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Abstract The use of mechanically compliant tensegrity
structures in vibration-driven mobile robots is an attractive
research topic, due to the principal possibility to adjust their
dynamic properties reversibly during locomotion. In this
paper vibration driven planar locomotion of mobile robots,
based on a simple tensegrity structure, consisting of two rigid
disconnected compressed members connected to a contin-
uous net of four prestressed tensional members with pro-
nounced elasticity, is discussed. The dynamic behaviour of
the considered system is nonlinear, due to large vibration
amplitudes and friction between robot and environment, and
is mainly influenced by the magnitude of prestress. There-
fore, the movement performance of the robot can be essen-
tially influenced by the actuation parameters, e.g. by modi-
fying the frequency or the magnitude of actuation the loco-
motion direction of the system varies. To study the system
behaviour, the nonlinear equations of motion are derived
and transient dynamic analyses are performed, including the
consideration of chaotic system behaviour near to the pri-
mary and secondary eigenfrequencies. The dependency of
the movement behaviour on the actuation parameters and on
the prestress are discussed focused on single-actuated sys-
tems with minimal control effort.
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1 Introduction

To improve the effectiveness of future mobile robots, new
non-conventional locomotion principles are required. By
the inspection of complex unstructured environments, the
use of shape–variable locomotion systems with pronounced
mechanical compliance is necessary or associated with sev-
eral advantages [1,2]. Mechanically prestressed compliant
structures allow the required with the use of few actuators by
a simple system design. One specific class of these structures
builds tensegrity structures. Compliant tensegrity structures,
consisting of a set of rigid disconnected compressed mem-
bers connected to a continuous net of prestressed tensional
members with pronounced elasticity, represent one partic-
ular type of these structures. The resulting shape of these
structures is defined by the balance between the tensile and
compressive forces of the elements. A spatially limited, local
impact on the tensegrity structure yields a global change of
their shape, independent from the relative position of the
actuator [3]. Several additional advantageous properties of
these structures make their use in robotics attractive. Robots
based on these structures are deployable, lightweight, and
have very high strength to weight ratio, and shock absorbing
capabilities [3–5]. An overview of actual developments and
development directions can be found in [6,7].

The application of tensegrity structures in context of loco-
motion systems is a recently discussed topic. The first works
to mobile robots, based on tensegrity structures have been
published in [8–10]. The movement of these robots is primar-
ily based on the pronounced shape change ability of the struc-
tures, by using non-conventional locomotion techniques. By
using different approaches for actuation and system configu-
rations, this property is implemented in most known pro-
totypes [5,11–13]. An another class of mobile tensegrity
robots exploit during locomotion primarily the mechanical
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Fig. 1 The considered planar tensegrity structure: physical model (a), mechanical model in the symmetric configuration (b) and in the general
case (c)

compliance of the structures, including only moderate shape
changes. In [3,14,15], two locomotion systems, based on a 3-
prism tensegrity structure and on a 4-prism tensegrity struc-
ture, were considered. The control of the robots was real-
ized by periodically changing of the effective rest lengths
of selected elastic tensional segments. By considering the
dynamic behaviour of the systems, possible effective con-
trol algorithms were developed using genetic algorithms to
achieve locomotion. In these works, and also in [4,16–20],
have been shown, that the trajectory of the movement of the
robots with multiple actuators varies significantly under vary-
ing the actuation speeds. Due to the complex system dynam-
ics, the direction of locomotion can be changed by modifying
the driving frequency, keeping the actuation scheme constant.

The use of compliant tensegrity structures in vibration
driven locomotion systems seems to be advantageous mainly
for the following reasons:

– due to the pronounced mechanical compliance of the
structures, complex modes of vibrations can be induced
with a small number of actuators. This property is also
characteristic for simple structures, consisting of only a
small number of segments

– the dynamic properties of the system are tunable by
actively adjusting the initial prestress of the structure,
which can be realized by simultaneously changing the
length or compliance of selected segments.

Based on these properties, simple locomotion systems
with variable movement performance can be realized. The
movement speed and direction can be controlled and adapted
to different environmental conditions with the frequency and
magnitude of actuation and if the initial prestress of the struc-

ture is tunable also with the magnitude of prestress. In the
simplest case the initial prestress is not varied during locomo-
tion and the system is driven by only one actuator. To realize
variable movement performance in this case, the frequency
and/or the magnitude of actuation must be reversibly vari-
able. By using only a single actuator, the system design and
also their control could be kept simple. However, detailed
theoretical investigations on the system dynamics are nec-
essary, to determine the system parameters, which enable
locomotion in different directions in dependence of the actu-
ation frequency or magnitude. In this paper we focus on the
dynamics of a single-actuated locomotion system based on a
simple planar compliant tensegrity structure. The actuation of
the structure is realized by periodically changing the effec-
tive rest length of selected compliant tensioned segments.
The paper begins by providing the mechanical model of the
system in Sect. 2. In this section also the basic dynamic prop-
erties of the structure are considered, followed by numerical
results for harmonic excitation of a fixed structure and for
uniaxial and planar movement of a mobile robot based on
the structure in Sect. 3. Finally, in Sect. 4 conclusions and
further research directions are considered.

2 Mechanical model and equations of motion

We consider the simple planar tensegrity structure, as
depicted in Fig. 1. The structure consists of six segments:
two rigid struts (index: j = 1, 2, length: 2dj), which are indi-
rectly connected by four linear elastic spring elements (with
index: f = 1, 2, 3, 4, spring constant kf , rest length L0f). The
spring elements are tensioned in the initial equilibrium con-
figuration. The mass of the springs and the inertial properties
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Fig. 2 Relevant eigenmodes and the corresponding eigenfrequencies of the planar tensegrity structure, without any fixation on the x–y plane(
L̄ =√

2LF/LS, 0 < L̄ < 1, m1 �= 0, m2 �= 0, coordinates of the eigenvectors:
{
û
} = {

û21x, û21y, û22x, û22y, û11x, û11y, û12x, û12y
}T

)

of the struts are neglected. Masses are considered as discrete
mass points, placed on the end points of the struts (mji, with
strut endpoint index: i = 1, 2). Contacts between the struts
or between struts and spring elements are not considered.

2.1 Modal analysis

The basic dynamic properties of tensegrity structures are
essentially dependent on the magnitude of their initial pre-
stress. The initial prestress is defined by the segment stiff-
nesses and segment rest lengths. For the considered pla-
nar structure in the symmetric case (see Fig. 1b), if d1 =
d2(2dj = LS), k1 = k2 = k3 = k4 (kf = k), L01 = L02 =
L03 = L04 (L0f = LF), with linear elastic strut elements
(stiffness: ks), where the strut endpoints m21, m22, m11, m12

correspond to nodes 1, 2, 3, 4 respectively, and where each
segment of the structure is regarded as one linear spring
element, the eigenfrequencies of the structure can be find
by solving the eigenvalue problem: det (λ2[M] + [K]) =
0, where [M] = diag(m21, m21, m22, m22, m11, m11, m12,

m12) is the mass matrix and [K] the tangent stiffness matrix:

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 0 p 0 a b a −b

c 0 −ks b a −b a

k 0 a −b a b

c −b a b a

c 0 −ks 0

k 0 p

sym. c 0

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where p = k(1 − (
√

2LF(kS + k))(
√

2kLF + kSLS)−1),
2a = −k − p, 2b = k − p, c = k + ks + p. If the
masses connected to strut 1, and also to strut 2 are equal
(m11 = m12 = m1, m21 = m22 = m2), the eigenfrequen-
cies can be determined symbolically. For this case, excluding
the three rigid body modes and the two modes correspond-
ing to the longitudinal vibrations of the struts, the three rel-
evant eigenfrequencies and corresponding eigenmodes are
depicted in Fig. 2. In the case that strut No. 1 is fixed, the
two relevant eigenfrequencies can be solved analogous, using
the reduced tangent stiffness and mass matrices (K(1:4, 1:4),
M(1:4, 1:4)) with following formulas:

fIIrot =
√

k · 1

m2
· 1

2 π
·
√

L̄

fIItrans =
√

k · 1

m2
· 1

2 π
·
√

2 − L̄. (2)

The first eigenmode corresponds to a rotational oscillation.
The second and third eigenmodes correspond to translational
oscillations, with identical associated eigenfrequencies, due
to symmetric system parameters. The ratio between the trans-
lational and rotational eigenfrequency is independent of the
type of bearing and is defined solely by the prestress of
the structure: frot/ftrans =

√
L̄/(2 − L̄). Accordingly, if the

spring elements are tensioned in the considered initial con-
figuration (0 < L̄ < 1) : frot < ftrans, and if the spring
elements are not tensioned (L̄ = 1) : frot = ftrans. Moreover,
it is apparent that with increasing the prestress the rotational
eigenfrequency will decrease, and the translational eigenfre-
quency will increase.
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2.2 Equations of motion

In the following we consider movement of the structure for
the case, that all strut endpoints lie on a plane ground surface
(x–y plane). The gravity vector is perpendicular to the plane
(�g = −g·�ez, g = 9.81×103 mm/s2). The isotropic Coulomb
friction model is implemented between a supporting plane
and strut endpoints. The positions and orientations of the
struts are characterized with the location vectors of the centre
of masses of the struts �rs

j = xs
j �ex + ys

j �ey and with the angles
ϕj (Fig. 1c). The location vectors of the strut endpoints can
be expressed with:

�rji = �rs
j + �ds

ji =
(

xs
j + (2i − 3)

2djmjk cos ϕj

mj1 + mj2

)
�ex

+
(

ys
j + (2i − 3)

2djmjk sin ϕj

mj1 + mj2

)
�ey, (3)

where:

�rs
j =

∑
i mji�rji∑

i mji
,

�ds
ji =

∣∣∣�ds
ji

∣∣∣ (cos ϕj�ex + sin ϕj�ey) · (2i − 3) (4)

with
∣∣∣�ds

ji

∣∣∣ = ds
ji = 2dj

mjk

mj1 + mj2
; k = 2/i (i, j = 1, 2).

The moment of inertia of strut j, with respect to the centre of
mass is Jzz,j = Jj = ∑

i
mji(ds

ji)
2. Using the Lagrangian

L = T − U = 1

2

∑
j

((∑
i

mji

)(
�̇rs

j

)2 + Jjϕ̇
2
j

)

−1

2

∑
f

kf (Lf − L0f)
2, (5)

with Lf =
∣∣∣�Lf

∣∣∣- actual length of spring f (L1 = |�r21 −�r12| ,
L2 = |�r22 −�r12| , L3 = |�r22 −�r11| , L4 = |�r21 −�r11|), the
equations of motion can be written as

(∑
i

mji

)
�̈rs

j =
∑

i

(�Aji + �Fji + �FR
ji

)
,

(6)
(

4d2
j

mj1mj2

mj1+mj2

)
ϕ̈j =

(∑
i

(�ds
ji ×

(�Aji+�Fji+�FR
ji

)))
· �ez,

where �Fji, �FR
ji and �Aji are the external force (vector in the x–y

plane), the frictional force, and the sum of the spring forces
at strut endpoint ji. The last quantities can be written as

�FR
ji =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−μimig
�̇rji∣∣∣�̇rji

∣∣∣
,

∣∣∣�̇rji

∣∣∣ > 0

− min
{
μimig,

∣∣∣�Aji + �Fji

∣∣∣
} �Aji+�Fji∣∣∣ �Aji+�Fji

∣∣∣
,

∣∣∣�̇rji

∣∣∣ = 0
,

(7)

∑
i

�Aji =(3−2j) ·
∑

f

⎛
⎝kf

(∣∣∣�Lf

∣∣∣ − L0f

)
· �Lf∣∣∣�Lf

∣∣∣

⎞
⎠; with

∣∣∣�Lf

∣∣∣ �= 0.

Several methods of actuation are known to generate move-
ment of tensegrity structures (see e.g. [3,11]). In our model
the method introduced in [3] is implemented: the movement
of the structure is induced by forces, due to periodically
changing the effective rest length (L0f (t)) of selected spring
elements:

L0f(t) = L0f,init · (1 − Lf,fak · sin (2 π f · t)
)

(8)

or

L0f(t) = L0f,init · (min
{
1, 1 − Lf,fak · sin (2 π f · t)

})
(9)

with Lf,fak—magnitude parameter and L0f,init—initial rest
length of spring Nr. F, and f—driving frequency.

3 Numerical simulation

The numerical simulations are obtained in Matlab®R2009b,
using the fourth-order Runge-Kutta integration algorithm.
The oscillation behaviour of the structure is considered for
two cases. In the first case strut No. 1 is fixed. This case
enables the simplified consideration of characteristic influ-
ences on the vibration behaviour of the structure. In the sec-
ond case the structure is free movable on the x–y plane.

3.1 Oscillation of the system in the fixed case

Following the results of the modal analysis complex vibra-
tion modes are to be expected during movement of the struc-
ture. The movement is induced by general movements of
the two struts. Depending on the driving frequency rota-
tional or translational vibrations of the struts are dominant:
the vibration modes vary qualitatively with change of the
driving frequency. This effect can be easily shown by con-
sidering exemplarily a simplified case, by which strut No.
1 is fixed (ϕ1 = 0, xs

1 = d1, ys
1 = 0). The motion of strut

No. 2 is induced by harmonic change of the effective rest
length of spring element No. 3 (see Eq. 8). In the simulations
the driving frequency (f = 2–40 Hz), the initial prestress of
the structure (L0f = 10−70 mm) and the magnitude of actu-
ation (L3,fak = 0.1−0.5) were varied and following fixed
parameter values are used: kf = 0.25 N/mm, m21 = m22 =
10 g, d1 = d2 = 50 mm μ21 = μ22 = 0.1.

Selected steady state results, that show the assumed behav-
iour of the system, are shown in Fig. 3 for different driving
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Fig. 3 Phase portraits and oscillation modes of the structure for different driving frequencies f in the case that strut No. 1 is fixed. Black dots mark
the Poincare points. uS2x and uS2y are the displacements of the centre of mass of strut No. 2 in the x- and y-directions

123



46 V. Böhm et al.

Fig. 4 Bifurcation diagram for
f = 2–40 Hz (a) and detailed
views (b, c). (i = 1,900–2,000;
i ∈ N, T = 1/f, frequency
resolution: 0.01/0.002 Hz in the
frequency ranges at the primary
and secondary eigenfrequencies)
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frequencies f. The primary eigenfrequencies for this sys-
tem with L0f = 10 mm and L3,fak = 0.5 are: fIIrot =
9.4634 Hz, fIItrans = 34.3068 Hz. The bifurcation diagram
for the system with the same parameter values is depicted
in Fig. 4. Here for each f, 100 cycles, i.e. Poincare points of
the displacement of the center of gravity of strut No. 2 in the
x-direction have been calculated after an initial number of
1,900 cycles.

Based on the simulations also under varying the initial pre-
stress and magnitude of actuation following important results
are found:

– the system show chaotic behaviour near to the primary
and secondary eigenfrequencies

– with increasing the initial prestress of the system the
width of frequency ranges with chaotic behaviour will
be smaller (see Fig. 5a–c)

– the oscillation of the movable strut is a coupled rota-
tional and translational oscillation in frequency ranges
near the primary and secondary eigenfrequencies, and is
not dependent on the magnitude of the initial prestress
and on the ratio between the primary eigenfrequencies.

With respect to the planned application of this structure
in a vibration driven locomotion system are all these prop-
erties important. An effective locomotion of the system can
be realized as expected if the driving frequency is near to the
resonance. However, the driving frequency must be carefully
selected: chaotic system behaviour during locomotion is to
be avoided. Additionally, by changing the prestress magni-
tude the vibration and therefore the locomotion properties
(direction, speed) can be influenced.
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Fig. 5 Bifurcation diagrams for different magnitudes of the initial prestress, realized by using springs of different initial rest length (L3,fak = 0.5,
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Fig. 6 Trajectories, showing the travel of the centre of mass of the
planar tensegrity structure with asymmetrical mass distribution for dif-
ferent driving frequencies (f = 2–32 Hz) for 5,000 actuation periods

(a) and for the first 300 actuation periods (b, c the values besides the
trajectories mark the corresponding driving frequencies in Hz)

3.2 Vibration induced locomotion

General possibilities for the uniaxial and planar locomotion
of systems based on the considered structure are discussed in
[21]. In the following we focus on locomotion of the system
in the x–y plane. The type of locomotion (uniaxial/planar)
depends on the geometric configuration, the mass distribution
and friction properties. Planar movement of the system can
be realized if an asymmetry exists in these system parame-
ters. With single actuation, realized by periodic altering the
initial rest length of only one spring element, one of the fol-
lowing conditions must be fulfilled: (i) the mass of one mass
point or (ii) the friction coefficient at one contact point or (iii)
the initial rest length of one non actuated spring element is
different to the others or (iv) the strut lengths are non equal.
As example therefore, selected numerical results for the case
of asymmetrical mass distribution [m11 = m12 = m22 =
25 g, m21 = 100 g, kf = 0.25 N/mm, L0f = 10 mm, d1 =
d2 = 50 mm, μ11 = μ12 = μ21 = μ22 = 0.1, actuated
spring: No. 3 with L3,fak = 0.5, see Eq. (9)] are depicted in
Figs. 6 and 7. Figure 6 shows the trajectory of the center of
mass of the structure during locomotion for different driving
frequencies. The system moves after the transient phase on
a circular path, where path radius and movement direction
depend on the driving frequency. By changing the driving

frequency during locomotion the movement direction can
be changed (Fig. 7). Thus, any movement of the system on
a plane can be realized with only one actuator by modify-
ing only of the driving frequency. By the design of systems
with the considered asymmetrical mass distribution it must
be taken into account, that the eigenfrequencies correspond-
ing to translational oscillations are non equal. Therefore, the
number of critical frequency regimes in the regions of the
primary and secondary eigenfrequencies is larger, at which
chaotic movement behaviour of the system occurs. Thus, the
number of usable driving frequency regimes, which cause
regular oscillations during locomotion, decreases.

4 Conclusions

This paper presents a concept for vibration-driven locomo-
tion systems based on tensegrity structures as a basis for
terrestrial mobile robots. It was demonstrated that vibration-
driven locomotion with compliant tensegrity structures can
be realized using only of a single actuator. It was shown, that
with asymmetric tensegrity structures vibration-driven loco-
motion in the plane is possible by periodic dynamic excita-
tion of only a single actuator. The locomotion direction is
defined only by the driving frequency. As a further result it
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B1: f=6 Hz, n=1000
B2: f=12 Hz, n=750

B1: f=16 Hz, n=2000
B2: f=18 Hz, n=2000

B1: f=6.5 Hz, n=300
B2: f=3 Hz, n=150 .
B3: f=6.5 Hz, n=300
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Fig. 7 Vibration induced locomotion of the planar tensegrity structure
with asymmetrical mass distribution. In the three depicted cases the
change of the driving frequency causes the change of the locomotion
direction (a 6→12 Hz; b 16→20 Hz; c 6.5→3→6.5 Hz). Top trajec-

tories of the points 11, 12, 21, 22 and the centre of mass; bottom the
system during locomotion (arrows motion direction, n number of actu-
ation periods, x start position, open diamond end position, W system
position by the change of the driving frequency)

was shown, that chaotic system behaviour near to the primary
and secondary eigenfrequencies can occur, so that a careful
selection of driving frequencies is needed during locomotion.
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