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Abstract A novel approach is proposed for simultane-
ous estimation of states, delay and parameters of nonlin-
ear chaotic and hyperchaotic delayed systems with constant
delay as well as simultaneous estimation of states and para-
meters for such delayed systems with time-varying delay.
The approach exploits continuous time approximation and
stochastic optimal filtering. Also, an innovative technique
is proposed to approximately compute the Lyapunov expo-
nents of a nonlinear delayed system in order to determine the
parameter values for which the system becomes chaotic or
hyperchaotic. The model used in this approach contains two
different source of considerable uncertainty. The approach
is successfully implemented for state, parameter and delay
estimation on various forms of time delayed Lorenz system
and delayed Hopfield neural network including chaotic and
hyperchaotic cases with constant and time-varying delays.
In case of delayed Hopfield neural network, the performance
of the approach is shown to be superior compared with two
other existing approaches.

Keywords Stochastic estimation · Chaotic delayed
oscillators · Hyperchaotic delayed oscillators · Uncertainty ·
Time delay systems · Delay estimation

1 Introduction

Since Mackey and Glass in 1977 [1] found chaotic behavior
in a delay differential equation (DDE) model of blood pro-
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duction in patients with leukemia, chaotic time-delay systems
have been employed in numerous other practical applica-
tions in engineering, biology, economy, and other disciplines
[2–4]. The enhanced complexity of chaotic dynamics has
played a significant role in the progress made in many of
those applications.

It is well known that chaos in autonomous time contin-
uous nonlinear systems can occur when the system has an
order of greater than two and in non-autonomous time con-
tinuous nonlinear systems when it has an order of greater
than one. However, in 1996 Lu and He [5] showed that chaos
can occur even in simple scalar first order delayed nonlinear
(piecewise linear) dynamical systems with delay. Moreover,
yet another significant difference of time delay systems com-
pared with ODEs is that these systems can produce chaotic
attractors with an arbitrarily large number of positive Lya-
punov exponents (LEs). Therefore, scalar time-delay systems
represent a major class of dynamical systems that exhibit
hyperchaos.

Just to name a few out of the wide variety of applications
chaotic time-delay systems can be pertinent to, a couple of
examples are mentioned here. It has been demonstrated [6]
that infinite dimensional chaotic dynamical systems can be
used to forecast the fluctuation in the share market behavior.
Another instance of chaotic time-delayed applications is in
secure communication where an information signal contain-
ing some messages is transmitted using a chaotic signal as
a broadband carrier. It is believed that the level of security
can be even more improved if hyperchaotic modulation is
used instead of a low-dimensional chaotic barrier [7]. For
some examples of secure communication via hyperchaotic
modulation the reader is referred to [8,9]. Another possible
application is in chaotic interrogation for damage detection
in structural systems, in which previous work [10,11] has so
far used only chaotic and hyperchaotic ODEs.
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There has been a few number of studies reported in the lit-
erature [12–15] concerning parameter identification in linear
time delay systems. Parameter estimation of nonlinear time-
varying DDEs with constant delay from fully and partially
available data has been studied by Deshmukh [16] wherein
an ideal case of no external random disturbance was con-
sidered. In a previous work of the current authors [17], esti-
mation of parameters and states of stochastic non-chaotic
delay differential equations having time-varying coefficients
and constant delay from noise-corrupted incomplete mea-
surements is studied. Also, in another study by the cur-
rent authors [18], the method used in [17] is extended to
include the estimation of the delay bounds and parameters
in delayed vibratory systems with distributed delay mod-
eled using delayed integro-differential equations (DIDEs).
Parameter estimation in chaotic time delay systems has also
been discussed in a number of studies before. Parameter and
time delay estimation of a scalar time-delay chaotic system
from noise-corrupted measurements through synchroniza-
tion is explored by Rakshit et al. [19] wherein a least square
approach is used to derive a system of differential equa-
tions which governs the temporal evolution of the parameters.
A combination of synchronization based on dynamical feed-
back with an adaptive evolution for the unknown parameters
is used by Lu and Cao [20] to estimate the unknown parame-
ters for a second order delayed chaotic neural network with
time-varying delay. Tang and Guan [21] studied the problem
of estimating time delay and parameters of time-delayed first-
order scalar chaotic systems by first converting the problem
into an optimization problem with a suitable objective func-
tion and applying a particle swarm optimization algorithm.
Tang and Guan in another study [22] estimated the time delay
and parameters of identical first-order scalar chaotic delayed
systems by converting the problem to a multi-dimensional
optimization problem and using a differential evolution algo-
rithm. Sun and Yang [23] exploited chaos synchronization
for parameter identification of chaotic delayed systems with
varying time-delay through using an adaptive feedback con-
troller based on the Razumikhin condition and the invariance
principle of functional differential equations in the frame-
work of Lyapunov–Krasovskii theory. However, among the
aforementioned studies on parameter estimation of chaotic
time delay systems only in [20,23] a time-varying delay is
taken into account. Nevertheless, in none of those studies
a noise-corrupted measurement is considered. Additionally,
the effect of uncertainty in the process (model) has always
been neglected in studying parameter estimation of chaotic
time delay systems.

In the current study a novel approach for simultane-
ous estimation of states, delay and parameters of chaotic
and hyperchaotic delayed systems with constant or time-
varying delay is proposed through exploiting continuous time
approximation (CTA) and optimal stochastic filtering. Also

in this paper an innovative technique is proposed to approx-
imately compute the Lyapunov exponents of a delayed non-
linear system with the goal of determining the parameter
combinations that results in chaotic or hyperchaotic systems.
Specifically, this study explores stochastic estimation of para-
meters and states of chaotic DDEs having time-varying delay
from a noise-corrupted measurement. In the case of chaotic
DDEs with constant delay, simultaneous estimation of states,
parameters and delay is also considered in this paper. To
account for the effect of uncertainties of the model, an addi-
tive stochastic term is considered in the process. The pro-
posed approach involves first discretizing the delay differ-
ential equation with a set of ordinary differential equations
(ODEs) using the Chebyshev spectral CTA (CSCTA). Then,
the problem of parameter estimation in the resulting ODE
system is represented as an optimal filtering problem using
a state augmentation technique. Finally, using an extended
Kalman–Bucy filter the unknown parameters of the chaotic
DDE are estimated from a noise-corrupted measurement of
the states.

Major differences between the current study and the pre-
vious paper [17] of the current authors are as follows: in
the previous study the delays were considered to be con-
stant, while in this study parameter estimation in delayed
systems with time-varying delays is also studied. However,
the most important difference perhaps is that the DDEs con-
sidered in [17] were not chaotic whereas in the current study
estimation is performed for both chaotic and hyperchaotic
DDEs. The estimation problem is much more challenging
in case of chaotic and hyperchaotic DDEs as opposed to
linear or non-chaotic nonlinear DDEs studied in [17]. The
major complexity that the chaotic nature of the DDE adds
to the estimation problem is that CSCTA no longer pro-
vides accurate solutions. While the linear and nonlinear
DDEs studied in [17] assumed that the model used in the
process function was accurate and the only source of uncer-
tainty was the process noise, in case of chaotic or hyper-
chaotic DDEs the finite-dimensional approximation based on
CSCTA includes a source of uncertainty that increases dra-
matically over time. This is due to the characteristic known as
‘sensitivity to infinitesimal perturbations’. While this results
in the CSCTA approximate solution diverging after a short
time, the resulting dynamics is an accurate projection of the
infinite-dimensional chaotic attractor onto the corresponding
finite-dimensional space assumed by CSCTA. This charac-
teristic allows for CSCTA and the extended Kalman–Bucy
filter to still deliver accurate estimates of constant parameters
and delay, as is seen in the examples. Additionally, this paper
focuses on the problem of delay estimation in chaotic DDEs
which is not considered in the previous work of the current
authors [17]. The problem of estimating the delay from mea-
surements in a time-delayed system is known to be signifi-
cantly more challenging than is the estimation of other para-
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meters. The major difference between the current paper and
the other previous paper [18] of the current authors is that in
[18] simultaneous estimation of states, parameters and delay
upper bound of the distributed delay in linear and nonlin-
ear time delayed systems with distributed delay described as
DIDE’s is investigated from noise corrupted measurements.
While in this current study, as well as in [17], estimation in
time delayed systems with discrete delay described as DDE’s
is considered. A different approach for CTA needs to be used
when the delayed system is in DIDE form (distributed delay)
than the one applicable to the DDE form of delayed systems
(discrete delay).

The paper is organized as follows: In Sect. 2 it is shown
how the CTA can be used for approximating nonlinear DDEs
with discrete time-varying delays by an equivalent set of
ODEs. A novel technique to approximately compute the LEs
of DDEs using CSCTA is introduced in Sect. 3. Section 4
describes how the parameter estimation problem of DDEs
can be handled in form of an optimal filtering problem taking
advantage of CSCTA. In Sect. 5, the extended Kalman–Bucy
filter is presented as an approach to deal with the resulting
optimal filtering problem. Finally, in Sect. 6, the approach
is implemented for state, parameter and delay estimation
on various forms of the time-delayed Lorenz and delayed
Hopfield neural network system including chaotic and hyper-
chaotic cases with constant and time-varying delays.

2 Spectral CTA

A DDE with a discrete time-varying delay can be described
in the general form as

ẋ (t) = g (x (t) , x (t − τ (t)) , t, a) ,

x (t) = ϕ (θ) , tm ≤ t = θ ≤ 0 (1)

where x ∈ R
n is a n-dimensional state vector, τ (t)

(0 ≤ τ (t) ≤ τm) is the time-varying delay, ϕ (t) is the his-
tory vector function defined on the interval t ∈ [tm, 0], and
tm = mint≥0 (t − τ (t)). This form of nonlinear delayed sys-
tem is a very general one and includes all well-known delayed
systems such as Ikeda system [24], Mackey and Glass system
[25], Hopfield delayed neural network [26], delayed Duffing
system [27], Delayed Lorenz system [28], BAM neural net-
work [24], cellular neural network [29], etc. We assume the
nonlinear DDE of Eq. (1) has r unknown parameters repre-
sented by vector a to be estimated. In the context of functional
analysis, the above DDE can be represented as an abstract
ODE which in turn is a representation of the evolution of an
initial function in a Banach space, i.e.

Ẏ (t) = ˜A (t) Y (t) + G (Y (t) , t, a)

˜A(0)ϕ = dϕ

dθ
, tm ≤ θ < 0

˜A(0)ϕ + G (ϕ, 0, a) = g(x (0) , x (−τ (0)) , t, a),

θ = 0 (2)

where Y (t) is an infinite-dimensional vector, ˜A(t) is a linear
time-varying operator and G(Y (t) , t, a) is a time-varying
infinite-dimensional nonlinear vector function of Y (t). The
main idea behind CTA is that the infinite-dimensional vec-
tors Y (t) and G (Y (t) , t, a) and the operator ˜A(t) can be
approximated by finite-dimensional ones. Further informa-
tion on the relation between the domain and the spectrum
of the solution operator can be found in [30–34]. As shown
and discussed in [35], spectral differentiation has a major
advantage over finite difference differentiation [32,34] in its
“spectrally accurate” exponential convergence characteris-
tics.

A finite-dimensional approximation to Y (t) is now defined
as

Y (t) ∼=
[

YT
1 (t) , YT

2 (t) , . . . , YT
N+1 (t)

]T

Yi (t) = x (t − τi−1) , i = 1, . . . , N + 1 (3)

where τi−1 = τ
2 (1 − ti−1) and ti−1 = cos

(

(i−1)π
N

)

are

the unevenly spaced points corresponding to the extremum
points of the Chebyshev polynomial of the first kind [36]
of degree N defined in the interval [−1, 1]. Thus with the
Chebyshev points being defined so, the number of collocation
points will be m = N + 1.

We now define a m×m Chebyshev spectral differentiation
matrix D associated with the Chebyshev points. Assuming
the rows and columns of D matrix are indexed from 0 to N ,
the entries of the matrix will be

D00 = 2N 2 + 1

6
, DN N = −2N 2 + 1

6
,

D j j = −t j

2
(

1 − t2
j

) , j = 1, . . . , N − 1

Di j = ci (−1)i+ j

c j
(

ti − t j
) , i �= j, i, j = 0, . . . , N (4)

where ci = 2 for i = 0, N , otherwise ci = 1. The mn × mn
differential operator D (corresponding to n first order DDEs)
is defined as D = D⊗In in which In is a n × n identity
matrix and ⊗ denotes Kronecker product. Equation (2) can
be approximated by initially replacing the first n rows of D

by zeros to approximate ˜A (t) and by inserting the vector
field associated with Eq. (1) in the top n rows of G(), with
the remaining rows equal to zero as

⎡

⎢

⎢

⎢

⎣

Ẏ1 (t)
Ẏ2 (t)

...

Ẏm (t)

⎤

⎥

⎥

⎥

⎦

=
[

0 0 . . . 0 0
2

τ(t)

[

D
(n+1:nm,:)]

]

⎡

⎢

⎢

⎢

⎣

Y1 (t)
Y2 (t)

...

Ym (t)

⎤

⎥

⎥

⎥

⎦
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+

⎡

⎢

⎢

⎢

⎣

g(Y1 (t) , Ym (t) , t, a)

0n×1
...

0n×1

⎤

⎥

⎥

⎥

⎦

(5)

Note that the superscript (n + 1 : nm, :) on D refers to the
fact that only rows of D lying between n +1 and nm are writ-
ten into the remaining n (m − 1)×nm elements of the matrix
˜A (t). The 2

τ(t) factor in front of D in Eq. (5) is a time-varying
normalization factor which accounts for the rescaling of the
standard collocation expansion interval [−1, 1] to the time-
varying interval [0, τ (t)]. Regardless of whether the original
DDE has constant or time-varying coefficients, the operator
˜A(t) will be time varying for a time-varying delay due to the
time-varying normalization used. Therefore, the nonlinear
DDE of Eq. (1) can be converted into a large system of ODEs
using CSCTA in which the dimension of Eq. (5) depends on
the order of the Chebyshev grid used. A larger grid generally
results in better accuracy of the ODE approximation.

An important point remains to be clarified here. Since the
delay is time-varying, the length of the interval [0, τ (t)] on
which the continuous functions are mapped (Banach space)
also is changing, and if a discretization is used that enforces
a constraint of constant distances between the (equally or
non-equally) spaced grid points then some points will obvi-
ously need to be added or subtracted as the delay varies. This
will change the size of the matrix operator and will add to
the complexity of the problem. To avoid this in our work,
however, the spacing between the grid points varies with the
delay itself using the time-varying normalization factor in
order to keep the number of (unequally spaced) grid points
constant.

3 Computing Lyapunov exponents of a DDE

One of the most important tools widely accepted to quan-
tify chaos is that of Lyapunov exponents. There exist some
algorithms to calculate the Lyapunov spectrum of contin-
uous and differentiable ODEs in the literature. The algo-
rithm developed separately by Benettin [43] and Shimada
[44] is one of those algorithms which is later modified and
improved in [37]. This algorithm, however, is not applicable
to infinite-dimensional DDEs. An adaptation of the algorithm
for ODEs approach is suggested for DDEs by Farmer [38]
which is based on discretizing the infinite-dimensional DDE
into a N -dimensional discrete mapping. Yet another alterna-
tive technique makes use of the projection of DDEs to ODEs.
The Galerkin projection technique [39], for instance, is one
of those techniques. The accuracy of this technique depends
on the number of shape functions retained.

The approach applied in this study to obtain the Lyapunov
exponents of a nonlinear delayed system from its govern-
ing DDE, is based on CTA discussed in Sect. 2. As dis-
cussed before, the governing DDE can be represented as an
abstract ODE of the form of Eq. (2) in terms of an infinite-
dimensional state vector Y (t), and the operator ˜A(t). CTA
can then be utilized to approximate the infinite-dimensional
vector Y (t) and the operator ˜A(t) by finite-dimensional ones
through discretization of the delayed part of the state vector
and spectral differentiation. As mentioned before, spectral
differentiation is implemented by fitting an approximating
polynomial through the values of the function evaluated at a
set of unevenly distributed grid points based on Chebyshev
points, then differentiating the polynomial, and finally val-
uating the result at each grid point as a linear combination
of the nodal function values. The rest of the approach after
obtaining the finite-dimensional state vector is an adaption
of the technique used in finite dimensions by Wolf [37]. Lya-
punov exponents can be defined by the long-term evolution
of the axes of an infinitesimal sphere of states. A fiducial tra-
jectory (the center of the sphere) is defined by the action of
the nonlinear equation of motion Ẋ = f (X) on some post-
transient initial conditions. On the other hand, the principal
axes are defined by the evolution via the linearized equa-
tions δẊ = [J] δX of an initially orthonormal vector frame
v1

0, . . . vn
0 anchored to the fiducial trajectory. To implement

the procedure, the fiducial trajectory and the frame of ortho-
normal vectors are simultaneously integrated. Due to an addi-
tional singularity in a chaotic system, each vector tends to
fall along the local direction of most rapid growth. The col-
lapse of the vectors toward a common direction is avoided
by repeated use of the Gram–Schimdt Reorthonormalization
(GSR). The orientation-preserving property of GSR (v → v́)

allows the integration of the vector frame as is required for
spectral convergence. Each Lyapunov exponent λi may then
be computed directly from the mean rate of growth of the
projection of vector vi on vector v́i .

The procedure presented in this study for Lyapunov expo-
nent calculation of DDEs is verified using the results of

Table 1 Convergence study for the Mackey–Glass DDE of Eq. (6)

τ m λi=1,2,...,4

17 20 0.0054, −0.0030, −0.0428, −0.0595

40 0.0049, −0.0034, −0.0432, −0.0609

60 0.0020, −0.0071, −0.0430, −0.0617

70 0.0027, −0.0070, −0.0430, −0.0620

25 20 0.0081, −0.0021, −0.0097, −0.0335

40 0.0076, −0.0028, −0.0133, −0.0375

60 0.0108, −0.0025, −0.0124, −0.0354

70 0.0111, −0.0026, −0.0121, −0.0357
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Fig. 1 The four largest Lyapunov exponents of the Mackey and Glass DDE of Eq. (6) versus the constant delay

the technique presented by Farmer [38]. The 4 largest Lya-
punov exponents of the time-delayed system of Mackey
and Glass for a delay varying from 15 to 35 are calcu-
lated using the current approach and the results are com-
pared with those provided in Farmer’s paper. A conver-
gence study for some arbitrary values of τ within the
range 15–30 tabulated in Table 1 shows that an accept-
able convergence can be achieved by using 60 Chebyshev
collocation points. The time-delayed system of Mackey
and Glass is a scalar first order DDE of the follow-
ing form which is first used to model blood production
[1]:

ẋ (t) = ax (t − τ)

1 + x (t − τ)c + bx(t) (6)

where a = 0.2, b = −0.1 and c = 10. The current state x(t)
represents the concentration of blood at time t and the delayed

state x (t − τ) is the concentration when the “request” for
blood is made. In patients with leukemia, the delay τ may
become excessively large and cause the concentration of
blood to oscillate.

The results of comparing the four largest Lyapunov expo-
nents of Eq.(6) obtained from the current method with that of
Farmer’s method are depicted in Fig. 1. As is clear from the
figure, the results are in good agreement with those of Farm-
ers method. Obviously, the accuracy of the proposed tech-
nique depends on the number of collocation points used. Also
note that both the current method and Farmer’s method use
approximation techniques. The main advantage of the current
technique over conventional discretization-based techniques
such as Farmer’s technique where equally-spaced discretiza-
tion scheme is used can be attributed to the pseudospectral
differentiation and consequently its exponential convergence
characteristics.
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4 Estimation problem in the form of optimal filtering

A stochastic estimation problem in a delayed system obtains
the best estimate of the current (and consequently the
delayed) state as well as the unknown parameters of a
stochastically-excited delayed system model from measured
data that contains a random observation error. In addition to
that, the stochastic estimation in this study is also applied to
estimate the amount of the delay the stochastically-excited
delayed system is experiencing from its noise-corrupted mea-
sured data. The estimation problem of a delayed system
considered in this paper, can be formulated as an optimal
continuous-time filtering problem in the form of a set of Ito
stochastic delay differential equations as

dx (t) = f (x (t) , x (t − τ(t)) , a (t) , t) dt + G (t) dβ(t)

dz (t) = h (x (t) , x (t − τ(t)) , t) dt + J (t) dη(t) (7)

where x(t) ∈ R
n is the current Ito process, x(t − τ(t)) ∈ R

n

is the delayed Ito process, z(t) ∈ R
q is the measurement

process, a(t) ∈ R
r is a vector of unknown parameters, f is

the drift coefficient, G is the diffusion coefficient, h is the
measurement model function, J is an arbitrary time-varying
functions independent of x, and β(t) and η(t) are indepen-
dent Brownian motion additive stochastic processes with
E [dβ (t)] = E [dη (t)] = 0, E[dβ(t)dβT (t)] = Qdt and
E[dη(t)dηT (t)] = Rdt where E[] represents the expec-
tation operator. Under certain conditions [40], the filtering
problem can also be formulated in terms of the stationary
zero-mean Gaussian white noise processes formally defined
as v(t) = dβ(t)/dt, w(t) = dη(t)/dt and differential mea-
surement y (t) = dz(t)/dt . Therefore, the filtering problem
can be written in physical form by considering the drift func-
tion f to be the nonlinear term g of Eq. (1).

ẋ (t) = g (x (t) , x (t − τ(t)) , a (t) , t) + G (t) v (t)

y (t) = h (x (t) , x (t − τ) , t) + J (t) w (t) (8)

where v(t) and w(t) are assumed to be both mutually inde-
pendent and independent from the state and observation with
constant covariance matrices of Q and R, respectively, i.e.
v ∼ N (0, Q) and w ∼ N (0, R). The stochastic term v(t)
(the “process noise”) can be considered to function as an
approximation for the influence of the unknown dynamics of
the process model. Eq. (8) defines a continuous-time state-
space optimal filtering model. Under certain conditions, the
optimal continuous-time filtering problem has a finite dimen-
sional solution which leads to the Kalman-Bucy filter. The
filtering problem can be represented in the context of parame-
ter and delay estimation. Suppose that a(t) is unknown but is
assumed to be constant. The Kalman–Bucy filter can be used
to simultaneously estimate the states x (t), the parameters
a (t), and the delay τ(t). The standard method for parameter
estimation via filtering employs the so-called state augmen-

tation method, in which the parameter vector a (t) is included
with the state vector while being constrained to have a zero
rate of change, i.e.

{

ẋ (t)
ȧ (t)

}

=
{

g (x, xτ , a, t)
0

}

+
{

G (t)
0

}

v (t)

y (t) = h (x, xτ , t) + J (t) w (t) (9)

where xτ denotes x(t − τ(t)). The parameter vector a (t) is
assumed to initially have a Gaussian distribution with mean
a0 and covariance P0. Note that there is no noise term in the
equation for the unknown parameter dynamics. The reason
is that the parameters are already assumed to be stationary.
In order for the approach to be applicable, the DDE of the
system needs to be expressed as an ODE. Using spectral CTA
to convert the nonlinear DDE of Eq. (8) into a set of ODEs,
the augmented state-space expression of the optimal filtering
problem of Eq. (9) can be written as

⎧

⎨

⎩

Ẏ (t)

ȧ (t)

⎫

⎬

⎭

=
⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎣

0n×n 0n×n . . . 0n×n 0n×n

2
τ(t)

[

D
(n+1:nm,:)]

⎤

⎦ Y(t) +
⎡

⎣

g(Y1 (t) , Ym (t) , t)

0n(m−1)×1

⎤

⎦

0r×n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎣

G(t)

0n(m−1)×n

⎤

⎦

0r×n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

v(t)

y (t) = h (Y (t) , t) + J (t) w (t) (10)

where v(t) and w(t) are zero-mean white Gaussian noise
vectors respectively of dimension n × 1 and q × 1.

For delay estimation via filtering, two different approaches
can be considered. In the first approach after using CSCTA
to approximate the original DDE with a finite-dimensional
ODE, the delay which appears as a normalization factor in
the operator matrix ˜A(t) is treated as another parameter of
the system. Assuming the delay to be constant (or possibly
having a predetermined rate of change if not constant) and
using state augmentation technique, the delay can be esti-
mated via optimal filtering in a similar way as parameters
are estimated. In the second approach, however, we employ
a non-dimensional time t̃ = t/τ̂ (t) through using transfor-
mation t → ˜t and also writing the derivative d

dt in terms
of the new variable t̃ . Note that τ̂ (t) is the estimate of the
delay at instant t. Then after using CSCTA, the delay term
in the normalization factor in the operator matrix ˜A(t) will
vanish. Again using state augmentation technique, the time
evolution of the unknown delay can be estimated via optimal
filtering techniques. For the case when the delay is constant,
the delay term in the new format of Eq. (10) will appear as
coefficients of g as shown below.
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⎧

⎨

⎩

Ẏ
(

t̃
)

τ̇
(

t̃
)

⎫

⎬

⎭

=
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎣

0n×n 0n×n . . . 0n×n 0n×n

2
[

D
(n+1:nm,:)]

⎤

⎦ Y(t̃) +
⎡

⎣

τ(t̃)g(Y1
(

t̃
)

, Ym
(

t̃
)

, t̃)

0n(m−1)×1

⎤

⎦

0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎣

Gt̃

0

⎤

⎦

0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

v(t̃)

y
(

t̃
) = h

(

Y
(

t̃
)

, t̃
) + J

(

t̃
)

w
(

t̃
) (11)

5 Extended Kalman–Bucy filters

Assuming the augmented delayed state to be incorporated in a
finite-dimensional state X, i.e. XT (t) = [YT (t) , aT(t)], Eq.
(10) can be written as a nonlinear optimal filtering problem
without delay in the Ito form

dX (t) = F (X (t) , t) dt + G (t) dβ(t)

dz (t) = H (X (t) , t) dt + J (t) dη(t) (12)

where E [dβ (t)] = E [dη (t)] = 0, E[dβ(t)dβT (t)] = Qdt
and E[dη(t)dηT (t)] = Rdt . In order for the Kalman–Bucy
filter to be applicable to the nonlinear system, the dynamics
needs to be linearized. Rather than linearizing about a refer-
ence trajectory, the extended Kalman–Bucy filter employs a
linearization about the state estimate ̂X which yields

F (X, t) = F (

̂X, t
) + ˜F (t)

(

X − ̂X
) + rF (X,̂X, t)

H (X, t) = H (

̂X, t
) + ˜H (t)

(

X − ̂X
) + rH(X,̂X, t) (13)

where rF () and rH() are higher order terms of the Taylor
series and ˜F(t) and ˜H (t) are the Jacobian matrices obtained
from linearization about the current estimates.

˜F (t) := ∂F (X, t)

∂x

∣

∣

∣

∣

x=x̂
, ˜H (t) := ∂H (X, t)

∂x

∣

∣

∣

∣

x=x̂
(14)

The propagation of the estimate based on extended
Kalman–Bucy filter can be derived as

d̂X (t) = F (X, t) dt + K (t)
[

dz (t) − H (

̂X, t
)

dt
]

(15)

where the gain matrix K (t) is

K (t) = P (t) ˜H
T

(t) R−1 (16)

The following Riccati differential equation propagates the
error covariance P (t).

dP (t) = ˜F (t) P (t) dt + P (t)˜F (t) dt

+G (t) Q (t)G (t)T dt − K (t) ˜H (t) P (t) dt (17)

Considering the estimator given by Eqs. (15) to (17), it can be
shown that for a uniformly detectible system with a bounded
measurement and process noise, the estimation error e (t) =
X (t) − ̂X(t) remains bounded if the initial estimation error

is selected within a certain limit. This is summarized by the
following theorem. Note that the time-dependence of some
parameters is ignored in the theorem for ease of notation. The
interested readers are referred to [41] for a detailed derivation
of the conventional and extended Kalman–Bucy filter as well
as the proof to the following theorem.

Theorem Consider a uniformly detectible nonlinear sto-
chastic continuous system defined by Eq. (12) and also con-
sider the extended Kalman-Bucy filter as described by Eqs.
(15) to (22). Further suppose the following assumptions hold:

I. There exist real numbers δF > 0, δH > 0 and ε >

0 such that for any
∣

∣X (t) − ̂X (t)
∣

∣ ≤ ε the nonlinear
functions rF and rH in Eq. (13) are bounded:

∥

∥rF (X,̂X, t)
∥

∥ ≤ δF
∥

∥X (t) − ̂X (t)
∥

∥

2

∥

∥rH(X,̂X, t)
∥

∥ ≤ δH
∥

∥X (t) − ̂X (t)
∥

∥

2
(18)

II. The covariance matrices of the noise terms are bounded
for every t ≥ 0 :

G Q GT ≤ κq I

J R JT ≤ κr I (19)

Then the estimation error e(t) remains bounded if the
initial estimate error satisfies

‖e(0)‖2 ≤ κnoise λmax
(

P−1
)

λmax (	) − δ
, δ < λmax (	) (20)

where � = −HT KT P−1 − P−1Q P−1, κnoise = κq −
λ2

max (K) κr , δ = 2 δFλmax (�)−2δHλmax (�) λmax (K)

and � is defined by � (t) P(t) = I .

6 Estimation results

6.1 Time-delayed Lorenz oscillator

Since 1963, when Edward Lorenz presented his familiar
three-dimensional dynamical system as a truncation of the
infinite-dimensional Navier–Stokes equations, the chaotic
behavior observed in an infinite-dimensional system has
always been explored through studying a low-dimensional
attractor that is believed to capture the dominant dynamics
in the infinite-dimensional system. Investigating chaos in an
infinite-dimensional dynamical system, however, has only
recently been closely investigated. In order to motivate sub-
sequent discussion on infinite-dimensional chaotic systems,
we study the dynamical behavior of the time-delayed Lorenz
oscillator [28] which is governed by
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ẋ1(t) = σ (x2(t) − x1(t))

ẋ2(t) = ρx1(t) − x2(t) − x1(t)x3(t)

ẋ3(t) = x1(t)x2(t) − βx3(t − τ(t)) (21)

where x (t) and x (t − τ(t)) are the current and the delayed
states at time t and σ, ρ and β are constant parameters. Note
that τ(t) (if non-zero) can be a positive constant or a non-
negative function of time. When τ = 0 the system becomes
the familiar Lorenz chaotic oscillator for which it is known
that a two-scroll chaotic attractor exists for σ = 10, ρ = 28
and β = 8/3. As mentioned before, a common approach
which has long been widely used to determine the complete
Lyapunov spectrum of an attractor (non-delayed system)
from its differential equations can be found in [42,43]. Based
on this method, the Lyapunov spectrum of the non-delayed
chaotic Lorenz system has one positive and one zero Lya-
punov exponents as λC

i=1,2,3 = 0.9056, 0.0000,−14.5723.
The well-known phase portrait of the chaotic attractor when
τ = 0 is shown in Fig. 2a.

When τ(t) > 0, the Lyapunov exponents are not as easily
attainable as for the non-delayed case. The approach pre-
sented in Sect. 3 can be used to approximately find the Lya-
punov spectrum from the DDE of the system. Phase portraits
of the Lorenz DDE in Eq. (21) for some non-zero constant
delays are depicted in Fig. 2b–d. Case b is chaotic (with a
single positive Lyapunov exponent), while cases c and d rep-
resents brief transition to (quasi-) periodicity.

The delayed Lorenz system of Eq. (21) can also be hyper-
chaotic (with more than one positive Lyapunov exponent)
without any further change in the equations and just by set-
ting appropriate values of τ(t). The phase portraits of hyper-
chaotic attractors for two constant values of τ are depicted
in Fig. 3.

As an example of the case when τ is a function of time,
we consider a delay function which is used in [20,23], i.e.

τ (t) = τ0eε1t

1 + eε2t
(22)

The phase portraits of two chaotic attractors for the Lorenz
DDE in Eq. (21) with the time-varying delay in Eq. (22) for
two sets of values of τ0, ε1 and ε2 are depicted in Fig. 4. Note
that in Fig. 4a the delay function is monotonically decreasing,
so the phase portrait rather resembles the non-delayed Lorenz
attractor. In Fig. 4b, however, a monotonically increasing
delay function leads to a much more complicated attractor.

The technique proposed in Sect. 3 is utilized for calcu-
lating the Lyapunov exponents of the time-delayed Lorenz
system of Eq. (21) while a constant delay is used. Again after
performing a convergence study for multiple delay points,
the number of collocation points is chosen to be 60. The
four largest LEs of the time-delayed Lorenz system of Eq.
(21) are plotted versus delay for a range of constant values of
τ ∈ [0.1, 10] in Fig. 5. It can be seen that the system exhibits a

variety of different behavior including chaotic, hyperchaotic
(with one and two positive Lyapunov exponents), and even
a non-chaotic behavior depending on the value of the delay.
The numerical values of the four largest Lyapunov exponents
of the system for some values of constant delay are listed in
Table 2.

6.1.1 Chaotic Lorenz DDE with constant delay

Consider the Lorenz DDE of Eq. (21) with a constant delay of
τ = 1

6 whose chaotic attractor is depicted in Fig. 2b. Assum-
ing the parameters of the delayed oscillator a = [σ ρ β] to
be unknown, the Lorenz DDE of Eq. (21) can be written in
the form of filtering problem of Eq. (8) as

ẋ (t) = g (x (t) , x (t − τ) , a (t) , t) + G (t) v (t)

=
⎧

⎨

⎩

a1 (x2(t) − x1(t))
a2x1(t) − x2(t) − x1(t)x3(t)
x1(t)x2(t) − a3x3(t − τ(t))

⎫

⎬

⎭

+ G (t) v (t)

y (t) = h (x (t) , x (t−τ) , t)+J (t) w (t)=x (t)+J (t) w (t)

(23)

where G(t) and J(t) are assumed to be identity matrices
and the true values of the vector of unknown parameters are
assumed to be a = [a1 a2 a3] = [10 28 8/3]. The current
states are assumed to be directly measurable thus the mea-
surement function h = x (t) is used. The initial point of the
oscillator is chosen to be at x = [0.94, 0.27, 17.27] which
is a point on the attractor. In order to simulate the measure-
ments, the Lorenz DDE of Eq. (23) with true parameters
is integrated using the dde23 function in Matlab. Then, the
resulting time history after being corrupted by an additive
zero-mean Gaussian noise w (t) having a covariance of R is
applied in the simulation as the measured states. In order to
account for uncertainties in the model a zero-mean Gaussian
noise v (t) with a covariance of Q is added to the process
state.

The sufficient number of collocation points for CSCTA
based on a convergence study shown in Fig. 6a is m = 20.
A comparison between the response of the Lorenz DDE
with τ = 1

6 integrated by the Matlab dde23 integrator with
that obtained from integrating the set of ODEs acquired
from CSCTA with 20 collocation points using an 8th order
Runge-Kutta integrator is shown in Fig. 6b. The compari-
son clearly shows that the CSCTA approximation diverges
from the true solution within a short time. Increasing the
number of collocation points does not help. Thus, while
CSCTA is already shown to deliver good approximations
of the solution in case of highly nonlinear delayed systems
in [17], this discrepancy can obviously be attributed to the
chaotic nature of the delayed oscillator and sensitive depen-
dence on initial conditions. Therefore, a model based on
CSCTA contains enormous uncertainty in case of chaotic
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Table 2 Lyapunov exponents of
Lorenz DDE for different values
of delay

τ m λi=1,2,...,4 Behavior

0.01 20 0.91, 0.00, −14.64,−268.6 Chaotic

0.166 60 0.66, 0.00, −10.08, −12.65 Chaotic

1.00 80 0.00, −0.16, −0.17, −0.48 Quasi-periodic limit cycle

1.2 60 0.00, −0.13, −0.80, −1.01 Quasi-periodic limit cycle

4.00 60 0.88, 0.13, 0.00, −0.02 Hyperchaotic (2PLEs)

5.2 80 0.91, 0.15, 0.02, 0.00 Hyperchaotic (3PLEs)

Lorenz oscillator and model predictions are not reliable.
This source of uncertainty in the model obviously has larger
impact than the process noise. Despite the uncertainty of
the model, the resulting dynamics from CSCTA is a projec-
tion of the infinite-dimensional attractor on the correspond-
ing finite-dimensional subspace assumed by CSCTA, and
hence the Extended Kalman–Bucy Filter (EKBF) may still
be applied to simultaneously estimate all three states and all
three parameters of the system from a noise-corrupted mea-
surement. The estimation filtering sequence is initiated with
a first guess for the augmented estimated state to be 50 %
deviated from the true values. The initial error covariance
matrix, P0, the covariance of the measurement noise, R, and
the covariance of the process noise, Q are listed in Table 3.
The estimated states obtained by extended Kalman-Bucy fil-
ter along with the true state and the noise-corrupted measure-
ments are shown in Fig. 7. Also the estimation errors for all
three estimated states along with error covariance envelopes
(1σ) are plotted versus time in Fig. 7. The root mean square
errors (RMSE) of the estimated states, along with the esti-
mated values of the unknown parameters after 5 s are listed
in Table 3. As is clear from the results, the approach is capa-
ble of estimating the states and all parameters of the chaotic
Lorenz DDE with a good accuracy from a highly uncertain
model, a rough initial guess, and a highly noise-corrupted
measurement.

6.1.2 Hyperchaotic Lorenz DDE with constant delay

Chaos intrinsically induces a high sensitivity to infinitesi-
mal perturbations to the system. The extent of the sensitivity
of a dynamical system to infinitesimal perturbation is char-
acterized by the rate of separation of infinitesimally close
trajectories (Lyapunov exponent) and also by the number
of dimensions along which this expansion occurs (number
of positive Lyapunov exponents). In a chaotic attractor the
dynamics experience a one-dimensional expansion, that is,
the dynamics expand as a line segment (one positive Lya-
punov exponent). However, by definition hyperchaos is the
dynamics associated with a chaotic attractor with more than
one-dimensional expansion (more than one positive Lya-
punov exponent). Thus, if a hyperchaotic attractor has three

positive Lyapunov exponents, its dynamics expands as a vol-
ume element. This indicates that in a hyperchaotic oscilla-
tor the degree of the characteristic sensitivity under long-
term integration is significantly higher than that of a chaotic
oscillator. Therefore, the CSCTA-based model is expected
to exhibit a higher degree of uncertainty when applied to
approximate a hyperchaotic infinite-dimensional dynamics
rather than that of an infinite-dimensional chaotic dynamics.
It is noted that, unlike the case of a chaotic ODE such as
the standard Lorenz oscillator in which an additional state
is required to initiate hyperchaos, in the case of chaotic
DDEs due to the infinite-dimensional characteristic of DDEs,
only a slight change of parameter values is generally
necessary.

In order to verify the estimation technique under the chal-
lenging conditions of hyperchaos, the Lorenz DDE with
τ = 4 and τ = 5.2 which lead to hyperchaotic attractors with
2 and 3 positive Lyapunov exponents, respectively (whose
attractors are depicted in Fig. 3) are considered here for state
and parameter estimation. The procedure is repeated once
with a delay of τ = 4 and again with a delay of τ = 5.2
using a measurement noise, a process noise and an initial
error covariance as shown in Table 3. The estimation filter-
ing sequences in both cases are initiated with a first guess for
the augmented state to be 50 % deviated from the true values.
The estimated states obtained by the extended Kalman–Bucy
filter along with the estimation errors for all three estimated
states for the case of τ = 4 are shown in Fig. 8 and for
the case of τ = 5.2 are shown in Fig. 9. The RMSE of the
estimated states and the estimated values of the unknown
parameters after 5 s for both τ = 4 and τ = 5.2 are listed
in Table 3. Note that the average error of the estimated para-
meters for the hyperchaotic case with 3 positive Lyapunov
exponents (τ = 5.2), despite the lower level of noise applied,
is larger than for the hyperchaotic case with 2 positive Lya-
punov exponents (τ = 4). Also, the average error of the
estimated parameters for the hyperchaotic case with 2 posi-
tive Lyapunov exponents (τ = 4), is higher larger than that
of the chaotic case (τ = 1/6) studied in previous section.
This clearly indicates the higher degree of uncertainty of the
model due to the larger number of positive Lyapunov expo-
nents in the case hyperchaotic Lorenz DDEs.
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Fig. 7 States of the chaotic case of the Lorenz DDE (σ = 10, ρ = 28, β = 8/3, τ = 1/6) initiated at x = [0.94, 0.27, 17.27] estimated using
EKBF along with the estimation error (solid line) and 1σ error covariance envelope (dotted line) of EKBF
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Fig. 8 States of the hyperchaotic case of delayed Lorenz system (σ = 10, ρ = 28, β = 8/3, τ = 4) initiated at x = [2, 1, 1] estimated using
EKBF along with the estimation error (solid line) and 1σ error covariance envelope (dotted line) of EKBF
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Fig. 9 States of the hyperchaotic case of the Lorenz DDE (σ = 10, ρ = 28, β = 8/3, τ = 5.2) initiated at x = [2, 1, 1] estimated using EKBF
along with the estimation error (solid line) and 1σ error covariance envelope (dotted line) of EKBF
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Fig. 10 States of the Lorenz DDE with the time varying delay of Eq. (22) (σ = 10, ρ = 28, β = 8
3 , τ0 = 0.01, ε1 = 1.1, ε2 = 1) estimated using

EKBF along with the estimation error (solid line) and 3σ error covariance envelope (dotted line) of EKBF

6.1.3 Lorenz DDE with nonlinear time-varying delay

The capability of the proposed estimation technique in esti-
mating the parameters and states of a time delayed system

with time-varying delay is assessed using the Lorenz DDE
of Eq. (21) with the time-varying delay of Eq. (22). The val-
ues of coefficients τ0, ε1 and ε2 used for this simulation are
τ0 = 0.01, ε1 = 1.1 and ε2 = 1 which corresponds to the
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Fig. 11 Unknown constant delay of the quasi-periodic, chaotic and hyperchaotic cases of the Lorenz DDE with σ = 10, ρ = 28, β = 8
3 estimated

using EKBF. The initial guess used for the delay are a τ̂0 = 10, b τ̂0 = 1/4, c τ̂0 = 6. true values of the delay are a τ = 1, b τ = 1/6, c τ = 4

Table 4 State and delay estimation of quasi-periodic, chaotic and hyperchaotic cases of the Lorenz DDE with constant delay

τ Initial deviation (%) Q R P(t = 0) Delay estimation State estimation RMSE

τ̂ Error (%) x̂1 x̂2 x̂3

Chaotic case of
the Lorenz
DDE (with
constant delay)

1
6 50 0.01I 0.01I 0.1I 0.1679 0.78 0.0155 0.0226 0.0184

Quasi-periodic
case of the
Lorenz DDE
(with constant
delay)

1.00 1,000 I I 10I 0.997 0.3 1.8785 2.9130 7.3430

Hyperchaotic
case of the
Lorenz DDE
(with constant
delay)

4.00 50 0.01I 0.01I 0.1I 4.096 2.4 0.1760 0.2043 1.6009

attractor depicted in Fig. 4b. Again the vector of unknown
parameters is assumed to be a = [a1 a2 a3] = [10 28 8/3].
In order to simulate the measurements, the Lorenz DDE of
Eq. (21) with the time-varying delay of Eq. (22) and with

true parameters is integrated in Matlab this time using the
ddesd function which is designed to handle DDE integration
with time or state-dependant delay. The integrated response
is used as the measured states in the simulation after adding
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Fig. 12 Estimation of parameters and the delay of the quasi-periodic Lorenz DDE (σ = 10, ρ = 28, β = 8/3, τ = 1) along with the states
estimation error (solid line) and 3σ error covariance envelope (dotted line) of EKBF
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Fig. 13 Estimation of parameters and the delay of the hyperchaotic Lorenz DDE (σ = 10, ρ = 28, β = 8/3, τ = 4) along with the states
estimation error (solid line) and 3σ error covariance envelope (dotted line) of EKBF
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Fig. 14 Phase portrait of the chaotic Hopfield neural network of Eq. (24). With constant delay as in Eq. (25) (left) and time-varying delay as in
Eq. (26) (right)

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

8

Time (sec)

x(
t)

x1(t) integrating DDE

x2(t) integrating DDE

x1(t) integrating the CSCTA of DDE

x2(t) integrating the CSCTA of DDE

Fig. 15 Chaotic Hopfield neural network of Eq. (24). With constant
delay and parameters of Eq. (25) initiated at x = [−0.9, 3.2] obtained
from integrating the CSCTA of the DDE compared with those obtained

through integrating the original DDE to show the uncertainty in the
predictions of the CSCTA-based model

noise to it. Again the response collected through a measure-
ment function of h = x (t). A convergence study shows that
the time-series of the response within the first 5 s can be
accurately generated through the approximated set of ODEs
using 20 collocation points. Therefore, the CSCTA-based
model in this case produces reliable predictions and the sole
source of uncertainty is the process noise v (t). Using the
CTA, the augmented-state filtering problem can be put in the
form of Eq. (10), however, with the time-varying delay of

Eq. (22). The EKBF is applied to simultaneously estimate
all three states and all three parameters of the system from a
noise-corrupted measurement.

The estimation filtering sequence is initiated with a first
guess for the augmented state to be 50 % deviated from the
true values and using a measurement noise, a process noise
and an initial error covariance of R = I, Q = I and P0 = 10I,
respectively. The estimated states obtained by the EKBF
along with the true state and the noise-corrupted measure-
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ments are shown in Fig. 10. Also the estimation errors for all
three estimated states along with error covariance envelopes
(3σ) are plotted versus time in Fig. 10. The RMSE of the esti-
mated states, along with the estimated values of the unknown
parameters after 5 s are listed in Table 3. As is clear from the
results, the approach is capable of accurately estimating the
states and all parameters of the chaotic Lorenz DDE with a
time-varying delay from a rather uncertain model, a rough
initial guess, and a noise-corrupted measurement with only
a negligible percentage of error.

6.1.4 Delay estimation in Lorenz DDE with constant delay

The proposed estimation technique is applied here for delay
and state estimation in the time delayed Lorenz system. Con-
sider Eq. (10) when a constant delay is used i.e. τ (t) = τ .
Two different approaches were described in Sect. 4 for delay
estimation. Attempts to use the current estimation technique
for delay estimation in this system while using the first
approach produce poor results due to the complexity it bur-
dens to the highly nonlinear time delayed system. However,
if we take the second approach and change the variable t
into t̃ = t

τ
and also write the derivative d

dt in terms of the
new variable t̃ , then the delay term in the operator ˜A(t) will
vanish (except for its presence in A, B). Therefore, the delay
term in the new format of Eq. (10) will appear as coeffi-
cients in A, B and g matrices and it can now be treated
as a parameter of the system. Then, a similar procedure
as used for simultaneous estimation of states and parame-
ters is applied for simultaneous estimation of states and the
delay.

The estimation procedure is applied independently for the
chaotic, quasi-periodic and hyperchaotic cases when the true
values of the delay are τ = 1

6 , 1 and 4. The covariance of
the measurement and process noise as well as the initial error
covariance used for each case are listed in Table 4. The esti-
mation filtering sequence is initiated with a first guess for the
augmented state 50 % deviated from the true values in the
chaotic case of τ = 1

6 as well as in the hyperchaotic case
of τ = 4. However, in the quasi-periodic case of τ = 1, the
initial guess for the augmented state is chosen to be ten times
the true value. The time evolution of the estimated delay
obtained by extended Kalman–Bucy filter for all three cases
of τ = 1

6 , τ = 4 and τ = 1 are shown in Fig. 11a –c, respec-
tively. The RMSE of the estimated states and the estimated
values of the unknown delay after 5 s are listed in Table 4.

The comparison of the results of this part with those of
Sects. 6.2.1 and 6.2.2 shows that the error of the estimated
delay for the chaotic and hyperchaotic cases are generally
higher than those of the other estimated parameters despite
of the lower level of noise used for delay estimation problem.
However, the approach seems to be more robust against a

large initial error in the delay than it is against a large initial
error in the parameters.

6.1.5 Simultaneous estimation of states, parameters
and delay

In this section the approach is applied to simultaneously esti-
mate all three states of the system, all three parameters of the
system, and the delay. Again the change of variable t̃ = t

τ

is used to make the delay term appear as a coefficient of the
system. The procedure is implemented for two cases includ-
ing one quasi-periodic and one hyperchaotic. The true value
of the unknown delay for the quasi-periodic case is assumed
to be τ = 1 and for the hyperchaotic case to be τ = 4. The
covariance of the measurement and process noise as well
as the initial error covariance used for each case are listed
in Table 5. The estimated parameters and delay obtained by
extended Kalman–Bucy filter for the quasi-periodic cases of
τ = 1 and the hyperchaotic case of τ = 4 along with the esti-
mation errors for the estimated states are shown in Figs. 12
and 13, respectively. The RMSE of the estimated states and
the estimated values of the unknown delay and the unknown
parameters after 5 s are listed in Table 5. The results clearly
show that assuming both the delay and the parameters of the
system to be unknown significantly reduces the accuracy of
the approach. As is expected, the accuracy is reduced more
for the hyperchaotic case than for the quasi-periodic case.

6.2 Hopfield neural network model

Consider a nonlinear DDE with a single discrete time-varying
delay of the form

ẋ (t) = A x (t) + B x (t − τ) + C F1 (t, x (t))

+D F2 (t, x (t − τ (t))) + I (24)

The nonlinear DDE above is a neural network model
known as delayed Hopfield neural network where x (t) εR

n

is the state vector associated with the neurons, A is a nega-
tive diagonal matrix, C is the connection weight matrix D is
the delayed connection matrix, and I represents the external
input. τ (t) ≥ 0 is the inevitable time-delay first realized by
Hopfield [44] which occurs in hardware implementation of
neural network model due to the finite switching speed of the
amplifiers. F1()εR

n and F2()εR
n are the activation functions

of the neurons. Here in this study we consider a two-neuron
network, i.e. n = 2 with no external input (I = 0), an acti-
vation function F1(t, x) = F2(t, x) = tanh(x) and B = 0.

Two different cases are considered based on the time-
delay being constant or time-varying. For the case of con-
stant time-delay, if we consider the delay τ and the matrices
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Fig. 16 States of the chaotic Hopfield neural network of Eq. (24). With the delay and parameters of Eq. (25) estimated using EKBF along with
the time evolution of the estimated parameters

A = ai j , C = ci j and D = di j as

τ = 1, A =
[−1 0

0 −1

]

, C =
[

2 −0.1
−5 c22

]

,

D =
[−1.5 −0.1

−0.2 d22

]

(25)

and set c22 and d22as bifurcation parameters, by increasing
c22 from c22 = 0.3 and decreasing d22 from d22 = 0.2
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Fig. 17 Estimated parameters of chaotic Hopfield delayed neural network with time varying delay using current approach (top) compared with
those in [20] (bottom)

while keeping c22 + d22 = 0.5, the system exhibits a period-
doubling route to chaos [45]. Eventually at c22 = 3 and d22 =
−2.5, the oscillator exhibits a fully-developed double-scroll
chaotic attractor. The phase portrait of the chaotic attractor
is depicted in Fig. 14a. For the case of time-varying delay, if
the delay τ(t) and the matrices A, C and D are considered as

τ(t) = et

1 + et
, A =

[−1 0
0 −1

]

, C =
[

2 −0.1
−5 3.2

]

,

D =
[−1.6 −0.1

−0.18 −2.4

]

(26)

The delayed oscillator exhibits chaotic behavior. The phase
portrait of the chaotic attractor is depicted in Fig. 14b.

6.2.1 Chaotic Hopfield neural network with constant delay

The proposed estimation procedure is applied for the neural
network model of Eq. (24) with constant delay and parame-
ters selected as those of Eq. (25) which leads to a chaotic
delayed oscillator. A comparison between the response of
the Hopfield neural network with τ = 1 integrated by the
Matlab dde23 integrator with that obtained from integrat-
ing the set of ODEs acquired from CSCTA with 20 col-
location points using an 8th order Runge–Kutta integrator

is shown in Fig. 15. The comparison clearly shows that
owing to the chaotic nature of the delayed oscillator CSCTA
gives only a very rough approximation of the solution of the
infinite-dimensional oscillator. Despite of the existence of
such uncertainty in the process model, the filtering approach
is employed to estimate the parameters of the system from
a noise-corrupted measurement. The covariance of the mea-
surement and process noise as well as the initial error covari-
ance used for each case are listed in Table 6. The estimation
filtering sequence is initiated with a first guess for the aug-
mented state 50% deviated from the true values. The esti-
mated states and the time evolution of the estimated parame-
ters obtained by extended Kalman-Bucy filter using uncertain
CSCTA-based model and noise-corrupted measurement are
shown in Fig. 16. The RMSE of the estimated states are also
listed in Table 6.

6.2.2 Chaotic Hopfield neural network with nonlinear
time-varying delay

The proposed estimation procedure is applied for the neural
network model of Eq. (24) with the delay and parameters
selected as those of Eq. (26) which leads to a chaotic delayed
oscillator with time-varying delay. Since parameter estima-
tion for this system with the same parameters and delay
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Fig. 18 Estimated parameters of chaotic Hopfield delayed neural network with time varying delay using current approach (up) compared with
those of reference [23] (down)
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as those shown in Eq. (26) has previously been studied in
[20,23], this system is considered here in order to compare
the performance of the current technique with those existing
methods. In [20], the unknown parameters to be estimated are
c11, c22, d11and d22 and measurement noise is added only to
the state x1 while there is no process noise or any uncer-
tainty present in the model. A combination of synchroniza-
tion based on dynamical feedback with an adaptive evolution
for the unknown parameters is used for parameter estima-
tion in [20]. We here use our proposed approach while the
same parameters are assumed to be unknown, however, we
consider measurements for both states to be corrupted with
noise (R = 1 × 10−3I) and the model to have both uncer-
tainty (due to the chaotic nature of the system) and process
noise (Q = 1×10−3I). The time evolution of the parameters
obtained from the current estimation technique is compared
with those from [20] in Fig. 17. Since no numerical accuracy
of the estimated parameters is given in [20], only a qualitative
comparison can be made. As is clear from the figure, despite
of the existence of model uncertainty and measurement noise
in both states, the current method converges to the true values
of parameters within 100 s while the approach used in [20]
takes 300 s to converge.

In [23], chaos synchronization is used for parameter iden-
tification of chaotic delayed system of Eq. (24) with vary-
ing time-delay through using an adaptive feedback controller
based on the Razumikhin condition and the invariance prin-
ciple of functional differential equations in the framework
of Lyapunov–Krasovskii theory. The unknown parameters
in that study are a11, c12 and d22 and the uncertainties of
the model are taken into account but the measurements are
assumed to be free of noise. We assume the same parameters
to be unknown, however, in our simulation measurements
are noise-corrupted (R = 1 × 10−3I) and the model has
uncertainty and process noise (Q = 1 × 10−4I). The ini-
tial conditions of the unknown parameters and those of the
states are selected according to [23]. The time evolution of
the parameters obtained from the current estimation tech-
nique is compared with those from [23] in Fig. 18. Again
since no numerical accuracy of the estimated parameters is
given in [23], only a qualitative comparison can be made.
The results show that despite of the existence of model uncer-
tainty and measurement noise, the current method results in
a faster convergence. While the current approach converges
to the true values of parameters within 100 s, the approach
used in [23] takes 500 s to converge.

7 Conclusions

A novel approach in parameter, delay and state estimation
of chaotic and hyperchaotic delayed systems is proposed
through exploiting optimal filtering along with CTA. The

proposed approach is general and is applicable to the gen-
eral form of a nonlinear time-varying DDE with time vary-
ing delay which includes all well-known delayed systems.
The proposed approach is successfully implemented on a
variety of forms of the delayed Lorenz system and Hopfield
neural network with constant and time-varying delay. The
model used in the estimation approach contains two differ-
ent sources of uncertainties: (1) process noise and (2) the
inaccuracy of the CTA which produces large uncertainties in
the stats of chaotic and hyperchaotic systems. The extended
Kalman–Bucy filter is used to estimate the noise free state
as well as the unknown parameters from noise-corrupted
measurements. The approach is also shown to be capable
of estimating the delay simultaneously with the states of the
chaotic system. The approach has been shown to be quite
robust against enormous uncertainty of the model, high mea-
surement noise, and large initial errors. One reason for this is
due to the fact that, although CSCTA cannot accurately pre-
dict the true state of the delayed system at any given instant
(unlike the case of non-chaotic linear and nonlinear systems
for which CSCTA has been shown to produce accurate state
prediction), the chaotic attractor of the finite-dimensional
approximation is an accurate projection of the true attrac-
tor onto the finite-dimensional state. Also in this paper an
innovative technique is proposed to approximately compute
the Les of a delayed system through utilizing CSCTA.

The proposed filtering technique is a sequential technique
that is capable of estimating all parameters of the system at
once in presence of uncertainty in the model. In this approach,
unlike the techniques used by other authors [21,22], the
effects of uncertainties of the model and external disturbance
(noise) of the measurements are taken into account through
employing stochastic estimation. Two main advantages of
the proposed approach compared with the optimization tech-
niques used by other authors [16,21,22], are:

• Optimization techniques require the entire history of
observation while in sequential techniques only the most
recent observation in needed and the algorithm can be
terminated upon satisfaction of a stopping rule.

• In optimization techniques such as least squares, the
dimensions of the matrices increase with time while in
sequential filtering the dimensions are fixed throughout
the procedure.

Due to the relatively fast convergence of the sequential
filtering technique, this approach relies on a limited length
of measured data set (as short as 5 s in some examples studied
here).

Acknowledgments Financial support from the National Science
Foundation, under the Grant No. CMMI-0900289 is gratefully appre-
ciated.

123



Delay, state, and parameter estimation in chaotic and hyperchaotic delayed systems 163

References

1. Mackey MC, Glass L (1977) Oscillation and chaos in physiological
control systems. Science 197:287–9

2. Sun J (2004) Global synchronization criteria with channel time-
delay for chaotic time-delay systems. Chaos Solitons Fractals
21:967–975

3. Lu H, He Z (1996) Chaotic behavior in first-order autonomous
continuous-time systems with delay. IEEE Trans Circuits Syst
43:700–702

4. Sun JT, Zhang YP, Liu YQ, Deng FQ (2002) Exponential stability
of interval dynamical system with multidelay. J Appl Math Mech
31(1):95–99

5. Lu H, He Z (1996) Chaotic behavior in first order autonomous
continuous time system with delay. IEEE Trans Circuits Syst I
43:700–702

6. Gwynne P (2001) Physicist who makes cash from chaos. Phys
World 9:9–9

7. Kocarev L, Parlitz U (1995) General approach for chaotic syn-
chronization with applications to communication. Phys Rev Lett
74:5028

8. Sivaprakasam S, Shore KA (2000) Critical signal strength for effec-
tive decoding in diode laser chaotic optical communications. Phys
Rev E 61:5997–5999

9. Liu YW, Ge GM, Zhao H, Wang YH, Gao L (2000) Synchro-
nization of hyperchaotic harmonics in time-delay systems and its
application to secure communication. Phys Rev E 62:7898

10. Torkamani S, Butcher EA, Todd MD, Park GP (2012) Hyperchaotic
probe for damage identification using nonlinear prediction error.
Mech Syst Signal Process 29:457–473

11. Torkamani S, Butcher EA, Todd MD, Park GP (2011) Detection of
system changes due to damage using a tuned hyperchaotic probe.
Smart Mater Struct 20:025006

12. Orlov Y, Belkoura L, Richard JP, Dambrine M (2002) On-line para-
meter identification of linear time delay systems. In: Proceedings
of the 41st IEEE conference on decision and control. Las Vegas,
NV, pp 630–635

13. Mann BP, Young KA (2006) An empirical approach for delayed
oscillator stability and parametric identification. Proc R Soc A
462:2145–2160

14. Torkamani S, Butcher EA, Khasawneh FA (2012) Parameter iden-
tification in periodic delay differential equations with distributed
delay. Commun Nonlinear Sci Numer Simul 18(4):1016–1026

15. Basin M, Shi P, Calderon -Alvarez D, (2008) Optimal state fil-
tering and parameter identification for linear time-delay systems.
In: Proceedings of the American control conference, Seattle,
pp 7–12

16. Deshmukh V (2011) Parametric estimation for delayed nonlin-
ear time-varying dynamical systems. J Comput Nonlinear Dyn
6:041003

17. Torkamani S, Butcher EA (2013) Optimal parameter and state esti-
mation in stochastic time-varying systems with time delay. Com-
mun Nonlinear Sci Numer Simul 18(8):2188–2201

18. Torkamani S, Butcher EA (2013) Stochastic parameter estimation
in nonlinear time-delayed vibratory systems with distributed delay.
J Sound Vib 332(14):3404–3418

19. Rakshit B, Chowdhury AR, Saha P (2007) Parameter estimation
of a delay dynamical system using synchronization in presence of
noise. Chaos Solitons Fractals 32:1278–1284

20. Lu JQ, Cao JD (2007) Synchronization-based approach for para-
meters identification in delayed chaotic neural networks. Physica
A 382:672–82

21. Tang Y, Guan X (2009) Parameter estimation for time-delay chaotic
systems by particle swarm optimization. Chaos Solitons Fractals
40:1391–1398

22. Tang Y, Guan X (2009) Parameter estimation of chaotic system
with time-delay: a differential evolution approach. Chaos Solitons
Fractals 42:3132–3139

23. Sun Z, Yang X (2010) Parameters identification and synchroniza-
tion of chaotic delayed systems containing uncertainties and time-
varying delay. Math Prob Eng. doi:10.1155/2010/105309

24. Kosko B (1988) Bidirectional associative memories. IEEE Trans
Syst Man Cybern 18(1):49–60

25. Mackey MC, Glass L (1977) Oscillation and chaos in physiological
control systems. Science 197(4300):287–289

26. Cao J, Lu J (2006) Adaptive synchronization of neural networks
with or without time-varying delay. Chaos 16(1): 013133

27. Sun Z, Xu W, Yang X, Fang T (2006) Inducing or suppressing
chaos in a double-well duffing oscillator by time delay feedback.
Chaos Solitons Fractals 27(3):705–714

28. Li L, Peng H, Yang Y, Wang X (2009) On the chaotic synchro-
nization of Lorenz systems with time-varying lags. Chaos Solitons
Fractals 41:783–794

29. Chua LO, Yang L (1988) Cellular neuaral network: theory. IEEE
Trans Circuits Syst 35(10):1257–1272

30. Batkai A, Piazerra S (2005) Semigroups for delay equations.
Research notes in mathematics, vol 10. A.K. Peters Ltd., Wellesly

31. Michiels W, Niculescu SI (2008) Stability and stabilization of
time-delay systems: an Eigenvalue-based approach. SIAM Press,
Philadelphia

32. Sun J-Q (2008) A method of continuous time approximation of
delayed dynamical systems. Commun Nonlinear Sci Numer Simul
14(4):998–1007

33. Hale JK, Verduyn Lunel S (1993) Introduction to functional differ-
ential equations. Springer, New York

34. Sun J-Q, Song B (2009) Control studies of time-delayed dynam-
ical systems with the method of continuous time approximation.
Commun Nonlinear Sci Numer Simul 14:3933–3944

35. Butcher EA, Bobrenkov OA (2011) On the Chebyshev spectral con-
tinuous time approximation for constant and periodic delay differ-
ential equations. Commun Nonlinear Sci Numer Simul 16:1541–
1554

36. Fox L, Parker IB (1968) Chebyshev polynomials in numerical
analysis. Oxford University Press, London

37. Wolf A, Swift J, Swinney H, Vastano J (1985) Determining Lya-
punov exponents from a time series. Physica D 16:285

38. Farmer JD (1982) Chaotic attractors of an infinite-dimensional
dynamical system. Physica 4D:366–393

39. Ghosh D, Chowdhury R, Saha P (2008) Multiple delay Rossler
system: bifurcation and chaos control. Chaos Solitons Fractals
35:472–485

40. Jazwinski AH (1970) Stochastic processes and filtering theory.
Academic, New York

41. Torkamani S (2013) Hyperchaotic and delayed oscillators for sys-
tem identification with application to damage assessment. PhD Dis-
sertation, New Mexico State University

42. Benettin G, Galgani L, Giorgilli A, Strelcyn J-M (1980) Lyapunov
characteristic exponents for smooth dynamical systems and for
Hamiltonian systems: a method for computing all of them. Mecca-
nica 15:9

43. Shimada I, Nagashima T (1979) A numerical approach to ergodic
problem of dissipative dynamical systems. Prog Theor Phys
61:1605

44. Hopfield JJ (1984) Neurons with graded response have collective
computational properties like those of two-state neurons. Proc Natl
Acad Sci USA 81:3088–3092

45. Lu H (2002) Chaotic attractors in delayed neural networks. Phys
Lett A 298:109–116

123

http://dx.doi.org/10.1155/2010/105309

	Delay, state, and parameter estimation in chaotic and hyperchaotic delayed systems with uncertainty and time-varying delay
	Abstract 
	1 Introduction
	2 Spectral CTA
	3 Computing Lyapunov exponents of a DDE
	4 Estimation problem in the form of optimal filtering
	5 Extended Kalman--Bucy filters
	6 Estimation results
	6.1 Time-delayed Lorenz oscillator
	6.1.1 Chaotic Lorenz DDE with constant delay
	6.1.2 Hyperchaotic Lorenz DDE with constant delay
	6.1.3 Lorenz DDE with nonlinear time-varying delay
	6.1.4 Delay estimation in Lorenz DDE with constant delay
	6.1.5 Simultaneous estimation of states, parameters  and delay

	6.2 Hopfield neural network model
	6.2.1 Chaotic Hopfield neural network with constant delay
	6.2.2 Chaotic Hopfield neural network with nonlinear time-varying delay


	7 Conclusions
	Acknowledgments
	References


