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Abstract
This paper proposes a bridge moving load identification method based on the fractional conjugate gradient (FCG) method 
to address the low identification accuracy of traditional conjugate gradient methods. Firstly, the mathematical framework 
for detecting the moving load in the vehicle-bridge system is established by utilizing both the time-domain deconvolution 
technique and modal superposition approach. Secondly, the derivation of the discrete moving load identification system 
matrix equation enables its formulation as an unconstrained optimization problem. Finally, the load information is obtained 
iteratively by the FCG method. Experimental results demonstrate that, compared with the Hestenes–Stiefel conjugate gradient 
(HSCG) method, the Flether–Reeves conjugate gradient (FRCG) method, and the Polak–Ribire–Polyak conjugate gradient 
(PRPCG) method, the FCG method has faster identification speed, smaller identification error, and higher identification 
accuracy and noise resistance in identifying bridge moving loads at different noise levels.
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1  Introduction

The safety and reliability of bridge structures are directly 
related to the development of society and the economy as 
a whole. With the rapid development of the national econ-
omy, traffic volume increasing, vehicle high-speed driv-
ing, and overloading during service, it can adversely affect 
the safety of bridges and also pose a significant threat to 
their integrity and stability [1–3]. In the field of bridge 
engineering, identifying and monitoring moving loads 
effectively and studying the impact of bridge vibration and 
damage on operational performance have become urgent 
and important problems that need to be solved [4–6]. 
Since the problem of self-loading identification is first 
introduced, scholars have conducted extensive research 
and achieved numerous results. Law et al. proposed an 

improved time-domain method (TDM) to identify bridge 
moving loads and used singular value decomposition 
(SVD) to solve the noise-sensitive problem [7]. Chen et al. 
subsequently proposed a bridge moving load identification 
method based on truncated singular value decomposition 
methods, segmental polynomial truncation singular value 
decomposition method and pre-processing least squares 
QR decomposition method, which increases the identifica-
tion accuracy of moving loads to a certain extent [8–10]. 
Liu et al. identified spatio-temporally coupled distributed 
dynamic loads using blind source separation and orthogo-
nal matching pursuit, and obtained its spatial distribution 
and temporal history [11]. Wang et al. proposed a new 
fast-converging iterative regularization method, which 
successfully identified dynamic loads on stochastic struc-
tures [12]. Liu et al. proposed a power spectral density 
identification method for steady-state random excitation, 
considering the impact of multisource uncertainty, used 
a two-step weighted regularization strategy and response 
superposition-decomposition principle, and improved 
the accuracy and efficiency of load identification using 
an adaptive dimensionality reduction Chebyshev model 
and the first-order Taylor series [13]. He et al. proposed 
an L1-norm regularization load identification method 
based on redundant extended cosine dictionaries, which 
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efficiently identifies complex dynamic loads with good 
noise resistance [14]. Chen et al. proposed a new method 
for identifying dynamic loads at the interface between 
spacecraft and rocket using BP neural network, which 
further optimized the accuracy of identifying dynamic 
loads at the interface [15]. Li et al. combined the extended 
Kalman filter method with the least squares estimation 
method to identify unknown loads acting on time-varying 
structures, which more accurately estimated the parameter 
values of unknown loads on time-varying structures [16]. 
Qiao et al. used a cubic B-spline expansion function to 
propose a moving load identification method with high 
accuracy and the ability to overcome the ill-conditioning 
problem. This method has strong robustness to noise and 
uncertainty in data and can reduce estimation errors [17]. 
Liu et al. proposed a method to identify complex loads act-
ing on a cantilever beam at multiple points, which reduced 
the data processing difficulty and improved the accuracy 
of load identification [18]. However, due to the complex-
ity and uncertainty of engineering structures, existing 
load identification methods require strong data process-
ing capabilities [19] and precise system response data. 
They are also sensitive to sensor layout. Incorrect sensor 
placement may also affect the accuracy of the identifica-
tion results. The conjugate gradient algorithm can solve 
most of the above problems and has advantages such as 
fast computation speed and good convergence [20–23]. 
Wang et al. used the conjugate gradient method to identify 
multisource excitation forces [24]. Luo et al. introduced a 
bridge moving load identification technique based on an 
improved conjugate gradient method, which solved the 
noise-sensitive problem of time-domain method and the 
poor numerical performance of traditional conjugate gra-
dient methods [25].

Although the moving load identification method based on 
the traditional conjugate gradient method is effective and reli-
able, it still has drawbacks such as low identification accuracy, 
poor noise resistance at high noise levels, and slow identifica-
tion speed. Recently, the fractional-order model has become 
a major hotspot [26–28]. Compared with integer-order mod-
els, its advantages are excellent in describing the memory and 
genetic characteristics of various processes [29]. Because the 
order is fractional, the simulation results can more accurately 
describe the dynamic characteristics of the system. Based on 
this, this paper proposes a bridge moving load identification 
method based on the fractional conjugate gradient (FCG) algo-
rithm, which avoids the selection of regularization parameters 
and does not introduce complex objective functions. Firstly, a 
mathematical model for moving load identification is estab-
lished using the time-domain deconvolution method and modal 
superposition method. Secondly, by constructing an appropri-
ate optimization objective function, the problem is transformed 
into a high-dimensional unconstrained optimization problem. 

Then, the FCG method is used to solve this optimization prob-
lem to obtain the load information. Finally, the effectiveness 
of the proposed method is verified through numerical simu-
lations, and the impact of noise and sensor configuration on 
mobile load identification is also studied.

2 � Basic theory of load identification

Figure  1 shows the vehicle-bridge system model, which 
makes the following assumptions simplify actual engineering 
problems: (1) The bridge satisfies small deformation theory, 
Hooke’s law, Navier hypothesis, and Saint-Venant’s principle; 
(2) the bridge has uniform cross-section and constant mass per 
unit length; (3) the velocity of the moving load is constant, 
and it moves from left to right; and (4) the bridge’s damping 
is proportional to the vibration speed.

Based on these assumptions, the displacement response f (t) 
of the bridge under the moving load u(x, t) can be expressed as:

where: x represents the distance from the left end of the 
bridge; t  represents time; c is the constant vehicle speed; 
u(x, t) represents the displacement of the bridge at position 
x and time t ; f (t) represents the moving load; C represents 
the viscous damping parameter; E represents the Young’s 
modulus; I represents the moment of inertia; �(x − ct) rep-
resents the Dirac � function; and � represents the density of 
the beam.

Using modal superposition method and time-domain 
deconvolution method, we can obtain the structural response:

in which, n represents the modal order; L represents the 
bridge span; �n =
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Fig. 1   The model diagram of vehicle-bridge system
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and � is the integration variable. The bridge bending moment 
response m(x, t) and acceleration response a(x, t) can be, 
respectively, obtained from the displacement response u(x, t) , 
as follows:

where

in which

Then, we discrete (2.4) and (2.5) into a matrix form. If the 
acceleration response is measured separately, we can obtain

 If the bending moment response is measured separately, 
we can obtain

 If both bending moment and acceleration responses are 
measured simultaneously, they can be used together to iden-
tify the driving force. By scaling the variables m in (2.7) and 
ü in (2.8) to non-dimensional units, we obtain

in which, M and U are matrices of the vehicle-bridge system; 
m and ü are matrices of bending moment and acceleration 
response, respectively. In the time domain, the load identi-
fication problem in (2.9) can ultimately be transformed into 
the following equation:

in which, A represents the system matrix that is related to the 
vehicle-bridge parameters; Y  represents the response vector 
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of bending moment, acceleration response, or their combina-
tion at measurement points on the bridge; and f  represents 

Fig. 2   The calculation flowchart of FCG method
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the time series vector of moving loads. The specific forms 
of these matrices can be found in [7].

3 � The fractional conjugate gradient method

The load identification problem can be transformed into the 
problem about solving matrix equation AF = Y  . By for-
mulating the corresponding objective function, the origi-
nal issue can be converted into a high-dimensional uncon-
strained optimization problem:

Here, Rn represents the n-dimensional Euclidean space, and 
H(x) is a continuously differentiable function:

The conjugate gradient method is commonly used to solve 
optimization problems. This method can be used to solve 
(3.1), and its iterative formula is expressed as

where i represents the number of iterations; xi represents the 
solution of step i ; �i represents the step size; di represents 
the search direction

We assure gi represents the gradient of H(x) at x = xk , and �i 
is a scalar used to adjust the direction. Different conjugate 
gradient algorithms use different �i.

The scalar �i for adjusting the search direction in the FCG 
method proposed in this article is given by the following 
formula:

(3.1)min
w∈Rn

H(x),

(3.2)H(x) =
1

2
xTAx + xTY ,

(3.3)xi+1 = xi + �idi, i = 0, 1, 2,⋯ ...,

(3.4)di =

{
−gi, i = 1

−gi + �idi−1, i ≥ 2.

where p denotes the fractional order. The maximum number 
of iterations in the moving force identification calculation 
process is set to N = 7000, with a precision indicator of 
e = 10−6 . If N > 7000 or ‖‖gi‖‖ ≤ e , the algorithm immedi-
ately stops iterating, yielding the identification result; oth-
erwise, it continues iterating until a convergent solution is 
obtained. Based on (3.5), the detailed calculation process 
of the moving force identification using the proposed IFCG 
algorithm in this paper is illustrated in Fig. 2. The funda-
mental steps are described as follows:

•	 Step 1: Construct (2.7) using the time-domain deconvolu-
tion method and the modal superposition principle;

•	 Step 2: Formulate the objective function (3.1), transform-
ing the problem of identifying moving loads into an uncon-
strained optimization problem;

•	 S t e p  3 :  S e t  i n i t i a l  v a l u e s : 
x0 = 0, g0 = b, i = 0, d0 = g0,N = 7000, e = 10−6;

•	 Step 4: Calculate the step size �i using �i = (gi, gi)∕(di,Adi);
•	 Step 5: Update xi using (3.3);
•	 Step 6: Calculate the residual through gi+1 = gi − gidi ; if ‖‖gi+1‖‖ ≤ e , the iteration ends, and the result xi is output. 

Otherwise, proceed to the next step;
•	 Step 7: Calculate the directional scalar �i using (3.5).
•	 Step 8: Update the search direction di using 

di+1 = gi+1 + �idi.
•	 Step 9: If i ≤ N , end the iteration and output the result xi ; 

otherwise, return to Step 4.
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Fig. 3   Number of recognition iterations for four p values at different 
noise levels

Fig. 4   The recognition accuracy of four p values at different noise 
levels
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4 � Load identification and result analysis

4.1 � Parameter selection and setting

The structural parameters of the bridge model are given as 
follows: the flexural stiffness ( EI ) is 1.27 × 1011N m2 ; the den-
sity �A is 1.2 × 104 kg∕m ; and the span of the beam is 40 m. 
The initial three resonant frequencies of the beam are 3.2 Hz, 
12.8 Hz, and 28.8 Hz, respectively. The vehicle parameters 
are given as follows: the vehicle’s moving speed is 40 m/s, 
the distance between the front and rear axles is 4 m, and the 
sampling frequency is 200 Hz.

The time history of the moving load on the front and rear 
axles of the vehicle is, respectively:

Considering the possible influence of errors and noise 
interference in the actual measurement process, this article 
adopts the method of simulating random noise to generate 
the response obtained from actual measurements:

(4.1)
F1(t) = 20[1 + 0.2 sin (10�t) + 0.08 sin (40�t)],

F2(t) = 20[1 − 0.2 sin (10�t) + 0.08 sin (50�t)].

(4.2)bsimulate = btrue
(
1 + nl × Nnoise

)

Table 1   Identification error of front axle moving load by four methods under three noise levels under different sensor configurations

Sensor configuration Noise level = 5%
front axle’RPE/%

Noise level = 10%
front axle’RPE/%

Noise leve l = 15%
front axle’RPE/%

FCG HSCG FRCG​ RPRCG​ FCG HSCG FRCG​ RPRCG​ FCG HSCG FRCG​ RPRCG​

A14 &A12 &A34 2.42 2.40 2.56 2.40 3.78 4.07 5.93 3.98 5.93 5.75 10.74 8.21
M14 &M12 &M34 1.63 1.74 4.91 2.74 3.04 3.53 9.82 5.03 4.60 4.54 14.72 9.28
M14 &M34 &A12 &A34 2.38 1.62 4.91 2.98 3.14 3.10 9.82 5.31 4.73 4.76 14.72 8.76
M14 &M34 &M12 &A14 1.92 1.65 4.91 2.74 3.54 3.13 9.82 5.69 4.66 4.92 14.72 8.64
M14 &M12 &M34 &A12 &A14 1.65 1.70 4.91 2.58 3.35 3.05 9.81 5.55 4.54 4.76 14.72 7.91
M14 &M12 &M34 &A14 &A12 &A34 1.63 1.65 4.91 2.83 3.08 3.29 9.81 5.28 4.68 4.60 14.72 8.40

Table 2   Identification error of rear axle moving load by four methods under three noise levels under different sensor configurations

Sensor configuration Noise level = 5%
rear axle’RPE/%

Noise level = 10%
rear axle’RPE/%

Noise level = 15%
rear axle’RPE/%

FCG HSCG FRCG​ RPRCG​ FCG HSCG FRCG​ RPRCG​ FCG HSCG FRCG​ RPRCG​

A14 &A12 &A34 2.66 2.68 2.88 2.69 5.87 6.29 7.73 6.10 9.27 9.06 12.27 11.07
M14 &M12 &M34 2.30 2.38 4.49 3.22 4.35 4.36 8.98 5.87 6.36 6.37 13.4 10.95
M14 &M34 &A12 &A34 2.28 2.33 4.49 3.53 4.36 4.38 8.98 6.18 6.50 6.53 13.47 10.29
M14 &M34 &M12 &A14 2.19 2.34 4.49 3.19 4.26 4.34 8.98 6.62 6.35 6.41 13.47 10.12
M14 &M12 &M34 &A12 &A14 2.27 2.40 4.49 3.02 4.25 4.34 8.98 6.51 6.36 6.37 13.47 9.22
M14 &M12 &M34 &A14 &A12 &A34 2.35 2.24 4.49 3.31 4.32 4.24 8.98 6.16 6.37 6.37 13.47 9.81

Table 3   Iterations of four methods for load identification at different noise levels under different sensor configurations

Sensor configuration Noise level = 5%
iterations

Noise level = 10%
iterations

Noise level = 15%
iterations

FCG HSCG FRCG​ RPRCG​ FCG HSCG FRCG​ RPRCG​ FCG HSCG FRCG​ RPRCG​

A14 &A12 &A34 589 967 36 731 529 832 42 1012 665 1468 54 1207
M14 &M12 &M34 757 775 6199 7000 809 1020 6654 7000 653 1133 6623 7000
M14 &M34 &A12 &A34 680 1395 5684 7000 777 1358 6080 7000 783 1942 6114 7000
M14 &M34 &M12 &A14 783 1942 6114 7000 606 759 6544 7000 618 1184 6720 7000
M14 &M12 &M34 &A12 &A14 660 1042 6350 7000 687 907 6638 7000 793 952 6690 7000
M14 &M12 &M34 &A14 &A12 &A34 671 956 6390 7000 615 881 6577 7000 743 908 6836 7000
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Fig. 5   The error of four kinds of conjugate gradient methods in load identification results
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Fig. 6   The iterations of four different methods under different sensor positions
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in which, btrue represents the simulated true response; bsimulate 
represents the measured response after simulating the noise 
interference; nl represents the noise level; Nnoise represents 
the random Gaussian white noise.

To streamline the load identification process, accel-
eration and bending moment sensors are strategically 
deployed at specific positions along the bridge span, 
namely at 1/4, 1/2, and 3/4 intervals. For ease of refer-
ence, M is used to represent the moment response, and A 
represents the acceleration response. For example, M14 
denotes the bending moment response at the 1/4-span posi-
tion, while A34 represents the acceleration response at the 
3/4-span position, and so on for other positions. The effi-
ciency of load identification will be assessed by measuring 
the number of required iterations, and the time required 
for each iteration will be kept constant across the different 
methods. A lower number of iterations will signify a more 
rapid load identification process.

In this study, the accuracy of the load identification pro-
cess is assessed by utilizing the relative percentage error 
(RPE). The RPE is computed using the following formula:

where Ftrue is the true load, and Fiden is the estimated load.
The following discussion is conducted regarding the 

selection of the fractional order p in (3.5): under dif-
ferent noise levels and using a sensor configuration of 
M14&M12&M34&A14&A12&A34 , the value of p can be 
evaluated based on the number of accuracy of load iden-
tification and iterations results for both the front and rear 
axles. The specific results are shown in Figs. 3 and 4.

Based on the analysis of the load identification accuracy 
and iteration time in Figs. 3 and 4, it is observed that p 
= 1/2 leads to a faster load identification speed and bet-
ter identification accuracy. Therefore, in the subsequent 
analysis, p = 1/2 will be selected for load identification.

4.2 � The analysis of the identification results

To validate the anti-noise performance and accuracy of the 
proposed algorithm, this paper conducted simulation experi-
ments on the load identification of front and rear axles by 
selecting six different sensor configurations and 21 noise 
levels (0–20% noise level, with a step of 1%). Identifica-
tion error is used as the evaluation index to evaluate the 
precision of the load identification outcomes. Meanwhile, 
the FCG method is compared with other conjugate gradient 
methods such as Hestenes–Stiefel conjugate gradient method 

(4.3)RPE =
‖‖Fiden − Ftrue

‖‖
‖‖Ftrue

‖‖
,

(HSCG), Fletcher–Reeves conjugate gradient method 
(FRCG), and Polak–Ribire–Polyak conjugate gradient 
method (PRPCG) in terms of identification accuracy and 
identification speed. The specific identification results are 
shown in Figs. 5 and 6. The specific experimental results 
for the error in identifying the front and rear axis load and 
the number of iterations for the four methods can be found 
in Tables 1, 2, and 3.

As shown in Fig. 5a, when using only the acceleration to 
identify the load, the identification errors of the four meth-
ods are similar, but the FCG method shows slightly better 
identification accuracy than other methods at low noise lev-
els. From the results in Figs. 5b and 6b, when using only the 
torque to identify the load, the identification errors of the 
FCG method and the HSCG method are much smaller than 
the other two methods, especially at high noise levels, and 
the iteration numbers of the FCG method are significantly 
lower than those of the HSCG method. Additionally, when 
combining the acceleration and torque, all methods show 
the stability in load identification. As shown in Figs. 5c–f 
and 6c–f, there were no significant jumps in identification 
error among these methods, indicating the stability in load 
identification. Furthermore, when analyzing the identifica-
tion accuracy under high noise levels, the identification error 
of the FCG method is significantly lower than that of the 
FRCG method, PRPCG method, and HSCG method, and 
the iteration numbers required for the FCG method are much 
lower than the other three methods, indicating that its iden-
tification accuracy and speed are better than other methods. 
In conclusion, the proposed FCG method has a high iden-
tification accuracy and speed under high noise levels and is 
not dependent on sensor configurations.

To quantitatively analyze the identification accuracy of 
the FCG method, this paper chooses the sensor configuration 
of M14&M12&M34&A14&A12&A34 and used four meth-
ods to identify the load on the front and rear axles at six 
different noise levels. The identification results are shown 
in Fig. 7.

As shown in Fig. 7, in the absence of noise, all four meth-
ods successfully achieve accurate load identification. How-
ever, as the noise level increases to 5%, the FRCG method 
experiences a reduction in identification accuracy, whereas 
the remaining three methods still accurately identify the 
load. Upon reaching a noise level of 10%, the FRCG method 
exhibits significant identification errors, while the PRPCG 
method demonstrates relatively smaller errors. On the other 
hand, the FCG method and HSCG method retain their ability 
to accurately identify the load. At the maximum noise level 
of 20%, all four methods encounter identification errors, 
but the FCG method exhibits comparatively smaller errors 
compared to the other methods. These results indicate that 
the FCG method has high identification accuracy and strong 
robustness.

Fig. 7   The identified results of front and rear axle loads using four 
methods at different noise levels

◂
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5 � Conclusion

(1)	 This paper applies the proposed FCG to identifiy mov-
ing loads on bridges with six different sensor arrange-
ments. When using bending moment and accelera-
tion for load identification, the FRCG method and the 
PRPCG method achieve higher identification accuracy 
than the proposed FCG method at low noise level. 
However, at high noise level, the identification error 
of the proposed FCG method is lower than that of the 
HSCG method, the FRCG method, and the PRPCG 
method, indicating that the FCG method exhibits 
higher identification accuracy and robustness in high 
noise environment.

(2)	 The proposed FCG method exhibits a significant advan-
tage in identification speed, showing a faster identi-
fication speed than the FRCG method, the PRPCG 
method, and the HSCG method. This indicates that the 
FCG method performs more efficiently and quickly in 
handling large-scale data, which is highly beneficial 
for applications that require rapid processing of large 
amounts of data.

(3)	 The load identification method proposed based on the 
FCG method can accurately identify moving loads on 
bridges and has high identification speed, robustness, 
and universality without sacrificing identification accu-
racy. The present method has broad application pros-
pects in the practical monitoring and maintenance of 
bridges.
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