion of the system. Furthermore, the cutting chips are not
distributed evenly during this motion, as shown in Fig. 7d.

To further illustrate the multiple regenerative effect on
the surface finish of the workpiece, an expanded section of
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Fig. 8 Expanded workpiece surface of Fig. 7c along θ direction, with
the expanded figure in the inset illustrating mutiple regenerative cutting

Fig. 7c along the θ direction is provided in Fig. 8. As illus-
trated in the subplot of Fig. 8, each chip is formed by the
position of cutter at the current time τ , one preceding period
τ − τ0, τ − 4τ0 and τ − 3τ0 preceding periods. In this case,
the time delay is no longer a single constant but a variable
which is the so called variable-integer delay or variable-
digital delay in digital circuits and data acquisition processes
(e.g., [29,30]). The variable-integer delays in Fig. 9 corre-
spond to the the simulation results shown in Figs. 5 and 7,
with the time delay being defined as zero during the loss of
contact duration of the cutter. In the case of stable regener-
ative cutting, the time delay is a constant τ0 which is equal
to the period of rotation as shown in Fig. 9a. For the peri-
odic motions shown in Figs. 5b and 7b, loss of contact is
present and the variable-integer delay is an integer quantity

that is equal to either τ0 or 2τ0 as shown in Fig. 9b. Here,
the duty cycle of loss of contact has a short duration since
κ = 0.12 is a critical value for unstable cutting. Increasing κ

further, as shown in Fig. 9c, d, the variable-integer time delay
becomes more complex and is spread over a wide range from
τ0 to 12τ0. At the same time, the duration of loss of contact
becomes long. Due to this large variation in the time delay,
the approach used to study multiple regenerative cutting in
previous work [3,6] will not be effective here due to strong
loss of contact effects.

3.2 Bifurcations and route to chaos

As the stability of the multiple regenerative cutting system
is dependent on the driving speed ω and the coefficient κ

which is related to the axial cutting depth, additional para-
metric studies are carried out to understand this dependence.
Since the map has m + 2 dimensions, a three-dimensional
phase space is reconstructed by using an additional pseudo-
state x(τ − τ0) [27], as illustrated in Fig. 10. The attractor
realized in Fig. 5c is a two-dimensional torus, which follows
as a consequence of a subcritical Neimark-Sacker bifurca-
tion. To further explore the system’s nonlinear behavior, a
m + 1 dimensional Poincaré section, which is defined by
ẋ(τ ) = 0 is considered and illustrated in Fig. 10a. The map
may have additional solutions due to the high dimension of
the system. For instance, when ω = 2 and κ = 22, the system
response can be a quasi-periodic motion and the attractor is
a limit 2-torus which means there are two incommensurate

Fig. 9 Variable-integer time delays corresponding to the simulation results of Figs. 5 and 7 at ω = 0.4: a κ = 0.1, b κ = 0.12, c κ = 0.42, and
d κ = 0.7
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Fig. 10 Attractors and
Poincaré section in the
reconstructed phase space: a
attractor obtained through the
simulations corresponding to
Fig. 5c and Poincaré section
defined by ẋ(τ ) = 0 and b
multiple solutions
corresponding to different initial
condition at ω = 2 and κ = 22

frequencies associated with the response. The corresponding
motion is illustrated in Fig. 10b. For different initial condi-
tions and the same parameter values of ω and κ , the system
can also exhibit chaotic motion, as depicted in Fig. 10b. Since
there are m + 2 states used to describe the map, a small ran-
dom perturbation (||y1|| � 1) is used to define the initial
condition. Noting that the trivial solution yi ≡ 0 is also a
possibility, the system has at least three solutions for this set
of parameter values.

For different driving speeds ω, bifurcation diagrams con-
structed by using the cutting coefficientκ as a control parame-
ter are shown in Fig. 11. Both forward and backward sweeps
of κ are used here in order to examine multiple solutions.
The bifurcation diagrams indicate that as the coefficient κ

is quasi-statically increased, the system goes from periodic
motion to chaotic and hyperchaotic motion through sub-
critical Neimark–Sacker bifurcations. On one of the routes,
a Hopf bifurcation occurs followed by a Neimark–Sacker
bifurcation leading to quasi-periodic motion, and subse-
quently, to chaos and hyperchaos from there. From Fig. 11b,
it can also be discerned that the system has different solu-
tions for forward and backward sweeps when ω = 2 and κ ∈
(14, 23). At a drive speed of ω = 5, which corresponds to a
low driving speed in an oil and gas drilling operation, a period
doubling route to chaos is realized as shown in Fig. 11c.

To illustrate the complex response structure influenced by
the multiple regenerative cutting process, some attractors and
their Poincaré intersections are plotted for different parame-
ters and rendered in light and shadow in Figs. 12, 13, 14 and
15. The chaotic attractor shown in Fig. 12a corresponds to
the simulation result of Fig. 5d, and this attractor comes into
being following a Neimark–Sacker bifurcation. A map of
the Poincaré intersections constructed from Fig. 12a is given
in Fig. 12b, and these intersections reveal the fractal struc-
ture of the attractor. As the κ is increased to 1.3 in Fig. 12c,
the attractor becomes more complex and the Poincaré inter-
sections appear to be spread out in a random manner. This
is infact associated with a hyperchaotic behavior of a high-
dimensional attractor, whose presence is confirmed by com-
puting the Lyapunov exponents in the next subsection.

Two different attractors obtained at ω = 2 and κ = 22,
with different initial conditions are shown in Fig. 13. For
the quasi-periodic case (Fig. 13a,b), the map of Poincaré
intersections of the torus is a continuous array of intersec-
tions on a closed curve. On the other hand, when the system
undergoes a chaotic motion (Fig. 13c,d), the map of Poincaré
intersections reveals a fractal structure. For a drive speed of
ω = 5, setting κ = 17, the system response is found to
become chaotic and the associated map of Poincaré inter-
sections has a fractal dimension larger than 2; the associated
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Fig. 11 Bifurcation diagram on Poincaré section ẋ(τ ) = 0 for differ-
ent driving speeds: a ω = 0.4, b ω = 2, and c ω = 5. The blue points
correspond to forward quasi-static sweep of κ while the orange points
correspond to backward quasi-static sweep of κ . (Color figure online)

plots are depicted in Fig. 14a,b. As κ is increased to 20, as
shown in Fig. 14c,d, the system exhibits a chaotic response,
with the corresponding strange attractor having a high dimen-
sion. The map of Poincaré intersections which nearly fills the
region is found to have a fractal dimension higher than three.
When κ is increased to 28 as shown in Fig. 14e,f, the sys-
tem experiences a hyperchaotic motion, a behavior associ-
ated with more than one positive Lyapunov exponent. In this
case, the attractor has a fuzzy appearance and its correspond-
ing map of Poincaré intersections resembles a collection of
densely packed random points. Furthermore, the amplitude
of vibrations in the hyperchaotic state (Fig. 14e) is much
higher than that observed in the chaotic state (Fig. 14a,c).
For a drive speed of ω = 12, which is an appropriate
speed for drilling process, the chaotic attractor is formed
via both period-doubling and Neimark–Sacker bifurcations.
It is noted that this route to chaos is different from those
associated with the results shown in Fig. 15. Additionally,
it is interesting to note the three half-twists on this attractor,
chracteristics similar to that of a Möbius strip in topology.

3.3 Chaotic behavior

To identify chaotic and hyperchaotic behavior of the m + 2
dimensional system (m = 600) subjected to multiple regen-
erative cutting effects, both the correlation dimension and
Lyapunov spectra calculations are carried out. The correla-
tion dimension is defined as [31,27]

Dc = lim
n→∞ lim

r→0

log C(r)

log r
(23)

where n is the total number of data points, r is the radius of
a hyper sphere and C(r) is the correlation integral function.

By using the time series data x(τ ), the pseudo-state space
is reconstructed based on the so-called delayed coordinates
[27]. The delayed coordinates serve as a better measure of
reconstructing the state-space since the ui (τ ) are non-smooth
and dependent on the resolution (parameter m) of the semi-
discretization method. The plots used for the correlation
dimension calculation of the attractor of Fig. 14a is shown
in Fig. 16. As the embedding dimension is d increases, the
plots become parallel in the scaling region and the slopes
converge to the correlation dimension value of Dc = 2.41.
Other dimension calculation results obtained for the attrac-
tors shown in Figs. 12, 13, 14 and 15 are listed in Table
1. Here, the authors use about n = 81, 000 data points for
the correlation dimension calculation of each attractor shown
in Table 1. Since the time series of x(τ ) may be correlated
with the the preceding position cutter x(τ − lτ0), where l
can be higher than 10 due to the strong multiple regenerative
effects, the embedding dimension d has to be larger than l.
When the attractor is high-dimensional, convergence is not
realized even when the embedding dimension is increased to
30. For the correlation dimension results shown in Table 1,
Dc is estimated as the mean of 10 different calculations car-
ried out by using random initial conditions on the attractor.
The standard deviations obtained for each of these compu-
tations are also shown in the table. The cases for which the
correlation dimensions are shown in parenthesis in Table 1
are cases for which the correlation dimension calculations do
not converge well.

For the high-dimensional piecewise linear map system Eq.
(13), the Lyapunov spectrum with m + 2 exponents are cal-
culated by using the method proposed by Wolf et al. [32].
The Lyapunov spectrum obtained for the attractors of Figs.
14c and 15a are shown in Fig. 17. Here, the Lyapunov expo-
nents are ordered so that λ1 ≥ λ2 ≥ λ3 . . . λm+2. Since
the dimension of the original PDE–ODE system is infinite,
the Lyapunov spectrum with 602 exponents calculated in
order closely approximate a continuous curve. This Lya-
punov spectrum can be used to obtain the Lyapunov dimen-
sion, which is the so-called Kaplan–Yorke dimension DK Y

[33,34]. This dimension is defined as
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Fig. 12 Chaotic attractor (a)
and hyperchaotic attractor (c)
and their corresponding maps of
Poincaré intersections (b, d) of
the multiple regenerative cutting
system at drive speed ω = 0.4:
a, b κ = 0.7, chaotic response
and c, d κ = 1.3, hyperchaotic
response. The dashed straight
lines on the attractors indicate
the Poincaré sections associated
with the Poincaré intersections

Fig. 13 Two attractors (a) and
(c) and their correspondings
maps of Poincaré intersections
(b) and (d) realized at drive
speed ω = 2 and κ = 22 for
different initial condition: a, b
quasi-periodic motion and limit
torus attractor and c, d chaotic
motion and strange attractor
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Fig. 14 Chaotic attractor (a)
and hyperchaotic attractor (c)
and their corresponding maps of
Poincaré intersections (b, d) at
drive speed ω = 5: a, b κ = 17,
chaotic attractor, c, d κ = 20,
high-dimensional chaotic
attractor, and e, f κ = 28,
hyperchaotic attractor

Fig. 15 Chaotic attractor (a)
and corresponding map of
Poincaré intersections (b) for
drive speed ω = 12 and κ = 54
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Fig. 16 Plots for computation of correlation dimension Dc from time
series data of x(t) for the attractor of Fig. 12a. As the embedding dimen-
sion d is increased, the slopes in the linear zone converge, and from the
scaling region, the correlation dimension is determined as Dc = 2.41

DK Y = k + Λk

|λk+1| (24)

where the scalar Λk is the value of Λi when i = k. And Λi

is cumulative sum of λi which it is defined as

Λi =
i∑

j=1

λ j (25)

and k in Eq. (24) is a constant integer number that when
i = k, Λi � 0, and while i = k + 1, Λi < 0. As shown in
Fig. 17, k = 3 here for this Lyapunov spectrum.

The Lyanpunov exponents used to calculate the Kaplan–
Yorke dimension for the chaotic attractor of Fig. 15a are
illustrated in the inset of Fig. 17. The system has one posi-
tive Lyapunov exponent for the parameter values ω = 12 and
κ = 54. The zero point of Λk , which indicates the Kaplan–
Yorke dimension, is obtained and found to be DK Y = 3.18.
Computations of the Kaplan–Yorke dimension are carried out
for the attractors shown in Figs. 12, 13, 14 and 15 as shown
in the Table 1. Here, for this high-dimensional nonlinear sys-
tem, the Kaplan–Yorke dimension computations are found
to show better convergence than the correlation dimension
computations. It is interesting to note that there is no zero

Lyapunov exponent for the hyperchaotic attractor case of
Fig. 12c, which is anomalous for time-continuous systems.
This can be explained as follows. When the system under-
goes hyperchaotic motion at ω = 0.4, strong beat vibrations
occur and the trajectory of the system goes from the cen-
ter of the attractor to the boundary in a spiral motion and
later returns to the center. When the motion is expanding
outwards toward the boundary, any two trajectories with an
infinitesimally small separation along the direction of trajec-
tories will diverge. On the other hand, the two trajectories
will converge when the motion is contracting. Instead of a
zero local Lyapunov exponent, a positive or negative expo-
nent exists along the direction of trajectory in this motion.
When the system goes into chaos or hyperchaos, principal
directions are effected by the divergence along the direction
of trajectory and there are no zero Lyapunove exponents.

Additionally, the Lyapunov spectra and Kaplan-Yorke
dimensions for both forward and backward sweep of κ are
computed. The variation of the first ten Lyapunov exponents
as κ is varied are shown in Fig. 18a. Here, the authors focus
on the interval of κ that might lead to complex dynamics
according to the Fig. 11. In Fig. 18b, the authors give the
Kaplan–Yorke dimensions computed for forward and back-
ward quasi-static sweeps of κ , at the drive speed ω = 0.4.
For κ < 0.41, the Lyapunov exponents are (0,−,−, . . .),
which indicates the system exhibits a periodic motion and
the attractor is a limit cycle. For κ ∈ (0.41, 0.68), the Lya-
punov exponents change to (0, 0,−, . . .), which may lead to a
quasi-periodic motion; the attractor is a torus with a dimen-
sion of two. It is worth mentioning that a limit cycle also
coexists in this interval of κ . As κ is increased, the system
goes to chaos or hyperchaos and the Kaplan–Yorke dimen-
sions of these strange attractors increase to approximately 8.
For κ > 1, there are three positive Lyapunov exponents but
no zero exponent because of the strong hyperchaotic motion
with beat characteristics. Additionally, there is only one solu-
tion at this driving speed, which is consistent with the bifurca-
tion diagram of Fig. 11a. The same computations are carried
out for the drive speed of ω = 2, as shown in Fig. 19. As κ

is increased, the system undergoes periodic, quasi-periodic,
chaotic, and hyperchaotic motions, and the dimension of the

Table 1 Correlation dimension
Dc, Kaplan–Yorke dimension
DK Y and Lyapunov exponents
for the attractors shown in
Figs. 12, 13, 14 and 15

Attractor (ω, κ) Dc DK Y Lyapunov exponents

Fig. 12a (0.4, 0.7) 2.41 ± 0.05 2.47 ± 0.01 (+, 0,−,−, . . .)

Fig. 12c (0.4, 1.3) (5.6) 7.25 ± 0.08 (+,+,+,−, . . .)

Fig. 13a (2.0, 22) 2 ± 0.03 2 ± 0.001 (0, 0,−,−, . . .)

Fig. 13c (2.0, 22) 2.14 ± 0.05 2.17 ± 0.02 (+, 0,−,−, . . .)

Fig. 14a (5.0, 17) 2.59 ± 0.1 2.64 ± 0.01 (+, 0,−,−, . . .)

Fig. 14c (5.0, 20) (3.61) 3.88 ± 0.01 (+, 0,−,−, . . .)

Fig. 14e (5.0, 28) (4.17) 4.90 ± 0.05 (+,+, 0,−, . . .)

Fig. 15a (12, 54) 2.71 ± 0.3 3.18 ± 0.01 (+, 0,−,−, . . .)
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Fig. 17 Lyapunov spectrum of
system with 602 dimensions
(Eq. (13)), with the inset
containing the details of the
procedure used to compute the
Kaplan–Yorke dimension

Fig. 18 Parametrical study at driving speed ω = 0.4: a the ten lagest
Lyapunov exponents λ1 −λ10 versus κ and b Kaplan–Yorke dimension
DK Y versus κ

attractor goes from 1 to approximately 4.5 (Fig. 11b). Here,
the results obtained for the forward sweep and backward
sweep do not coincide with each other. For example, in the
interval κ ∈ (14, 21), the system exhibits periodic motion
and quasi-periodic motion or chaotic motion for the same
parameter values but different initial conditions. In the inter-
val κ ∈ (21, 23.2), starting at different initial conditions, the
system response state can be a quasi-periodic motion or a
chaotic motion or a hyperchaotic motion. These results are
also consistent with the bifurcation diagram Fig. 11b.

4 Concluding remarks

In this article, the authors have studied a fundamental non-
linear cutting process with loss of contact effects. To focus

Fig. 19 Parametrical study at driving speed ω = 2: a the ten lagest
Lyapunov exponents λ1 −λ10 versus κ and b Kaplan–Yorke dimension
DK Y versus κ

on multiple regenerative effects, a simplified one degree-
of-freedom tool model governed by an ODE is used. To
capture the multiple regenerative effects, instead of using
DDE, a PDE is used to describe the updating of the work-
piece based on previous studies.Thus, this PDE–ODE model
represents an exact geometrical updating of workpiece and
the time delay can be any integer multiple of the tooth-
pass period (i.e., τ0, 2τ0, 3τ0 . . .) which is the so called
variable-integer delay.

Analysis of this PDE–ODE model indicates that the loss
of contact effects introduces two influences on the system
dynamics. One of them is the non-smooth (piecewise lin-
ear) cutting force which is captured in the ODE. The other is
the multiple regenerative effects, which is captured through
switching boundary conditions of the PDE. To solve this
nonlinear PDE–ODE system, a reduction based on semi-
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discretization method is used and a discrete-time mapping
system is obtained. In the development of this reduction,
when the workpiece surface description (PDE) is discretized
into m elements, the mapping system is of m +2 dimensions.
This map is high dimensional and continuous but piecewise
linear, and it can be regarded as a high-dimensional tent map.
For numerical studies of this map, parameter values have
been selected to reflect both metal cutting and oil drilling
operations. The simulations show that both the non-smooth
cutting force and multiple regenerative effect can restrain the
divergent behavior of the corresponding linear system and
lead to nonlinear oscillations. As the dimensionless cutting
coefficient κ is increased, the system may experience sta-
ble cutting, periodic motion, quasi-periodic motion, chaotic
motion, and hyperchaotic motion. At the same time, the sur-
face updating of the workpiece becomes more and more com-
plex. Due to the multiple regenerative effect, it is found that
the time delay in the system can vary in a wide range from 0
to more than 10τ0.

Parametric studies conducted with the dimensionless drive
speed ω and dimensionless cutting coefficient κ as control
parameters reveal the rich nonlinear dynamics of the system,
including bifurcations and routes to chaos that can be experi-
enced by the system. By carrying forward and reverse quasi-
static sweeps of κ , it is found that multiple responses exist for
certain parameter values. The rendered attractors and their
corresponding maps of Poincaré intersections help under-
stand the attractor structures and identify torus attractors,
chaotic attractors, and hyperchaotic attractors. Both correla-
tion dimension and Kaplan–Yorke dimension are computed,
and from these computations, it is learned that the dimensions
of the attractors can be more than 8 as the system moves to
hyperchaos. Results obtained for the Lyapunov exponents
and Kaplan–Yorke dimension show intervals of limit cycle
motions, torus motions, chaotic attractors, and hyperchaotic
attractors in the considered range of the cutting coefficient κ .

The paradigm and analyses presented in this work can be
extended to different cutting operations in which multiple
regenerative effects play an important role. Furthermore, the
reduction outlined in this work for the combined PDE–ODE
system can be serve as a template for other such systems.

Acknowledgments The authors from Shanghai Jiao Tong University
gratefully acknowledge the support received through 973 Grant No.
2011CB706803 and NSFC Grant No. 10732060.

References

1. Tlusty J, Polacek M (1963) The stability of machine tools against
self excited vibrations in machining. In Proceedings of the ASME
International Research in Production Engineering, Vol 465. Pitts-
burgh, USA, p 474

2. Tobias SA (1965) Machine-tool vibration. Wiley, New York

3. Tlusty J, Ismail F (1981) Basic non-linearity in machining chatter.
CIRP Ann Manuf Technol 30(1):299–304

4. Altintas Y, Budak E (1995) Analytical prediction of stability lobes
in milling. CIRP Ann Manuf Technol 44(1):357–362

5. Altintas Y (2000) Manufacturing automation: metal cutting
mechanics, machine tool vibrations, and CNC design. Cambridge
Univ Press, Cambridge

6. Balachandran B, Zhao MX (2000) A mechanics based model for
study of dynamics of milling operations. Meccanica 35(2):89–109

7. Stépán G (2001) Modelling nonlinear regenerative effects in metal
cutting. Philos Trans R Soc Lond A 359(1781):739–757

8. Balachandran B (2001) Nonlinear dynamics of milling processes.
Philos Trans R Soc Lond A 359(1781):793–819

9. Pratt JR, Nayfeh AH (2001) Chatter control and stability analysis
of a cantilever boring bar under regenerative cutting conditions.
Philos Trans R Soc Lond A 359(1781):759–792

10. Zhao MX, Balachandran B (2001) Dynamics and stability of
milling process. Int J Solids Struct 38(10):2233–2248

11. Richard T, Germay C, Detournay E (2004) Self-excited stick-slip
oscillations of drill bits. Comptes Rendus Mcanique 332(8):619–
626

12. Wang XS, Hu J, Gao JB (2006) Nonlinear dynamics of regenera-
tive cutting processes: comparison of two models. Chaos Solitons
Fractals 29(5):1219–1228

13. Insperger T, Stépán G, Turi J (2007) State-dependent delay in
regenerative turning processes. Nonlinear Dyn 47:275–283

14. Long XH, Balachandran B, Mann B (2007) Dynamics of milling
processes with variable time delays. Nonlinear Dyn 47:49–63

15. Litak G, Syta A, Wiercigroch M (2009) Identification of chaos in a
cutting process by the 0–1 test. Chaos Solitons Fractals 40(5):2095–
2101

16. Litak G, Schubert S, Radons G (2012) Nonlinear dynamics of a
regenerative cutting process. Nonlinear Dyn 69(3):1255–1262

17. Germay C, van de Wouw N, Nijmeijer H, Sepulchre R (2009)
Nonlinear drillstring dynamics analysis. SIAM J Appl Dyn Syst
8(2):527–553

18. Besselink B, van de Wouw N, Nijmeijer H (2011) A semi-analytical
study of stick-slip oscillations in drilling systems. ASME J Comput
Nonlinear Dyn 6(2):021006

19. Liu X, Vlajic N, Long XH, Meng G, Balachandran B (2013) Non-
linear motions of a flexible rotor with a dill bit: stick-slip and delay
effects. Nonlinear Dyn 72(1–2):61–77

20. Grabec I (1988) Chaotic dynamics of the cutting process. Int J
Mach Tools Manuf 28(1):19–32

21. Bailey JA (1975) Friction in metal machining mechanical aspects.
Wear 31(2):243–275

22. Banihasan M, Bakhtiari-Nejad F (2011) Chaotic vibrations in high-
speed milling. Nonlinear Dyn 66(4):557–574

23. Wahi P, Chatterjee A (2008) Self-interrupted regenerative metal
cutting in turning. Int J Non-Linear Mech 43(2):111–123

24. Dombovari Z, Barton DAW, Wilson RE, Stepan G (2011) On the
global dynamics of chatter in the orthogonal cutting model. Int J
Non-Linear Mech 46(1):330–338

25. Insperger T, Stépán G (2002) Semi-discretization method for
delayed systems. Int J Numer Methods Eng 55(5):503–518

26. Insperger T, Stépán G (2004) Updated semi-discretization method
for periodic delay-differential equations with discrete delay. Int J
Numer Methods Eng 61(1):117–141

27. Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics.
Wiley, New York

28. Richard T, Germay C, Detournay E (2007) A simplified model to
explore the root cause of stick-slip vibrations in drilling systems
with drag bits. J Sound Vib 305(3):432–456

29. Johnson MG, Hudson EL (1988) A variable delay line PLL for
CPU-coprocessor synchronization. IEEE J Solid-State Circuits
23(5):1218–1223

123



Multiple regenerative effects in cutting process and nonlinear oscillations 101

30. Farrow CW (1988) A continuously variable digital delay element.
In IEEE International Symposium on Circuits and Systems, p
2641–2645

31. Grassberger P, Procaccia I (1983) Measuring the strangeness of
strange attractors. Physica D 9(1):189–208

32. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining
lyapunov exponents from a time series. Physica D 16(3):285–317

33. Kaplan J, Yorke JA (1979) Functional differential equations and
approximation of fixed points. Lecture notes in mathematics, vol
730. Springer, New York, p 228

34. Farmer JD, Ott E, Yorke JA (1983) The dimension of chaotic attrac-
tors. Physica D 7(1–3):153–180

123


	Multiple regenerative effects in cutting process  and nonlinear oscillations
	Abstract 
	1 Introduction
	2 Modeling and system reduction
	2.1 PDE--ODE model for multiple regenerative cutting system
	2.2 From PDE--ODE system to nonlinear map based on semi-discretization method

	3 Multiple regenerative cutting effect, nonlinear responses, and route to chaos
	3.1 Numerical studies: tool responses, workpiece surface finish, and delay variation
	3.2 Bifurcations and route to chaos
	3.3 Chaotic behavior

	4 Concluding remarks
	Acknowledgments
	References


