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Abstract
Designing safe and tailored strategies for robotic therapy requires the knowledge of patient joint torques, allowing con-
trol strategies to adjust the torque level provided by the robotic device according to the patient’s performance. Given the 
impracticability of measuring human joint torques directly, many works in the area have used estimation techniques that 
require complex calibration and signal processing or introduce uncertainty in their system modeling. This paper evaluates 
three disturbance observer techniques for estimating ankle joint torque as an alternative solution. Based on the generalized 
momentum and Kalman filter methodologies, the approaches were implemented on a robotic device for ankle rehabilitation. 
They were evaluated on six healthy voluntary users for sitting position movements. The techniques demonstrated effective-
ness in estimating human joint torque across three distinct human–robot interaction modes, with performance evaluation 
through normalized root-mean-square error (NRMSE) metrics. Statistical analysis, including ANOVA, Kruskal–Wallis, and 
Dunn’s post hoc tests, was employed to assess approach performance and impact effects under different configuration settings. 
These analyses highlighted significant differences in performance among the techniques, enhancing the understanding of the 
estimation approaches and highlighting their potential integration into robotic rehabilitation settings.

Keywords Robotic rehabilitation · Ankle joint · Torque estimation · Disturbance observer · Generalized momentum · 
Kalman filter

1 Introduction

In physical therapy, understanding patient joint torques is 
essential for muscle strength assessment and evaluation 
of neuromuscular impairment [1]. In clinical and research 

settings, the isometric and isokinetic dynamometers are 
commonly used devices for muscle strength assessment. 
They can measure the human joint torques while provid-
ing isometric or concentric resistance training of the limbs 
at constant angular joint velocity [2]. Nevertheless, these 
dynamometers do not consider issues associated with gravi-
tational torques [3] that need to be compensated as well as 
passive torques introduced by the viscoelastic properties of 
the limbs [4]. A broader explanation of the above issue can 
be found in [5, 6].

Knowledge of human joint torques is also essential for 
other robotic rehabilitation devices, such as exoskeletons and 
platforms, to guarantee safe physical human–robot interac-
tion [7, 8] and to achieve adaptive robot assistance accord-
ing to the patient’s participation during the therapy session 
[9]. Nevertheless, in practice, human joint torques cannot 
be measured directly. Hence, the estimation of such torques 
turns out to be an ongoing challenge in the field of assis-
tance and rehabilitation robotics. It is worth noting that this 
study specifically focuses on dealing with torque rather than 
Joint Contact Forces (JCF), given the direct significance 
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of rotational forces in the field of robotic rehabilitation 
[10–12]. While JCF encompasses a broader spectrum of 
musculoskeletal forces, torque, specifically refers to the 
rotational forces that are central to the physical interaction 
between the patient and the robotic device. The distinction 
between these terms has been underscored in notable works 
in the biomechanics literature [13–15].

The most relevant works in the literature have estimated 
human joint torques either by inverse dynamics [16–18] or 
by electromyography (EMG) [19–21]. Despite the benefits 
of using inverse dynamics, body segment inertial param-
eters are estimated from pre-existing anthropometric data, 
introducing uncertainty in the system modeling. In addition, 
kinematic data contain significant measurement errors due to 
inaccurate localization and misalignment of markers during 
motion capture [22]. Regarding electromyography, electrode 
fixation is time-consuming, it requires calibration measure-
ment, and signal processing can be complicated.

An alternative approach for robotic rehabilitation is to 
assume human dynamic behavior as the main source of dis-
turbance inputs of the robotic system [23–27], that is, to treat 
the human joint torques as disturbances to be estimated. In 
robotic control system design, disturbance observer (DOB) 
[28] has been a useful technique for estimating unmeasur-
able load torques. It was initially designed for robotic indus-
trial applications to compensate for the effect of destabi-
lizing perturbations produced by the unknown external 
environment, unmodeled dynamics, or even uncertainties 
in the modeling [29, 30] and more recently in [31]. Based on 
the assumption that human joint torques can be considered 
as disturbance inputs, disturbance observers have been used 
to estimate upper-limb joint torques in robotic rehabilitation 
scenarios [32–34]. One of the benefits of using DOB for 
human torque estimation is that it only requires the measure-
ment of joint angles, velocities, and robotic signals (current, 
voltage, and motor torque). Another well-adopted technique 
from robotic applications to estimate external torques is the 
generalized momentum observer (GMO) [35, 36]. It is a 
DOB-based approach that predicts the changes of momen-
tum at the robot when contact with the environment occurs. 
Compared with the inverse dynamic approaches, the GMO 
does not need the computation of inverse inertia matrices. 
Also, it avoids the calculation of acceleration that introduces 
noise and delays [37].

The Kalman filter (KF) is another technique used for 
torque estimation in robotic scenarios [38, 39]. It provides 
an optimal estimate even in the presence of noise measure-
ments. As a disturbance observer, the process model of the 
Kalman filter is augmented considering a disturbance model 
[40]. The Kalman filter can also be combined with the gen-
eralized momentum to estimate unknown external forces/
torques in robotic scenarios [41]. DOB-based approaches for 
joint torque estimation in upper-limb robotic rehabilitation 

systems were found in [32, 33, 42]. On the other hand, there 
is a lack of research studies for lower limb in robotic rehabil-
itation systems. Some works for knee joint were reported in 
[43–45]. Nevertheless, most of these works assessed torque 
estimation performance by comparing it with EMG signals.

As an effort to develop techniques for estimating the 
human torque in lower-limb robotic scenarios, in this 
paper, we present the implementation of three DOB-based 
approaches for ankle torque estimation using the Anklebot 
robot [46]. The approaches are the generalized momentum 
observer, the Kalman filter augmented with a disturbance 
model, and the Kalman filter combined with the generalized 
momentum. To the best of our knowledge, in robotic reha-
bilitation, none of those mentioned techniques was found to 
be implemented for ankle torque estimation. The remainder 
of this paper is organized as follows. Section 2 describes 
the methods. Section 3 presents the implementation of the 
estimation approaches on voluntary users. Finally, Sect. 4 
presents the discussion and conclusions.

2  Methods

2.1  Experimental setup

The approaches were implemented on the Anklebot [46], a 
robot device oriented for the research of ankle rehabilita-
tion. The Anklebot is a backdrivable robot with low intrinsic 
mechanical impedance, designed to be used in therapeutic 
assistance training to help people who have suffered from 
brain damage by restoring the range of motion and strength 
of the ankle. It operates through a control strategy that regu-
lates the dynamic relationship between actuator torque and 
the desired joint angle trajectory. This relationship is gov-
erned by the control law:

where �ref and � are the ankle’s reference trajectory and 
actual angular position in the dorsi- and plantar-flexion 
directions, respectively. �̇� represents the angular velocity. 
Kv and Bv are control gains representing virtual stiffness and 
damping, respectively. In this work, the Anklebot is oper-
ated only in the dorsi-/plantar-flexion direction. To provide 
a method for verification of the estimates, a customized 
ankle–foot orthosis (AFO) was assembled, and it is equipped 
with on its back a miniature load cell that measures tension 
and compression forces within a range of 0–5 KgF (50 N). 
During the experiments, the users wear the AFO to measure 
the ankle torque for movements in the sagittal plane. The 
torque provided by the load cell on the AFO is equivalent 
to measuring the ankle joint torque if considered a simple 
hinge joint.

(1)𝜏r = Kv(𝜃ref − 𝜃) + Bv�̇�,
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Experiments were conducted with six voluntary users 
regarding the physical activity they may perform in a train-
ing session with this robot (Fig. 1a). The experimental pro-
tocol was approved by the Ethics Committee of the Federal 
University of São Carlos (Number 26054813.1.0000.5504). 
The users have given informed consent to the investigations. 
The experiments follow the control diagram described in 
Fig. 2. Since compensation or rejection of disturbance is out 
of scope, the torque estimation approaches are programmed 
on the Anklebot robot so that they are executed simultane-
ously without affecting the control system.

2.2  Physical human–robot interaction 
configurations during experiments

Depending on the physical activity, the representation of 
human joint mechanical impedance as spring–damper 
lumped systems had been treated either as being constant 
[47–49] or variable [50, 51]. When using the Anklebot for 
sitting position training, the translational movement of the 
thigh and knee is restricted by securing the knee brace to a 
perforated metal sheet attached to the chair. Consequently, 
the ankle does not bear any load nor contacts the ground, 
leading to minimal variation in ankle joint impedance 
parameters, which can thus be regarded as constant. With 
this premise, the methodology accounted for three operation 
modes reflecting different types of physical human–robot 
interaction during Anklebot training sessions:

Passive mode In this mode, participants allowed their 
ankles to remain relaxed, not resisting the robot’s guidance. 
This condition is characterized by low mechanical imped-
ance, resulting in ankle torques that are anticipated to be 
comparable to the load cell measurements.

Resistive mode Participants actively resisted the robot’s 
movements, which increases their mechanical impedance 
compared to the passive mode. If the participant maintained 
a neutral ankle position, load cell torque readings would be 
minimized, effectively counteracting the robot’s efforts.

Cooperative mode This mode required participants to 
follow a predefined trajectory with reduced control gains, 
decreasing the robot’s torque assistance and requiring a greater 
effort from the user. The ankle mechanical impedance in this 
mode is averaged between those of the passive and resistive 
modes.

During all interaction modes, participants received online 
visual feedback on a screen, displaying both the reference tra-
jectory and their current ankle position, facilitated by a graphi-
cal interface.

2.2.1  Description of the types of experiments 
for the assessment of the techniques

Ankle torque and trajectory in robotic-assisted training typi-
cally exhibit patterned behaviors, which can be effectively 
modeled using sinusoidal functions. For this study, we defined 
two distinct reference trajectories for the robotic control sys-
tem to simulate during evaluations: a simple sine wave and a 
more complex gait-shaped trajectory. The mathematical model 
generating such signals is given by the following sum of sines 
function [52, 53]:

where nd represents the number of sine functions making up 
the signal, the function is set as n = 1 , for the pure sine and, 

(2)𝜃ref(t) =

nd∑
n=1

an sin(𝜔nt + 𝜙n), t > 0

Fig. 1  Experimental setup. a 
Configuration of the experi-
ments with a user wearing the 
Anklebot. b Diagram showing 
during the customized AFO 
equipped with the load cell
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n = 3 , for the gait-shaped trajectory. For each n-th element, 
the terms an , �n , and �n stand for the amplitude, frequency, 
and phase, respectively. The frequency is expressed in rad/s, 
that is, �n = 2�fn , where fn is the frequency in Hertz. Table 1 
shows the parameters used in all experiments. Experiment 1 
uses a single set of parameters with n = 1 for the basic sine 

wave, while Experiments 2 and 3 use three sets of param-
eters (n = 1, 2, 3) to define the gait-shaped trajectory.

Experiment 1: simple flexion–extension movements. 
The initial type of experiment commanded the Anklebot 
to track a simple sinusoidal reference ( �ref ) with specified 
amplitude and frequency settings for 60 s. For safety, the 

Fig. 2  Schematic for the 
proposed torque estimation 
approaches. The generalized 
momentum observer (GMO), 
the augmented Kalman filter 
(KF), and the Kalman filter 
based on momentum dynamics 
(KF-M) approaches are imple-
mented simultaneously and are 
not fed back into the robotic 
control system
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virtual stiffness and damping of the impedance controller 
were set as Kv = 30 N m/rad and Bv = 5 N m s/rad, respec-
tively. These settings were selected based on knowledge 
of Anklebot impedance responses and supported by the 
previous studies [27, 54], ensuring that the torque gener-
ated by the robot remains within a safe range that is neither 
too forceful to cause harm nor too weak to be ineffective. 
Throughout the trial, participants were instructed to alter 
their dynamic behavior every 20 s, beginning with a passive 
mode, transitioning to a resistive mode, and finishing with 
a cooperative mode.

Experiments 2 and 3: Gait pattern trajectory with 
passive and resistive modes. The passive and resistive 
modes were also evaluated independently for the gait-shaped 
trajectory. In these experiments, the robot was commanded 
to track the reference signal described in Eq. 2 using a 
nd = 3 sine function. Before each test, the users were asked 
to walk during a short trial, and ankle motion was collected 
and processed using the fast Fourier transform algorithm 
(FFT) to estimate the amplitude and frequency parameters 
that describe their corresponding gait–sinusoidal trajectory.

The impedance controller gains were set to Kv = 60 N m/
rad and Bv = 5 N m s/rad for the passive mode, and Kv = 30 
N m/rad and Bv = 5 N m s/rad for the resistive mode.

2.3  Dynamic model

Consider the following dynamic model for the ankle/Ankle-
bot system:

with � ∈ ℝ
1 , that is, the system is a 1 degree of freedom 

(DoF). According to [46], ankle kinematics is obtained using 
simple geometry and typical anthropometric data for each 
volunteer. The disturbance observers are formulated from 
Eq. 3. �h is the human ankle torque, and the scalar param-
eters I, B, and K represent torsional inertia, damping, and 
stiffness, respectively. The subscripts h and r refer to the 
combination of the human ankle and robot joint dynamics, 
i.e., Ih,r = Ih + Ir , Bh,r = Bh + Br and Kh,r = Kh + Kr.

The  g rav i t a t i ona l  t o rque  i s  mode led  a s 
G(�) = mxcm g cos(�) , where m is the mass combination of 
the ankle and the foot, g is the acceleration due to gravity, 

(3)Ih,r�̈� + Bh,r�̇� + Kh,r𝜃 + G(𝜃) + 𝜏f (�̇�) = 𝜏h + 𝜏r,

and xcm is the center of mass of the foot (see Fig. 1b). For 
each user, the equivalent of equivalent mass (m) and center 
of mass xcm were computed according to [13]. These values 
were averaged to 1.507 kg and 0.05 cm, respectively, which 
were adopted as the nominal model parameters. This averag-
ing process aimed to provide a representative baseline that, 
while not capturing every anatomical difference of users, 
offers an approximation suitable for our analysis of gravi-
tational torque.

The model also includes the nonlinear function, 𝜏f (�̇�) , 
to describe the robot friction torque based on [55, 56]. This 
function is compound by the static, �s , Coulomb, �c , and 
viscous friction, �v , parameters and is given by

where the parameter � represents boundary lubrication of the 
actuator velocity. To identify the parameters associated with 
Eq. 4, an experimental procedure based on [57] was repro-
duced here. To this, the Anklebot was configured to operate 
in an open-loop mode and to track a ramp torque reference:

 where t denotes the time, and h > 0 is the ramp slope. The 
applied robot torque was programmed to finish when reach-
ing an upper-limit angle, �max = 0.5236 rad (30 degrees).

The static friction, �s , was approximated to 3.88 Nm, and 
it was obtained by observing the torque at the time instant 
when the stationary position 𝜃 > 0 and relative motion, 
�̇� > 0 , are overcome. By projecting a regression line over the 

(4)𝜏f (�̇�) =

⎧
⎪⎨⎪⎩

𝜏s, if �̇� ≤ 𝛿 and �𝜏r� < 𝜏s,

𝜏c sgn(�̇�), if �̇� ≤ 𝛿 and �𝜏r� ≥ 𝜏s,

𝜏c sgn(�̇�) + 𝜏v �̇�, otherwise,

(5)𝜏r(t) = h t, 0 < t > t(𝜃max),

Table 1  Parameter identification for the sinusoidal trajectories

Experiment Function shape n an (rad) fn (Hz) �n (rad)

1 Flexion–extension 1 0.1745 0.25 0
1 0.0909 0.000027 1.518

2 & 3 Gait 2 0.1472 0.25 −0.3619
3 0.1214 0.5001 2.559

Fig. 3  Friction parameter characterization. Plots: angular velocity 
(top-left), angle robot (top-right), the torque applied (bottom-left), 
and the correlation between robot torque and angular velocity (bot-
tom-right) resulting
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angular velocity (top-left in Fig. 3), the slope a, the intersec-
tion b/a with the time axis, and the projection b are obtained 
to compute the viscous and Coulomb parameters as �v =

h

a
 

= 0.61 N m s/rad and �c =
b

a
h = 3.76 Nm, respectively. The 

boundary lubrication velocity, � = 0.05 rad/s, was obtained 
by observing the angular velocity when static friction occurs 
(see bottom-right plot in Fig. 3).

2.3.1  Model Parameter Identification

In this section, it is presented the identification of the 
human–robot impedance parameters ( Ih,r , Ih,r , and Ih,r in 
Eq. 3) for each of the voluntary users. These parameters 
were identified for the passive and resistive modes. An 
experimental procedure based on [58] was carried out for 
each of the voluntary users. The Anklebot was commanded 
to hold a 0◦ reference while a random torque perturba-
tion, �rand , in dorsi-/plantar-flexion direction was applied 
during 60 s. For both the passive and resistive tests, the 
impedance controller was programmed with Kv = 5 N m/

rad and Bv = 0 N m s/rad. The perturbation signal was set 
with ± 7.7 N.m of amplitude and 100 Hz of bandwidth. 
The gravitational and friction torques were compensated 
in these experiments. From Eq. 3, the closed-loop transfer 
function between the random torque perturbation input and 
the resulting angular displacement is defined as follows:

Figure 4 shows the frequency response of Y−1(s) for the user 
1 for the corresponding passive (left) and resistive (right) 
modes. They were obtained by using MATLAB’s tfestimate 
function that estimates the spectral density of the signals. 
Linear second-order models were adjusted heuristically (red 
lines in magnitude and phase plots) to fit with the frequency 
function responses (blue lines). The parameters fitted of such 
theoretical models represent those of Eq. (6), and the results 
for all the users in passive and resistive modes are shown 
in Table 2. The impedance parameters for the cooperative 
mode were assumed to be the mean value between the pas-
sive and resistive modes.

(6)YCLh,r(s) =
1

Ih,rs
2 + (Bh,r + Bv)s + (Kh,r + Kv)

.

Fig. 4  Frequency response 
estimation of Y−1(s) to obtain 
the ankle-robot impedance 
parameters for user 1. a passive 
mode. b Resistive mode

Table 2  Rendered human–robot 
impedance parameters for 
passive and resistive modes

User Passive Resistive

I (kg m2) B (N m s/rad) K (N m/rad) I (kg m2) B (N m s/rad) K (N m/rad)

1 0.032 1.313 23.0 0.031 1.839 41.1
2 0.032 1.311 25.6 0.032 2.097 69.2
3 0.032 1.311 36.3 0.032 2.097 68.4
4 0.032 1.311 25.2 0.032 2.097 37.1
5 0.080 3.663 38.5 0.076 3.277 61.5
6 0.032 1.313 32.5 0.032 1.839 54.7
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2.4  Torque Estimation Approaches

This section presents the proposed estimation techniques, 
they consider the ankle joint torque as the disturbance to 
be estimated.

2.4.1  Generalized momentum observer

The idea of this approach is to observe the momentum 
when physical interaction between the robot and its envi-
ronment occurs. The momentum of the ankle/Anklebot 
system is defined by p = Ih,r�̇� , by assuming that the iner-
tia parameter does not change over time, the momentum 
time derivative can be computed as ṗ = Ih,r�̈� . Thus, the 
dynamic Eq. 3 can be expressed in terms of the general-
ized momentum as:

The dynamics of the momentum observer is given by

where p̂ is a predictor of the momentum dynamics, KI is a 
positive gain, and e = p − p̂ is the prediction error of the 
momentum. By defining a residual term as r = KIe , and by 
combining it with (7) and (8), we obtain

Applying the Laplace transformation to Eq. (9), we obtain,

thus, the residual term, r, is the result of applying the distur-
bance torque through a first-order low-pass filter, namely, r 
is a smoothed estimate version of �h , i.e., r = 𝜏h , KI repre-
sents the cut-off frequency. The adjustment of KI implies a 
compromise between the amplitude and phase of the filtered 
signal r, i.e., the higher the gain, the larger the amplitude, 
and conversely, the lower the gain, the larger the phase shift. 
For the subsequent implementation of this approach, KI was 
adjusted as 4.

2.4.2  Kalman filter augmented with sinusoidal disturbance 
models

This Kalman filter formulation uses a state-space repre-
sentation of the system dynamics described in Eq. 3 aug-
mented with a dynamic disturbance model representing 
the ankle torque similar to the joint angle trajectory, it was 
assumed that the ankle torque can also be represented as 
a sinusoidal temporal series. Then, simple extension and 

(7)ṗ = 𝜏r − Bh,r�̇� − Kh,r𝜃 − 𝜏f (�̇�) − G(𝜃) + 𝜏h.

(8)̇̂p = 𝜏r − Bh,r�̇� − Kh,r𝜃 − 𝜏f (�̇�) − G(𝜃) + KIe,

(9)ṙ = KI(ṗ −
̇̂p) = KI𝜏h − KIr.

(10)r(s) =
KI

s + KI

�h(s).

gait trajectories can be achieved by defining the orders 
nd = 1 and nd = 3, respectively, of the time-series equa-
tion. The augmented state-space system considering the 
dynamics of Eq. 3 and the sinusoidal disturbance model 
is given by

here Ad represents the sinusoidal time-series dynamics 
expressed into the state-space domain. The formulations for 
simple extension and gait trajectories, employing equation 
orders of nd = 1 and nd = 3 , respectively, are elaborated in 
Appendix A. It is worth noting that the formulations in the 
appendix only depend on the frequencies to define the matri-
ces. The terms Ac and Bc stand for the augmented continu-
ous state transition and input matrices, respectively, H is the 
measurement gain matrix, x and u are the augmented state 
and input vectors, respectively. Since the standard Kalman 
filter was proposed for linear systems, the gravitational and 
friction torques were included in the input, u, instead of the 
state transition matrix, Ac . Once the state-space formulation 
of the Kalman filter is defined, it is implemented according 
to the standard discrete-time algorithm [59]. The covari-
ance matrices for the process and measurement noise were 
adjusted as Q = 0.1I4 and R = 0.001I4 for the nd = 1 case, and 
Q = 0.1I10 and R = 0.001I10 for the nd = 3 case.

2.4.3  Combined Kalman filter and generalized momentum 
approach

This combined approach was based on the one proposed in 
[31] to estimate the external forces of a 7-DoF manipulator. 
The idea of this formulation is to combine the robot gener-
alized momentum with a disturbance model given by the 
following first-order model:

(11)

⎡⎢⎢⎣

�̈�

�̇�

ẋd(2nd×1)

⎤⎥⎥⎦
�������

ẋ

=

⎡
⎢⎢⎢⎣

−
Bh,r

Ih,r
−

Kh,r

Ih,r
0(1×(2nd−1))

−
1

Ih,r

1 0 0(1×(2nd−1))
0

0(2nd×1)
0(2nd×1)

Ad(nd×nd)

⎤
⎥⎥⎥⎦

�������������������������������������������������������
Ac

⎡⎢⎢⎣

�̇�

𝜃

xd(2nd×1)

⎤⎥⎥⎦
�������

x

+

�
1

Ih,r

0((2nd+1)×1)

�

���������������
Bc

(𝜏r − 𝜏f (�̇�) − G(𝜃))
�����������������������

u

,

(12)
y =

�
I(2×2) 0(2nd×2)

0(2×2nd)
0(2nd×2nd)

�

�������������������������
H

⎡
⎢⎢⎣

�̇�

𝜃

xd(2nd×1)

⎤
⎥⎥⎦

�������
x

.

(13)𝜏d = Ad𝜏d + wd,
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where Ad determines the dynamics assumed for the distur-
bance, �d ∼ N(0,Qd) are modeling inaccuracies represented 
as zero-mean normally distributed random variables. By 
defining the state vector x = [pT �T

d
]T and introducing the 

abbreviation 𝜏 = 𝜏r − Bh,r�̇� − Kh,r𝜃 − G(𝜃) − 𝜏f (�̇�) , Eqs. (13) 
and (7) can be rearranged to form the augmented system.

The vector w = [wT
p

wT
d
]T includes the disturbance noise 

and not modeled input noises, wp . By assuming a measure-
ment noise at the generalized momentum, v ∼ N(0,R) , repre-
sented as zero-mean normally distributed random variables, 
the output equation is given by:

The implementation of this formulation is also carried out 
according to the discrete-time algorithm of the Kalman filter. 
The covariance matrices for the process and measurement 
noise were adjusted as Q = 1e−4 ∗ I2 and R = 1e−5 ∗ I2 , 
respectively. Finally, the discretization of Ac and Bc for both 
Kalman filter formulations was made by using Ak = I + AcTs 
and Bk = TsBc , for a time sample of Ts = 0.5 ms.

(14)

[
ṗ

𝜏d

]

���
ẋ

=

[
0 − 1

0 Ad

]

�����
Ac

[
p

𝜏d

]

���
x

+

[
1

0

]

���
Bc

𝜏
���

u

+w.

(15)
p = [1 0]

⏟⏟⏟
H

[
p

�d

]

⏟⏟⏟
x

+v.

3  Results

This section presents the results of the implementation of 
the approaches for estimating the ankle torque in the experi-
ments described in Sect. 2.2.1. These experiments aimed 
to assess the estimation results in different configurations 
of trajectory type and HRI operation mode. Each of the six 
volunteer users conducted the three experiment types. To 
quantify the performance of the approaches during each 
experiment and to facilitate comparison among the differ-
ent configurations, which may present different scales, the 
normalized root-mean-square error (NRMSE) was computed 
using the following expressions:

where y represents the reference for each experiment 
obtained from the load cell torque (�lc) , and ŷ stands for the 
estimated torque of each approach (𝜏hKF , 𝜏hGMO

, 𝜏hKFM ).

3.1  Torque estimation results of Experiment 1

This section presents the results of Experiment 1, including 
the torque estimation performance of each approach under 
the passive, resistive, and cooperative dynamic modes. Fig-
ure 5 displays the temporal responses for user 1, demon-
strating concordance with the expected behavior detailed 
in Sect. 2.2.

(16)RMSE =

�∑n

i=1
(yi − ŷ)2

n
, NRMSE =

RMSE

ymax − ymin

Fig. 5  Temporal responses of 
Experiment 1 for the user 1. 
Estimation approaches are KF 
(red), GMO (green), and KF-M 
(purple)
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Figure  6 summarizes the NRMSE values calculated 
across all participants during Experiment 1. The lower sub-
plots show the distribution of errors, including its median, 
interquartile range, and outliers. Each colored outlier at the 
boxplots corresponds to each user as indicated by the bar 
plot legends in Figs. 6 and 9. As shown in Fig. 6, the three 
methodologies exhibited low NRMSE values, with median 
values below 0.5 N.m in passive mode, indicating high accu-
racy, with all KF errors below 0.3 Nm, and GMO and KF-M 
errors below 66.6% and 50%, respectively, falling below 0.3 
N.m. Looking at the interquartile ranges, it can be deduced 
that all the approaches presented a lower spread and vari-
ability in their cooperative mode than the others.

3.2  Torque estimation results of Experiments 2 
and 3

This section presents the torque estimation results for Exper-
iments 2 and 3. Figures 7 and 8 show the temporal responses 
for user 1 tests for each of the experiments.

The NRMSE was also computed in these two experi-
ments and is described in Fig. 9. For Experiment 2 (Fig. 9a), 
which uses the gait trajectory in passive mode, the Kalman 
filter (KF) demonstrated higher precision with the lowest 
median RMSE and compactest interquartile range, indicat-
ing consistent performance among all users. All the median 
NRMSE approaches were proximal, with the KF presenting 
the lowest value of 0.38 N.m.

In contrast, GMO showed slightly higher variability, as 
indicated by a wider interquartile range compared to KF, 
though it still maintains competitive performance, especially 
compared to KF-M, which yielded the highest variability 
and median NRMSE. For Experiment 3 (Fig. 9b), which 

explored the gait trajectory in resistive mode, both KF and 
GMO displayed better performance than KF-M, with GMO 
slightly surpassing KF in terms of lower median RMSE and 
a narrower interquartile range.

3.3  Statistical analysis

In this section, it is developed a statistical analysis to assess 
the performance differences among the approaches using 
the complete dataset from the three types of experiments.

3.3.1  Analysis of Variance

Before analyses, distribution normality tests were performed 
to validate the assumptions necessary for ANOVA. After 
removing outliers and rearranging the dataset for each vari-
ance analysis, the Shapiro–Wilk tests were performed, indi-
cating that the data could be considered normally distrib-
uted for this analysis. Initially, a repeated measures ANOVA 
analysis was conducted to determine the influence of the 
interaction mode (factor) changes on the torque estima-
tion accuracy of the three approaches. For this analysis, the 
dataset was filtered to include only those tests from Experi-
ment 1 that featured a simple sine trajectory with the three 
operation modes, passive, resistive, and cooperative. The 
test was employed to define the null hypothesis, H0: There 
are no differences in the normalized root-mean-square error 
(NRMSE) across the operation modes for each approach, 
against the alternative hypothesis, H1: At least one opera-
tion mode significantly affects the NRMSE for at least one of 
the approaches. A significance level set at 0.05 was defined 
for the test.

Fig. 6  Performance assessment 
for Experiment 1. The RMSE of 
the three approaches during the 
different dynamic behaviors was 
computed for each user
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The results from the repeated measures ANOVA showed 
that the main effect of operation mode on the NRMSE was 
statistically significant (F = 20.135, p-value < 0.0001), indi-
cating that operation mode significantly affects the estima-
tion accuracy. In contrast, the interaction effect between the 

estimation approaches and operation modes did not reach 
statistical significance (F = 2.3032, p-value 0.0815F), sug-
gesting that the impact of operation mode is generally con-
sistent across the different approaches. This implies that 
while operation mode itself has an impact on NRMSE, the 

Fig. 7  Temporal responses 
of Experiment 2 for user 1 
in passive mode. a Angular 
references. b Robot torque. c 
Estimated torques

Fig. 8  Temporal responses 
of Experiment 3 for user 1 
in resistive mode. a Angular 
references. b Robot torque. c 
Estimated torques
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type of estimation approach does not significantly alter this 
effect.

Following the repeated measures ANOVA evaluation, a 
broader analysis was conducted using the two-way ANOVA 
to explore the interaction effects between operation mode 
and trajectory type on the estimation error across different 
approaches in all experiments. To ensure data balance, anal-
yses excluded the cooperative mode, resulting in two levels 
each for operation mode (passive and resistive) and trajec-
tory (simple sine and gait). The treatment groups were thus 
defined: passive–sine, passive–gait, resistive–sine, and resis-
tive–gait. The hypotheses posited were: Null Hypothesis H0: 
There is no interaction effect between operation mode and 
trajectory on the NRMSE for each estimation approach, and 
no main effects of either operation mode or trajectory alone; 
Alternative Hypothesis H0: There are potential interaction 
effects and/or main effects of operation mode, trajectory, or 
both on the NRMSE. The significance level was set at 0.05.

Table 3 presents the two-way ANOVA results. Similar 
to the one-way ANOVA, the analysis indicated significant 
effects of operation mode on all variables (p < 0.01), with 
notably strong influences observed for KF (F = 32.24, p < 
0.0001). The trajectory also significantly affected outcomes, 

particularly for KF (F = 26.25, p = 0.0001) and GMO (F = 
11.96, p = 0.0025). The interaction between operation mode 
and trajectory was not significant for GMO and KF-M, sug-
gesting consistent effects of operation mode across different 
trajectories.

Although all three approaches (KF, GMO, and KF-M) 
yielded p-values above the conventional threshold of 0.05, 
the KF approach exhibited a notably lower p-value (0.0958), 
suggesting a dynamic influence between operation mode and 
trajectory changes. Figure 10 shows an interaction plot for 
the KF errors of the dataset. The figure evidences greater 
variability in errors under resistive conditions compared to 
passive, indicating a heightened sensitivity of KF to trajec-
tory variations. Although the interaction effect was not sta-
tistically significant at the 0.05 level, this outcome suggests 
impactful performance differences for this approach.

3.3.2  Statistical Comparison of Approaches

To determine the superiority of one approach over another, 
the Kruskal–Wallis test was implemented. This is a non-par-
ametric method used here to assess if there are statistically 
significant differences between the measures of independent 

Fig. 9  Performance assessment 
of torque estimation using the 
gait-based trajectory experi-
ments. a Experiment 2: passive 
and b Experiment 3: resistive

Table 3  Two-way ANOVA 
results for KF, GMO, and KF-M

KF GMO KF-M

Source F p-value F p-value F p-value

Op. mode 32.24 0.0000 10.92 0.0035 11.51 0.0029
Traj 26.25 0.0001 11.96 0.0025 4.36 0.0497
Op. mode*Traj 3.06 0.0958 1.34 0.2611 0.02 0.8981
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groups, in this case, the medians of KF, GMO, and KF-M 
approaches. The hypotheses were formulated as follows: H0: 
The median NRMSE for all approaches is equal. H1: At least 
one of the approaches has a median NRMSE that is different 
from the others. This test combines and sorts the data from 
all groups to assign ranks. The Chi-square statistic H, which 
measures the variance among the group ranks compared to 
the overall rank variance, is computed using the formula:

where N = 90 (the total number of observations from the 
three experiments), k = 3 (the number of groups), Ri is the 
sum of ranks in the i-th group, and ni is the number of obser-
vations in the i-th group. The test revealed significant differ-
ences in the NRMSE distributions among the approaches, 
with a Chi-square statistic of 12.13 and a p-value of 0.0023, 
leading to the rejection of the null hypothesis. Given the 
significant results, a post hoc analysis was conducted using 
Dunn’s non-parametric multiple comparison test to further 
investigate the differences between pairs of approaches.

The Dunn’s test made pairwise comparisons between the 
approaches, focusing on differences in median NRMSE. 
Table 4 presents both the sum and mean ranks of each group 
along with the outcomes of these comparisons. Significant 
differences were observed between KF-M and both KF and 
GMO, as indicated by the Q-values exceeding the critical 
values, leading to the rejection of the null hypothesis in 

(17)H =

(
12

N(N + 1)

k∑
i=1

R2

i

ni

)
− 3(N + 1)

these cases. Conversely, no significant difference was found 
between KF and GMO, suggesting similar performance 
levels.

4  Discussion and conclusions

In this paper, three approaches for ankle joint torque estima-
tion based on the well-known disturbance observer tech-
nique were implemented on the Anklebot robot. They were 
the generalized momentum observer, a Kalman filter aug-
mented with a sinusoidal disturbance model, and a Kalman 
filter based on the generalized momentum. The formulation 
of these approaches included identification in the frequency 
domain of inertial, damping, and stiffness parameters for 
all the voluntary users. Although the Anklebot is specified 
as a backdrivable robot, a frictional force was observed 
that opposes the movement of the linear actuators during 
its operation; thus, the dynamic model also included the 
identification of the robot friction torque. The torque due to 
gravitational effects was also considered in the model. Using 
a customized AFO allowed us to measure the ankle torque 
if considered a simple hinge joint and compare it with the 
estimation approaches. The choice to employ a customized 
ankle–foot orthosis (AFO) equipped with a load cell was 
intended to quantify rotational forces exerted by the ankle 
joint, conceptualized as a simple hinge joint.

This choice of the load cell over EMG measurement sys-
tems aligns with the emphasis of this research on dealing 
with torque rather than joint contact forces (JCF), as torque 
measurements provide a direct and objective assessment of 
the rotational exogenous dynamics viewed by the robotic 
device. Unlike EMG measurement systems which are used 
to compute the moments or torque based on muscle activa-
tion patterns, load cells offer a direct measure of the torque 
applied or resisted by the robotic joint.

This choice of the load cell over EMG measurement sys-
tems aligns with the emphasis of this research on dealing 
with torque rather than joint contact forces (JCF). As torque 
measurements provide a direct and objective assessment of 
the rotational exogenous dynamics viewed by the robotic 
device, they offer a reliable alternative to EMG systems, 
which compute torques based on muscle activation patterns 
and are influenced by a variety of physiological and meth-
odological factors. Unlike EMG systems that can introduce 

Fig. 10  Interaction plot for KF: operation mode and trajectory factors

Table 4  Dunn’s test results for 
pairwise comparisons among 
approaches

Groups: g1: KF, g2: GMO, and g3: KF-M

Group Sum of ranks Mean rank Comparison Q-value Critical Q-value Decision

1 1138 37.933 g3 vs. g1 3.1281 2.3877 Reject H0
2 1186 39.533 g3 vs. g2 2.8909 2.3877 Reject H0
3 1771 59.033 g2 vs. g1 0.2372 2.3877 Fail to reject H0
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complexities in calibration and signal interpretation, load 
cells provide a straightforward measure of the torque applied 
or resisted by the robotic joint, ensuring greater accuracy 
and reproducibility of results.

Given the distinct methodologies employed in torque 
estimation—from traditional EMG and inverse kinematics 
(IK) to our load cell-based approach—it becomes impera-
tive to further explore how these methods compare under 
varying clinical and research settings. Future studies should, 
therefore, focus on conducting a comprehensive compara-
tive analysis between these classical methods and our distur-
bance observer techniques. This would not only validate the 
strengths and limitations of each approach but also highlight 
potential synergies and improvements for robotic therapy 
applications.

In an ideal scenario, the robot and ankle torques would be 
the same if they were sharing the same movement; neverthe-
less, in practice, misalignment on the joints might prompt 
loss in the transmission of the assistive robot torques on the 
user’s joints and generate residual undesired torques. There-
fore, using the AFO’s load cell turns out helpful in quanti-
fying the real interaction occurring in experiments. Using 
sinusoidal desired trajectories and the above-mentioned 
dynamic behavior modes are supported by the knowledge 
of the different types of strategies applied for the robotic 
training in sitting position [60] and gait assistance [9, 61].

For overall experiments, the passive mode of KF, regard-
less of the type of trajectories, resulted in lower medians 
and tighter variability ranges. The KF showed the lowest 
median NRMSEs with values of 0.1792 N.m and 0.384 N.m 
for sine (Fig. 6a) and gait (Fig. 9a) trajectories, respectively, 
surpassing those achieved by GMO and KF-M. Regarding 
the tests performed with the configuration of the resistive 
mode, all the approaches degraded their performances, fac-
ing a mismatch problem concerning the disturbance estima-
tion. The existence of non-modeled residual torques due to 
misalignment may affect either the load cell measurement 
or the robot torque. This directly influenced the estimations. 
Nevertheless, the GMO advantaged the other approaches 
in resistive mode regardless of type trajectory. In simple 
sine, its median was minimally lower than KF (Fig. 6b), and 
in gait, its median and variability were notably the lowest 
(Fig. 9b). The KF-M showed higher medians and greater 
variability across in almost all experiments when compared 
to KF and GMO.

For Experiment 1, simple sine experiments outperformed 
gait trajectory experiments for all approaches, with both KF 
and GMO producing comparable lower metrics. The results 
showed that the passive and cooperative modes performed 
lower error values than the resistive modes. The medians 
calculated using the cooperative mode were similar to those 
of the passive mode but with the benefit of showing less 
variability. This indicates more consistency in the estimates. 

However, the lack of cooperative mode testing for the gait 
trajectory makes it difficult to make a conclusive comparison 
with the other modes.

For Experiment 2, in the cases, where the gait trajectory 
was not perfectly tracked, the ankle torque could not match 
exactly this periodic signal. As a consequence, compared 
with the simple sine case, the approaches presented hither 
NRMSE values which can be interpreted as less effective 
torque estimation. Nevertheless, the GMO approach was 
lower than KF in the gait trajectory, especially in the resis-
tive mode. One probable explanation could be that the GMO 
approach can perform better in more complex dynamics 
where physical collisions are involved without requiring a 
detailed mathematical model, as opposed to using a precise 
nominal disturbance model that, unless precisely modeled, 
may not accurately describe the torque, leading to less effec-
tive estimations in the gait experiments.

The time lag observed in almost all results of KF-M was 
much larger compared to the other approaches. Since RMSE 
is highly sensitive to both the magnitude and timing of the 
prediction errors, the performance metrics calculated for 
KF-M were more affected by this time lag. Through cross-
correlation analysis between the KF-M’s estimated torque 
and the reference torque from the load cell, we identified 
a consistent time lag of nearly 1 s across most users in the 
pure sine trajectory tests. For instance, this can be graphi-
cally evidenced by looking at the KF-M estimated torque 
for Experiment 1 of user 1 as shown in Fig. 5. This delay, 
evident in the time response figures where the KF-M signal 
precedes the reference, corresponds to a 90-degree phase 
shift relative to the expected trajectory. Such a phase shift 
could imply that the angular velocity component within 
the generalized momentum formulation critically affects 
the estimated torque by this method. Implementing a time 
lag compensation technique could solve the gap in KF-M 
performance.

Regarding the statistical analysis, two distinct ANOVA 
analyses were employed to evaluate the effects of opera-
tion modes and trajectories on torque estimation accuracy. 
A repeated measures ANOVA was first applied specifi-
cally on data of Experiment 1, which used a simple sine 
trajectory, to isolate the effects of operation mode across 
the three approaches within a consistent experimental 
setup. This test focused on intra-subject variability. Sub-
sequently, a two-way ANOVA expanded on this analysis 
by incorporating data from multiple experiments, focus-
ing on interactive effects between operation modes and 
trajectory types. The two-way ANOVA test was imple-
mented using a lumped dataset of Experiments 1, 2, and 
3 to investigate the combined effects of changing both 
operation modes and the type of trajectory. Based on the 
two-way ANOVA, it can be said that these factors indi-
vidually influence the NRMSE results. Particularly, the 
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KF demonstrated more sensitivity to the combined inter-
action effects. However, the interaction between opera-
tion mode and trajectory did not significantly affect the 
performance of GMO and KF-M, suggesting that these 
models could perform consistently across varying sce-
narios without requiring specific adjustments. It is worth 
mentioning that the cooperative mode was excluded 
from the two-way ANOVA analysis due to its absence in 
Experiments 2 and 3, ensuring a balanced and consistent 
dataset between the factors analyzed. Hence, this limited 
the generalizability of the results to only non-cooperative 
operational settings. Future studies should consider includ-
ing a comprehensive evaluation of all operational modes 
across experiments to broaden the applicability of the 
findings. The Kruskal–Wallis test further confirmed the 
significant differences in the median NRMSEs among the 
approaches, with post hoc Dunn’s test identifying KF-M 
as having higher error rates compared to KF and GMO. 
This suggests that while KF-M may not always offer the 
best reliability, KF and GMO could be preferred for their 
consistent performance.

While the disturbance observer techniques developed in 
this study effectively estimated ankle joint torques, they, like 
inverse kinematics (IK) and electromyography (EMG), rely 
on nominal parameters, including anthropometric data. This 
reliance introduces a degree of uncertainty in the modeling. 
Comparative analyses between these classical methods and 
our observer-based techniques could help to validate the 
effectiveness of our approaches across different settings. 
Such studies could also explore the potential for integrat-
ing DO techniques with classical methods to develop more 
robust and adaptable estimation systems.

Since the operation of the Anklebot was delimited for 
sitting position movements, the mechanical impedance 
parameters of the human ankle torque (inertia, damping, 
and stiffness) were assumed to be constant over time. If the 
experiments had been done on a treadmill, joint mechani-
cal impedance modulation during the gait cycle must have 
been considered [50, 51]. The experiments on this work were 
carried out with voluntary healthy users, which allowed the 
implementation of the method found in [51] for ankle joint 
mechanical impedance identification literature [51]. With all 
this in mind, the results obtained here are yet to be consid-
ered a generalization of the human ankle torque estimation 
issue. This work continues the research developed in [54] in 
which the same approaches were implemented for a mock-
up ankle device. We intend to extend the results obtained 
here to a broader control group as well as evaluation on a 
treadmill scenario where ground reaction torques and strong 
human–robot interaction forces are generated on the human 
and robot joints. Moreover, robust observers and robotic 
feedback control for compensation purposes will be studied 
for implementation.

Appendix

Computation of the sinusoidal parameters

• State-space matrices for sinusoidal disturbance models

Equation 18 is used for the nd = 1 case, and Eq. 19 for the 
nd = 3 case.

where the parameters D1 , D2 , and D3 are computed as 
follows:
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