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Abstract
The timely growth of data collection and virtual technology has led to advancements in digital twin (DT) technology, which 
has since become one of the primary research areas and provides enormous possibilities for various industry fields. Based 
on ultra-fidelity models, DT is an efficient method for realizing the merging of physical and virtual environments. Scholars 
investigated associated theories and modeling techniques, critical technologies for realizing continuous links and commu-
nication between physical and virtual entities, and other researchers concentrated on providing frameworks for the practical 
application of DT. This article aims to summarize common industrial cases to determine the present status of DT research. 
This paper discusses the concept of DT technology, the properties that define it, and the DT framework used in the industry. 
It also reviews the DT application and the findings of associated studies. Some present challenges in DT development, and 
potential DT prospects are discussed. Finally, we utilize the 6-degrees-of-freedom parallel robot as a case study to illustrate 
a future application of DT.
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1  Introduction

Compared with traditional computer-aided design or com-
puter-aided manufacturing (CAD/CAM), digital twin tech-
nology has more development space and potential, and its 
significance is enormous. In recent years, scholars have con-
tinued to explore and deepen the concept of digital twinning 
and the deployment of new models and frameworks to utilize 
DT technology in new fields.

The digital twinning concept was put forward in 2003 
by a professor from the University of Michigan, Professor 
Grieves, in the USA [1]. In the year 2010, the term "Digital 
Twin" was coined in the National Aeronautics and Space 

Administration’s (NASA’s) technical report, and DT was 
formally proposed and defined as “a system that integrates 
multiple physical quantities, scales, and probabilities on 
aircraft simulation processes.” The word "Twin" was first 
used by NASA to apply the concept of digital twinning to 
practical scenes. NASA applied digital twinning technology 
to spacecraft to obtain flight data from physical aircraft. The 
first paper on DT appeared in 2011 [2], and in recent years, 
the scope of DT study projects has increased quickly and 
extended into new fields. The term "digital twin" has gained 
popularity. It is now often used to describe the technology 
that creates digital copies of actual entities and connects 
them to their virtual versions.

In the year 2012, the US Air Force and NASA collabo-
rated on an article on DT technology, stating that DT is one 
of the core technologies to facilitate airplane design for the 
future [3]. Through simulations of digital twins running on 
the ground, possible future situations are successfully pre-
dicted for the staff to make correct decisions, providing a 
robust basis [4]. Thus, digital twinning technology in the 
aviation space field has been attached to great importance.

Due to the vigorous advancement of information and 
communication technologies, the DT has been applied in 
different fields and scenes, such as agriculture, smart cities, 
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electric power, production, and manufacturing [5–9]. In 
manufacturing, digital twin production is generally defined 
as an effective means to achieve the virtual-real integration 
of the information space and the actual manufacturing scene 
[4].

Over the lifecycle of a product, several electronic tools 
and computer programs may be used. Hence, a great deal 
of information in various forms is generated. These data 
are large, but they are scattered and disconnected, lead-
ing to inefficiency and underutilization. Simulation using 
theoretical and static models has been widely used and is 
an effective analytical tool, validating and optimizing sys-
tems in their early phases of planning. However, the simu-
lation application is given no thought during system run-
time. New information and digitalization technologies have 
made it possible to potentially collect more data; the next 
step is to determine ways to thoroughly utilize this plethora 
of new data. Because of this, the DT notion has generated 
much interest and is advancing swiftly. Increases in comput-
ing power and network bandwidth have been a boon in the 
industrial sector. Additionally, technological advancements 
like CAD, CAM, computer-aided engineering (CAE), prod-
uct data management (PDM), finite element analysis (FEA), 
and other developments in computer-aided technology are 
accelerating and playing an increasingly important as well 
as common industry function. Every industry benefits sig-
nificantly from the rapid development of technologies like 
artificial intelligence, big data, the Internet of Things, cloud 
technology, edge computing, 5G cellular technology, and 
wireless sensor networks. Although these technologies offer 
a wide range of chances for merging the digital and real 
worlds, not all this integration's strategic potential is being 
used. Recently, progress has been made in digital twins, but 
there is still a long way to go in the implementation phase.

The advent of digitization has also enabled the utilization 
of simulations in product designs and production processes. 
To enable real-time planning, what follows from these 
massive volumes of information is analyzed, examined, 
and assessed with the use of simulated environments and 
optimization software [10–12]. Among many simulation-
based planning and optimization approaches, DT continues 
to show enormous promise in a wide range of commercial 
contexts [13]. Incorporating field-level data sensing into a 
time-synchronized system, DT may be used to replicate it 
for a variety of reasons. It can choose connections between 
activities to orchestrate and carry out the full manufacturing 
chain as efficiently as feasible. This increases production 
efficiency and precision and brings about financial gains 
[11, 14]. DTs are anticipated to predict the physical object's 
state progression utilizing the shared data. It is possible to 
exchange information between physical and virtual domains 
while adhering to time-sensitive requirements. DTs can also 
make available information about the system's current state 

and performance to aid in the creation of novel business 
models. Additionally, it is feasible to provide situational 
awareness and create more accurate forecasts.

DT can be incorporated into the management of physi-
cal items with several benefits. For instance, in the form of 
machine learning, or other model approaches, it is feasible to 
forecast future system traits and adjust them to increase pro-
cess productivity. For this reason, DTs are frequently used to 
avoid service interruptions during repair operations. A DT 
can be utilized for continuous monitoring by acquiring data 
in real time. This makes it possible for the DT to regulate the 
physical system and offer information for improved business 
decisions. DTs can offer a platform for testing several situa-
tions to select the most effective one, enhancing the system’s 
performance. Due to their capacity to identify harmful activ-
ity on a system, DTs are frequently used to enhance security 
and resilience. Additionally, it enables improved risk analy-
sis to compare and contrast potential outcomes that might 
impact the actual items.

During the preceding several years, enthusiasm for DT 
has expanded at both academic and industrial levels because 
of its vast advantages, long-term potential, and remarkable 
scope of implementation. In Industry 4.0, to put it simply, 
DT is one of the foundations of technology [15]. DT was 
listed as one of the next most anticipated technological 
developments [16].

The existence of review articles [2, 8, 9, 11, 17–22] has 
contributed greatly to the Digital Twin technology. While 
these seminal works have undoubtedly enriched the dis-
course on DT, this review extends beyond the enumeration 
of enabling technologies and challenges. The paper delves 
into a comprehensive exploration of the fundamental con-
cepts underpinning DTs, offering readers a solid foundation 
to grasp the topic. This paper critically evaluates various 
definitions of DT in academia, aiming to propose a consoli-
dated definition that can be used in any industry, despite the 
various ways DT is defined across different fields. Moreover, 
this paper will further provide an in-depth examination of 
DT applications across various domains categorizing them 
under three subsections, and the associated studies are criti-
cally evaluated and summarized. The study not only draws 
upon prior research but also offers a synthesis that highlights 
the evolving landscape of DT utilization trends, and a practi-
cal case study to exemplify real-world implementation was 
conducted by the six-degrees-of-freedom (6-DOF) parallel 
robot to illustrate one of the future application modes of 
the DT technology by reflecting critically on digital twin 
technology's function across its control. In this manner, 
this review paper provides a holistic and nuanced perspec-
tive on DT technology, making it a valuable resource that 
distinguishes itself through its depth and breadth of cov-
erage. Ultimately, the unique and innovative contribution 
of this manuscript lies in its unparalleled dimensions, its 
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unflinching critical examination of the existing literature, 
and its commitment to illuminating the path toward the suc-
cessful integration of digital twin technology across various 
facets of industry and academia. An overview of this study 
is presented in Fig. 1.

The rest of this paper is organized as follows: Section 2 
starts by presenting the methodology adopted, followed by 

subsections on the definition and characterization of the 
technology. Section 2.2 presents concepts and an analy-
sis of the definition. Section 2.3 presents the key enabling 
technologies of the DT platform. Section 2.4 lays charac-
teristics. Section 2.5 details the various constituents of the 
framework. Section 3 presents applications in different areas. 
Section 4 presents challenges and perspectives. Section 5 

Fig. 1   Summary of the paper's content
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presents a case study on the DT-driven real-time visual con-
trol method for 6-DOF parallel robots. And finally, Sect. 6 
draws conclusions.

2 � Methodology revision of published 
literature

2.1 � Scope of the paper

Our analysis provides a thorough overview of the idea of 
DT technology, its defining characteristics, and the indus-
try-standard DT framework. It also goes over the results of 
related investigations and the implementation of DT. All 
references were searched from mainstream sci-tech jour-
nal databases. We looked at a number of research on DT 
technology, first going over the methodology implementa-
tion and then defining and characterizing the technology. 
The main enabling technologies of the DT platform were 
described in literature that provided information on the ideas 
and analyzed the definition. Additionally, we provided attrib-
utes that corresponded with the different components of the 
framework. In addition, 3371 published publications in the 
WoS database were found by our search using the keywords 
"digital twin," "virtual environment," "digital system," and 
"computer-aided technologies." The keyword “digital twin 
application” search generated 1224 documents during the 
last ten years. Among these, the most recent in past 5 years 
were 81 categorized and reviewed under digital twin appli-
cation in Sect. 3. Nevertheless, the most modern and thor-
ough DT technology was the main focus of our review. The 
most thorough papers that covered ideas, traits, framework 
components, applications, difficulties, and opportunities 
were considered. We provide information as well as key 
findings from 185 references published in the last 10 years 
with majority from the last 5 years.

As illustrated in Fig. 2, utilizing the Web of Science 
(WoS) database revealed published manuscripts in digital 
twin technology. Three thousand three hundred and seventy-
one (3371) published documents on digital twin technology 
have been issued since 2013. There have been 3222 new 
releases in the previous five years. Almost all papers (95.6%) 
were published over the last five years. Since 2013, 3893 
manuscripts have been added to the following databases: 
WoS, Chinese Science Citation Database℠ (CSCD), Der-
went Innovations Index (DII), KCI-Korean Journal Data-
base (KCI-KJD), and SciELO Citation Index. Of these, 
3812 were published over the past five years, accounting 
for 97.9% of the literature on the subject. These data show a 
spike in the research on the said topic. These demonstrate a 
severe interest in digital twin technology and have facilitated 
advancements in recent years.

Utilizing the Web of Science (WoS) database showed 
published manuscripts (see Fig. 3) in the application of 
digital twin technology. One thousand two hundred and 
twenty-four (1224) published documents on digital twin 
technology have been published since 2013. Over the past 
five years, 1195 of these have seen publication. Nearly all of 
the manuscripts (97.2%) have been released over the previ-
ous five years. Since 2013, there have been a total of 1616 
articles indexed in the following databases: WoS, Chinese 
Science Citation Database℠ (CSCD), Derwent Innovations 
Index (DII), KCI-Korean Journal Database (KCI-KJD), and 
SciELO Citation Index. One thousand five hundred and 
eighty-five (1585) studies have been published in the last five 
years, accounting for 98.1% of the total. These data show 

Fig. 2   Digital twin technology publication history and development: 
The Web of Science database (Blue) reveals 3371 published docu-
ments since 2013, with 95.6% of these being published within the last 
five years. All Databases (Orange) have contributed 3893 manuscripts 
since 2013, with 3812 published in the preceding five years, account-
ing for 97.9% of the subject's literature

Fig. 3   Application of digital twin technology publication history and 
development: The Web of Science database (orange) lists 1224 pub-
lished digital twin technology application manuscripts since 2013, 
with 97.2% released within the past five years. 1616 articles have 
been indexed in all databases, with 1585 studies published in the last 
five years, indicating a significant increase in research on the topic
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a spike in research on the said topic. These demonstrate a 
grave interest in the application of digital twin technology 
in various fields and have facilitated advancements in recent 
years. This paper discusses current trends by reviewing lit-
erature published in the past decade.

2.2 � Digital twin concept

Utilizing "twins" is a long-standing concept. It has its roots 
in NASA's Apollo program. In their program, two conformal 
spacecraft were constructed to enable the visualization of the 
spacecraft's travel experiences. The component remaining 
on Earth was the twin. During the lead-up to the trip, the 
twin was heavily utilized for training. To aid the astronauts 
under orbit in difficult circumstances, it served as a simula-
tion for potential outcomes on the model on earth during 
the mission. The in-flight events were simulated accurately 
using the available flight data. In this respect, any prototype 
that mimics the actual equivalent in terms of operational 
conditions and behavior in real time is known as a twin [12].

Several scholars have, over the years, analyzed the DT 
notion and its definition. In the work done by Zhang et al. 
[23], both the limited and broad senses of the term "DT" 
were explored, along with the notion and attributes of this 
term. In the constrained sense, they explained DT as an 
accumulation of virtual data that completely characterizes 
a hypothetical or existing physical manufacturing process 
from the microscopic resolution to the contextual geometri-
cal level [23]. DT can be used to acquire any piece of data 
that might be examined based on a physically fabricated 
product. They also stated that DT is primarily an embed-
ded system with the ability to simulate, supervise, evalu-
ate, and control the state of the system and procedure, with 
the stipulation that DT is constructed by collecting data and 
digital production techniques centered on the control, infor-
mation processing, and data transmission units. The recom-
mended application structure consisted of physical space, 
virtual space, and an information processing layer. The DT 
is capable of achieving complete system mapping, dynamic 
modeling across the whole lifetime, and real-time optimiza-
tion within the context of an application [23].

According to the viewpoint of the production process on 
the shop floor, Bao et al. [47] identified three categories of 
DT models: product DTs, process DTs, and operation DTs. 
According to Schluse and Rossmann [48], a DT is a digital 
depiction and communication capabilities of a real object 
that may operate as an intelligent node in the Internet of 
Things and Services [48]. According to Shafto et al. [49], 
it is a unified multi-scale, stochastic framework of a system 
that utilizes the most up-to-date real product models, sensor-
acquired data, and fleet history. A DT is the digital depiction 
of a tangible item, as defined by Fotland et al. [50]. Rather 
than monitoring the asset itself, DT gathers and processes 

real-time data to determine metrics that simply cannot be 
seen at the hardware level. There are several scholarly works, 
including [51–54] that provide further definitions of DT.

The concept of DT has evolved, with various scholars 
and experts offering diverse interpretations and definitions. 
The historical reference to NASA's Apollo program, where 
conformal spacecraft were used as twins for training, sim-
ulations, and in-flight event monitoring, serves as a valu-
able starting point. However, as the concept has matured 
and found implementation across multiple industries, it is 
evident that a more consolidated and universally applicable 
definition is needed. While there are several hypotheses for 
DT, there is no agreement on the features that define digi-
tal twins. The definition and connotation of the digital twin 
concept were widely discussed in academic works, and this 
was done across a variety of different sectors, as summarized 
in Table 1.

The subject is presented from several perspectives, all of 
which are valid. However, it is not possible to prove that any 
one of these theories is better than the others. The diverse 
interpretations highlight the multifaceted nature of the con-
cept, making it challenging to arrive at a single, definitive 
definition. These interpretations range from emphasizing 
the accumulation of virtual data characterizing physical 
processes to highlighting DT as an embedded system for 
simulation, supervision, evaluation, and control. There are 
also distinctions between product DTs, process DTs, and 
operation DTs, underscoring the versatility of DT within 
manufacturing contexts. Additional definitions refer to DT 
as a digital depiction with communication capabilities and 
a unified multi-scale framework utilizing real product mod-
els, sensor data, and historical records. The challenge lies in 
synthesizing these various perspectives into a consolidated 
definition that can be applied universally, irrespective of 
industry. A proposed consolidated definition of DT could 
be as follows:

Digital Twin (DT): A DT is a digital representation of 
a physical entity, process, or system that operates in 
real time. It encompasses a broad spectrum of digital 
data, including geometrical, behavioral, and opera-
tional information. A DT serves as a dynamic and 
interconnected model that can simulate, monitor, eval-
uate, and control the state and behavior of its physical 
counterpart while facilitating data-driven decision-
making. It comprises a comprehensive mapping of the 
entire system, supports dynamic modeling throughout 
its lifecycle, and enables real-time optimization within 
the context of its application.

This consolidated definition recognizes the fundamen-
tal attributes of a DT (as illustrated in Fig. 4), such as its 
real-time nature, the ability to mimic and control the physi-
cal entity, and its specific operational utility. It provides a 



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:420420  Page 6 of 46

framework that can be employed across various industries 
and contexts, emphasizing the versatility and practicality of 
the DT concept. While the interpretations presented by vari-
ous scholars remain valid, a consolidated definition serves to 
unify and clarify the core characteristics of DT, making it a 
valuable reference point for widespread utilization.

2.3 � Key enabling technologies of the DT platform

Digital twin technology promotes the development of intelli-
gent processes. On the one hand, considering the traditional 
computer-aided technologies (CAx) simulation, the environ-
ment does not have the attribute of the internet, and data 
access is the key problem of digital twin technology. Some 
scholars used Web racks to solve this problem, Schroeder 
et al. [55] addressed this by proposing a Cyber-Physical 
System (CPS) solution, digital twin of sensors, PLC, and 
other industrial equipment was constructed, and a method 
of data access and management based on the Web service is 
proposed to exchange data between digital twins and exter-
nal systems. A new method based on this theory is the pro-
posed Data exchange model of Automation ML (automation 
modeling language). Similarly, Liu et al. [29] proposed a 
Web-based system framework that integrates CPS, digital 
twin modeling technology, event-driven distributed coopera-
tion mechanisms, and Web technology based on digital twin 
CPPS (Cyber-Physical Production System) fast department 
guides for general configuration and operation. Moreover, 
Urbina Coronado et al. [56] described a Manufacturing Exe-
cution System (MES) that was powered by cloud computing 
tools and Android devices, integrated MTConnect data with 
production data collection, and applied this method to track Ta
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Fig. 4   Digital twin concept: The concept reveals that DTs are digital 
copies of physical entities that receive bidirectional data, information, 
and process communication to update their behavior rules
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a production run of titanium parts. Meanwhile, visualization 
of digital twins poses another challenge, tackled by Zhang 
et al. [57] who developed a simulation platform with 3D 
graphics for production line optimization.

Some scholars use Web 3D technology to realize remote 
online visualization of the DT. Eamnapha et al. [58] pro-
posed a graphics and physics engine for the rapid develop-
ment of 3D Web systems that were also implemented. In the 
work done by Khrueangsakun et al. [59], the above results 
are applied to digital twinning technology, and based on this, 
the Web end of the digital twinning of the manipulator is 
realized for 3D display, monitoring, and control. Han et al. 
[60] proposed the lightweight and visual display method 
of the 3D twin model based on the Web and verified and 
analyzed the proposed 3D visual monitoring system of con-
tinuous casting machines driven by digital twins based on 
the Web.

Yu et al. [61] proposed the use of ontology expression 
language to build a product DT model and store product con-
figuration information in the DT model, providing ideas to 
control product setup in the full 3-dimensional mode. In the 
realm of manufacturing, Zou et al. [62] proposed DT mod-
els tailored for machined parts, incorporating key feature 
information to address modeling challenges. Additionally, 
Söderberg et al. [63] presented a digital twinning modeling 
method for real-time mapping of product geometric informa-
tion during design and processing stages, ensuring geometric 
size accuracy. Wärmefjord et al. [53] devised an inspection 
strategy utilizing DT models with precise geometric assur-
ance directions and integrating geometric shape data for 
product inspection. Tool state variations (wear, tempera-
ture, etc.) are often unpredictable in traditional simulation 
and analysis environments. Botkina et al. [64] established 
a tool DT model oriented to the design and manufactur-
ing processes to analyze the state changes of tools in their 
life cycle. Also, Sun Huibin et al. [65] discussed the defini-
tion, composition, and construction method of the tool DT 
model oriented to the cutting process, explored tool health 

management, tool life prediction, tool selection, and tool 
change methods driven by the fusion of the digital twin 
model and actual tool sensor data, and verified the proposed 
methods through machine tool processing. The essential 
technologies included in a majority of the DT platforms are 
depicted in Fig. 5 after a comprehensive assessment of the 
literature on digital twin technology.

The DT is commonly regarded as a technological entity. 
However, it can be more precisely conceptualized as a sys-
tem that integrates multiple enabling technologies to create 
an intelligent virtual model of a physical object. This model 
facilitates a continuous and reciprocal exchange of informa-
tion between the twin entities. The DT comprised of vari-
ous modules, including physical entities, virtual model data, 
connections, and innovative services. The different moduli 
require various enabling technologies to support their func-
tion to fully realize the DT.

Since DT necessitates expertise in a wide range of fields, 
including but not limited to dynamics, structural mechanics, 
acoustics, thermals, electromagnetism, materials science, 
hydro-mechatronics, and control theory, a thorough ground-
ing in the physical world is an absolute necessity. Physical 
things and processes are mapped to the digital world to bring 
the models closer to reality by utilizing knowledge, sensing, 
and measuring technology.

Various modeling technologies are necessary to create 
a virtual model, and utilizing visualization technologies is 
crucial to track physical entities and processes in real time. 
The precision of digital representations has a direct impact 
on the efficacy of the DT. Hence, it is imperative to sub-
ject the models to verification, validation, and accreditation 
(VV&A) technologies and optimize them using optimiza-
tion algorithms. In addition, using simulation and retrospec-
tive technologies can facilitate the prompt identification of 
quality issues and validation of viability. Given the need for 
virtual models to adapt to ongoing changes in the physical 
world, it is paramount to employ model evolution technolo-
gies to facilitate model updates.

Fig. 5   Key technologies 
involved in the DT platform: 
These include Extended Reality 
(XR) for digital modeling and 
visualization of physical enti-
ties, cloud computing for data 
storage and also allow easy data 
access, Internet of Things (IoT) 
for constant data transmission 
between the physical and the 
virtual entity, and Artificial 
intelligence (AI) for automatic 
analysis of obtained data, to 
provide data insight and make 
predictions
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Furthermore, the operation of DT generates a substantial 
amount of data. Fusion and advanced data analytics tech-
nologies are essential for extracting valuable insights from 
unprocessed data. DT encompasses a range of services, 
such as operational, resource, knowledge, and platform. 
The provision of these services necessitates the utiliza-
tion of software solutions, platform architecture technol-
ogy, service-oriented architecture (SOA) technologies, as 
well as knowledge technologies. The various components 
of DT, namely the physical entity, virtual model, data, and 
service, are interconnected to facilitate communications and 
information sharing. The connection pertains to the Inter-
net, cyber-security, interface, communication protocols, and 
interaction technologies.

Also, the enabling technologies themselves can take 
many forms depending on the DT’s use case. For exam-
ple, although it is known that a communication medium is 
needed between the real and digital twins, the choice of the 
specific communication protocol is entirely dependent on the 
communication requirements of the DT’s implementation. 
Table 2 presents a summary of the key enabling technologies 
required for the various DT moduli.

2.3.1 � Extended reality technologies

Extended Reality (XR) technologies encompass the col-
lective environment comprising both physical and virtual 
elements, where humans interact with machines. This is 
anticipated to bring about significant changes in the respec-
tive deployment domain. XR technologies, which include 
Virtual Reality (VR), Augmented Reality (AR), and Mixed 
Reality (MR), greatly extend the possibilities of digital twins 
by offering immersive and interactive experiences [66, 67]. 
The XR framework has been explored by researchers. Gong 
et al. [68] developed a framework for integrating XR systems 
in manufacturing, focusing on product development method-
ology and enhancing usability and user acceptance. Pereira 
et al. [69] proposed a framework for developing collabora-
tive XR systems, focusing on object manipulation in VR. 
User tests validated their framework's effectiveness in ena-
bling real-time interaction in mixed-reality environments. 
Catalano et al. [70] presented a DT-based framework for 
extended reality applications, demonstrating its effectiveness 
in a brake disk production company, and suggested future 
research using 5G networks.

Within the domain of VR, the fundamental ideas revolve 
around the creation of a completely computer-generated 
environment. VR utilizes advanced graphics rendering 
methods to create realistic 3D environments. It incorporates 
algorithms for rendering, shading, and spatial interaction. 
Typically, motion-tracking algorithms are incorporated to 
observe user motions and make appropriate adjustments to 
the virtual world. VR content makers produce and convert 

3D models, 2D images, and spatial sounds into formats 
that can be processed by machines. They take into account 
the intended purpose, device, and level of engagement. 
VR experiences can be categorized as either static, which 
involves the immersive viewing of 360° spherical images 
or films, or dynamic, which allows users to freely move and 
interact inside the VR environment. With its advanced capa-
bilities, the technology has been studied in various applica-
tion DT works. The study by Kaarleal et al. [71] researched 
digital twins and virtual reality environments for safety 
training, focusing on practical use cases for local small- and 
medium-sized enterprises, highlighting the current maturity 
of virtual reality technology. Pérez et al. [72] introduced 
a novel process automation methodology using a virtual 
reality interface, enhancing implementation and real-time 
monitoring, and was validated in an assembly manufacturing 
process. Kwok et al.’s [73] studies revealed that perceived 
usefulness, ease of use, behavioral control, self-efficacy, and 
attitude influence users' acceptance of a system, explaining 
60% of behavioral intention variance. Burghardt et al. [74] 
developed a method for programming robots using virtual 
reality and digital twins. Their virtual environment was a 
digital twin of a robotic station, which allowed the robot to 
replicate human movements in complex robotization situa-
tions. An example was presented for cleaning ceramic cast-
ing molds.

Augmented Reality superimposes digital data onto the 
user's physical environment, commonly through devices 
such as smartphones, tablets, or AR glasses. The funda-
mentals of AR encompass computer vision algorithms that 
facilitate object recognition and tracking. These algorithms 
include markerless tracking, simultaneous localization and 
mapping (SLAM), and image recognition algorithms. These 
technologies augment the user's experience by seamlessly 
integrating digital content with their physical environment. 
He et  al.’s [75] research proposed a mobile augmented 
reality remote monitoring system to assist operators with 
low knowledge and experience levels in understanding 
digital twin data and interacting with devices. Their sys-
tem analyzed historic and real-time data, enriched 2D data 
with 3D models, and used a cloud-based machine learning 
algorithm to transform knowledge into live presentations 
on a mobile device. They conducted a scaled-down case 
study that showed consistent measurable improvements in 
human–device interaction for novice users. In another study, 
Zhu et al. [76] presented an AR system using Microsoft Hol-
oLens to visualize DT data of a CNC milling machine in a 
manufacturing environment. Their utilization allowed opera-
tors to monitor and control the machine tool simultaneously, 
providing an intuitive interface for efficient machining. This 
laid the groundwork for future intelligent control processes 
using AR devices. Bogosian and colleagues showcased a 
prototype mobile AR system for robotic automation training 
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for construction industry workers, allowing users to interact 
with a virtual robot manipulator [77].

Mixed Reality (MR) integrates components from both VR 
and AR, enabling the simultaneous existence and interaction 
of digital and physical things in real time. MR enables users 
to control virtual elements in a way consistent with real-
world interactions, with the digital information responding 
and reacting accordingly. To fully engage with this experi-
ence, it is necessary to utilize spatial mapping algorithms 
to comprehend and engage with the physical surroundings. 
Gesture detection and hand-tracking algorithms enable users 
to interact with virtual items, seamlessly integrating the real 
and virtual worlds. The study led by Osorto Carrasco found 
that MR-based design review can effectively communicate 
85% of information to clients, outperforming traditional 2D 
methods by 70% [78]. It also enhanced client comprehen-
sion of material aesthetics, allowing for the replacement of 
physical samples or mockups during the construction fin-
ishing stage. Also, Tu et al. [79] created a human–machine 
interface (HMI) for digital twin-driven services utilizing 
an industrial crane platform. The utilization of a Microsoft 
HoloLens 1 gadget enabled crane operators to oversee and 
manipulate movement through interactive holograms and 
bidirectional data transfer in an MR system. The control 
accuracy of the prototype was assessed by 20 measurements, 
revealing minimal disparities between the desired and actual 
positions. Choi et al. [80] proposed an MR system designed 
for safety-conscious human–robot collaboration (HRC). 
Their system incorporated deep learning techniques and 
the creation of digital twins. The system precisely calcu-
lated the minimum safe distance in real time and provided 
task guidance to human operators. In addition, the system 
employed a pair of RGB-D sensors to rebuild and monitor 
the operational surroundings, while utilizing deep learning-
based instance segmentation to enhance alignment between 
the physical robot and its virtual counterpart. The 3D offset-
based safety distance calculation approach enabled real-time 
implementation while maintaining accuracy.

Real-time data synchronization is crucial when integrat-
ing XR technology with digital twins. Algorithms that han-
dle data flow, synchronization, and ensuring consistency 
between digital and physical representations are crucial. 
Additionally, XR used in digital twins frequently require 
compatibility with several data sources and formats, which 
necessitates the use of algorithms for integrating and trans-
forming data, as well as established communication proto-
cols to ensure smooth connectivity.

Advanced human–computer engagement (HCI) princi-
ples are essential for user engagement in XR and digital 
twins. These interfaces encompass gesture recognition and 
voice commands, typically executed using machine learn-
ing algorithms. Furthermore, ensuring optimal performance 
is of utmost importance for XR system, which necessitates 

the implementation of techniques like level-of-detail ren-
dering and real-time adaptive graphics modifications. These 
approaches are employed to uphold a seamless and prompt 
user experience.

Extended Reality technologies greatly enhance the value 
and efficacy of DT solutions in various industries. This leads 
to increased effectiveness, cost reduction, and improved 
decision-making. These technologies provide a more authen-
tic and engaging visualization experience, enabling users 
to navigate and engage with DT in a virtual world, hence 
boosting their comprehension of physical systems [81]. VR 
enables remote collaboration and communication, enabling 
individuals to concurrently access and engage with DT 
from distant locations [82]. Furthermore, these technologies 
facilitate iterative design processes by enabling designers to 
electronically evaluate and simulate their concepts, hence 
minimizing the need for actual prototypes and the accom-
panying expenses [83]. In addition, the integration of XR 
technologies with DT can improve maintenance and support 
tasks by offering real-time repair instructions and instruct-
ing remote professionals with augmented information. This 
reduces downtime and enhances efficiency [84].

Comprehending and applying these technical elements 
of XR in the framework of digital twins help in developing 
more advanced and efficient immersive experiences.

2.3.2 � Cloud computing technology

Cloud computing is a foundational technology in the imple-
mentation of digital twins, providing scalable resources, 
storage, and processing capabilities. The underlying prin-
ciples of cloud computing include resource virtualization, 
abstracting physical resources into virtualized components, 
and enabling on-demand access to computing infrastructure 
without managing the underlying hardware. Scalability is a 
key feature that allows digital twin systems to dynamically 
scale resources based on demand, crucial for handling the 
computational requirements of complex simulations and 
real-time data processing. Additionally, cloud computing 
operates on various service models such as Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS), and Soft-
ware as a Service (SaaS), offering a range of solutions from 
virtual machines to ready-to-use software.

Algorithms and methodologies within cloud comput-
ing for digital twins encompass distributed computing 
algorithms, such as MapReduce, for efficient processing 
of large datasets across multiple servers. Load-balanc-
ing algorithms distribute incoming requests to optimize 
resource utilization and enhance overall efficiency. Data 
partitioning, replication, and containerization utilizing 
technologies like Docker and Kubernetes are key to man-
aging data and orchestrating application components in 
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cloud environments. Integration and interoperability are 
facilitated through APIs, microservices architecture, and 
message queue systems like RabbitMQ or Apache Kafka, 
ensuring decoupled communication and flexibility.

Virtualizing composite multimodal equipment or ser-
vices necessitates substantial computational capabilities. 
The requirement for distributed and parallel computing 
arises from the demand for real-time reactivity, which is 
a property of the DT and involves the synchronization 
of real and virtual elements. Cloud computing technol-
ogy is commonly found in studies connected to digital 
transformation.

The cloud system serves as a data storage facility with 
powerful processing capabilities. It also facilitates the seam-
less connection and hosting of virtual counterparts of diverse 
subsystems comprising a complex DT. Meanwhile, the DT 
focuses on synchronizing physical and virtual assets [27, 
46]. The purpose of cloud computing technology in DT var-
ies depending on the specific deployment area. For instance, 
within the manufacturing sector, it can function as a shared 
platform for companies to exchange information about the 
failure mechanisms and maintenance requirements of com-
parable equipment, to facilitate the implementation of DT-
enabled solutions such as predictive maintenance, while in 
the healthcare industry, it involves utilizing the cloud as a 
collaborative information platform for medical service pro-
viders and patients [85, 86].

The implementation of cloud computing in DT has been 
explored by researchers. In view of this, Xu et al. [27] devel-
oped a system called digital twin-based industrial cloud 
robotics (DTICR) to control industrial robots. The study cat-
egorized the DTICR into four distinct components: physical 
industrial robots, digital industrial robots, robotic control 
services, and digital twin data. Furthermore, the ability to 
operate robots was consolidated into a service called Robot 
Control as-a-Service (RCaaS), which was built on manu-
facturing functionalities. Following the simulation of the 
manufacturing process, RCaaSs were assigned to practical 
robots for robotic control. Their DTICR successfully inte-
grated and combined digital and physical industrial robots, 
allowing precise sensing control. The study by Liu et al. [85] 
proposed a cloud-based healthcare system, which utilizes 
digital twin healthcare technology to oversee, diagnose, and 
forecast health conditions using wearable medical equip-
ment. They established a framework for reference, investi-
gated essential technologies, and showcased the practicality 
in real-time monitoring scenarios. Also, the study by Wang 
et al. [36] developed a DT paradigm employing advanced 
driving assistance systems (ADAS) for linked automobiles. 
In their study, the data were uploaded to a server through 
a vehicle-to-cloud connection, where it was processed and 
subsequently delivered back to the vehicles. Their coopera-
tive ramp merging case study showcased the advantages of 

utilizing a vehicle-to-cloud ADAS for transportation sys-
tems, such as enhanced mobility and environmental sustain-
ability, while experiencing low communication delays and 
packet losses.

Security and privacy considerations in cloud-based digi-
tal twins involve Identity and Access Management (IAM) 
for controlling resource access, data encryption mechanisms 
like TLS and AES to protect sensitive information, and 
compliance auditing tools to monitor activities and adhere 
to data protection regulations. Cloud computing's role in 
digital twins extends to providing standardized data inter-
change formats such as JavaScript Object Notation (JSON) 
or eXtensible Markup Language (XML) for seamless infor-
mation exchange between different components. In essence, 
the comprehensive use of cloud computing principles, algo-
rithms, and methodologies supports the robust development 
and operation of digital twins by addressing scalability, data 
management, security, and interoperability challenges.

2.3.3 � The Internet of Things

The Internet of Things (IoT) plays a pivotal role in the devel-
opment and functionality of digital twins, enhancing their 
capabilities through the integration of sensor data, connec-
tivity, and real-time monitoring. At its core, IoT involves 
connecting physical devices and objects to the internet, 
allowing them to collect and exchange data. This connec-
tivity enables a continuous flow of information between 
the physical entity and its digital representation. The IoT 
technology enables the DT. However, the DT can also sup-
port the IoT by providing a self-adaptive and self-integrating 
digital representation of IoT devices. This helps make the 
IoT framework resilient to dynamic changes. Additionally, 
the DT can allow virtual simulations of large sensor net-
works [87, 88].

Underlying the principles of IoT in digital twins is the 
concept of sensor integration [89, 90]. Various sensors 
embedded in the physical system continuously collect data 
related to its state, performance, and surrounding envi-
ronment. These sensors can include temperature sensors, 
accelerometers, cameras, and other types, depending on the 
nature of the system being modeled. The collected data are 
then transmitted to the digital twin, providing a real-time 
reflection of the physical entity. This was demonstrated 
in the study by Yasin et al. [91] which explored the fea-
sibility of implementing DT for small- and medium-sized 
enterprises (SMEs) by developing a low-cost framework 
and providing guidance to overcome technological barri-
ers. They presented an experimental scenario involving a 
resistance temperature detector sensor connected to a pro-
grammable logic controller for data storage and analysis, 
predictive simulation, and modeling. Their results showed 
sensor data can be integrated with IoT devices, enabling DT 
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technologies and allowing real-time data and key perfor-
mance indicators to be displayed in a 3D model. Algorithms 
in IoT-based digital twins focus on data processing, analysis, 
and communication [92]. Machine learning algorithms are 
such algorithmic approaches, employed for predictive ana-
lytics, allowing the digital twin to anticipate future states 
based on historical data trends [89]. Hofmann et al. [93] 
utilized DT to aid truck dispatching operators by employing 
simulation-based performance predictions and an Internet of 
Things (IoT) platform to determine the most effective strate-
gies. This system was implemented as a cloud-based service 
to ensure scalability.

Integrating IoT with digital twins often involves the use 
of standardized communication protocols such as Message 
Queuing Telemetry Transport (MQTT), MTConnect, Con-
strained Application Protocol (CoAP), and OPC UA [94, 
95]. These protocols are lightweight and efficient protocols 
designed for IoT communication as well as offer a platform 
capable of comprehending and converting data from vari-
ous protocols facilitating the transmission of data between 
physical devices and their digital twins in a standardized and 
interoperable manner.

2.3.4 � Artificial intelligence technology

Artificial Intelligence (AI) technology profoundly trans-
forms the capabilities of digital twins, imbuing them with 
the ability to simulate, analyze, and make informed decisions 
based on intricate data. DT enhances awareness of physical 
assets by the utilization of specialized intelligence capable 
of processing numerical data and generating domain-spe-
cific conclusions at a faster rate than a human expert [96]. 
It can deduce significant and practical information from its 
physical counterpart and surroundings. At the core of this 
advantage is the integration of principles rooted in various 
machine learning (ML) algorithms such as classification 
ML, deep learning, traditional ML, supervised ML, unsu-
pervised ML, regression ML, and reinforcement learning 
[96–102]. These machine learning principles lay the founda-
tion for predictive analytics, employing methodologies such 
as time-series analysis for forecasting and anomaly detection 
to identify deviations from normal behavior.

However, the selection of a specific machine learning 
model/algorithm is dependent upon the application sce-
nario and the services of the DT. Studies have been under-
taken to incorporate physics-based and data-driven models 
into the DT, such as in anomaly detection and fault diagno-
sis. This integration aims to provide transparency regard-
ing the factors influencing the predictions. Chakraborty 
et al. [103] conducted a study that integrated both method-
ologies to create a digital twin framework. This framework 
facilitates a prediction service that can forecast the future 
parameters of linear single-degree-of-freedom structural 

dynamic systems as they evolve in two operational time 
scales. The study utilized a two-part approach. Firstly, a 
physics-based nominal model was employed to process 
the data and make predictions about the responses. Sec-
ondly, a data-driven machine learning model called Mix-
ture of Experts and Gaussian Processes (ME-GP) was used 
to combine the extracted information and forecast future 
behaviors of each parameter in the time series. Their digi-
tal twin was robust and precise, capable of offering reli-
able forecasts for future time intervals. Previous research 
employed machine learning in DT systems that involve 
tasks requiring remote-control support, such as space 
station maintenance and remote surgery [104, 105]. ML 
was utilized in certain instances to address optimization 
concerns, where data-driven models were employed to 
minimize or maximize a process parameter [31, 33, 35]. 
Artificial neural networks (ANNs) have been employed 
in DTs to forecast the future behavior of physical assets 
[106]. In addition to machine learning, natural language 
processing (NLP), knowledge representation, and reason-
ing mechanisms facilitate human–machine interaction 
within digital twins further enriching the capabilities of 
digital twins.

The integration of AI with digital twins involves a holistic 
approach, combining diverse principles and methodologies 
such as machine learning, NLP, computer vision, and knowl-
edge representation. This fusion enables digital twins to not 
only replicate physical systems but also to analyze data, pre-
dict future states, and make informed decisions, contributing 
to their effectiveness in dynamic and evolving environments.

Across the reviewed literature, it can be established 
that there exists a symbiotic relationship among the ena-
bling technologies. Digital twins are a system that utilizes 
the integration of Extended Reality (XR), Cloud Comput-
ing, the Internet of Things (IoT), and Artificial Intelligence 
(AI). IoT devices collect real-time information from physi-
cal entities, which is then transmitted to cloud computing 
platforms for storage and processing. These data are then 
used to analyze and interpret vast datasets generated by IoT 
devices, enhancing their predictive capabilities. AI models, 
facilitated by cloud-based environments, ensure that digital 
twins adapt and improve over time, remaining effective in 
dynamic scenarios.

Extended Reality technologies provide immersive visu-
alizations for digital twins, while cloud computing supports 
remote collaboration and communication. AI models process 
incoming IoT data to identify patterns, anomalies, and criti-
cal events, enabling digital twins to respond dynamically to 
changing conditions. AI-driven chatbots or voice assistants 
integrated with XR technologies enhance human interactions 
with digital twins. This symbiotic relationship allows digital 
twins to mirror physical systems, simulate diverse scenarios, 
and offer valuable insights for improved decision making 
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across various domains. Table 3 presents a high-level over-
view of how these technologies contribute to digital twins, 
considering their definitions, roles, integration points, key 
algorithms or methods, data management, security or pri-
vacy, and some used cases in the literature.

2.4 � Digital twin characteristics

The DT consists of a physical space with a physical entity 
and a virtual space with a virtual entity, as well as a connec-
tion that allows data to flow from the real space to the virtual 
space and information to flow from the virtual space to the 
real space. A DT can therefore be thought of as a digitization 
that represents an actual thing and its workings. The activ-
ity of the physical item is translated into the behavior of the 
virtual object. All elements are highly synchronized with 
one another. DT models the physical product’s mechanical, 
electrical, software, and other qualities based on the most 
up-to-date, synchronized data from sensors to optimize the 
product’s performance [107].

A DT may incorporate several physical rules, scales, or 
probabilities that reflect the physical object’s fundamental 
condition. This may be based on the physical model’s his-
torical data [2, 108]. Different physics models, such as those 
for aerodynamics, fluid dynamics, electromagnetics, and 
stresses, collaborate with various system descriptions. Addi-
tionally, the usage of several scales allows the simulation to 
adjust to the needed level in terms of time limitations. For 
example, operators may visit various areas of each compo-
nent while navigating the Digital Twin. The connectivity and 
real-time data exchange capabilities of DTs enable keeping 
the virtual item and the real one in sync with each other at 
regular intervals [109]. In this manner, information primar-
ily flows from the real world into the digital world, and the 
virtual object may communicate data and information to the 
real object [110]. In addition to the dynamic data observed in 
real time and gathered from various data sources character-
izing the situation of the physical entity and its environment, 
the virtual object also analyzes previous data from the physi-
cal object, including maintenance and operating histories. 
To repair some faults, restart a device after an interruption, 
or coordinate the actions of many robots, the virtual object 
delivers information to improve system maintenance, and it 
could generate more forecasts [109].

Digital Twins are dynamic representations that bridge the 
physical and virtual aspects of an entity, allowing for real-
time mirroring and translation of activity into the behavior of 
the virtual object. They include mechanical, electrical, and 
software qualities, allowing for a holistic view derived from 
synchronized information. DTs incorporate diverse physics 
models, demonstrating their comprehensive nature. The real-
time data exchange capabilities highlight the practical util-
ity of DTs, with the virtual object's role expanding beyond 

real-time observations to include analysis of historical data, 
fault repair, device restarts, and robotic actions. Digital 
Twins are not just digitized replicas but intelligent, adaptable 
systems deeply connected to their physical counterparts.

2.5 � The framework of digital twin

As illustrated in Fig. 6, three components constitute the DT 
utilization framework: the physical space, the information 
processing layer, and the virtual space. While being used, 
DT technology is capable of producing a complete physical 
system map, dynamic modeling of the whole life span, and 
ultimately an optimized procedure in real-time. The two-way 
connecting and mapping of real and virtual worlds are made 
possible through means of sharing information. Iterative 
optimization and the interaction of two spaces' regulatory 
systems enable intelligent decision-making.

2.5.1 � The physical space

The physical space, which comprises people, equipment, 
materials, laws, and the environment, has an intricate, diver-
sified, and dynamic nature of the manufacturing space. All 
types of items associated with product development and 
manufacture are included in the resources layer, including 
production resources (equipment for production lines), high-
performance computer clusters, product data, and software 
resources. Various types of things are scattered throughout 
the world and need to be linked up via IOT technologies. 
Then, the physical world's data are gathered, combined, 
and employed for enhancement. For instance, sensors and 
wireless networking gear with intelligence are utilized in 
production for the gathering and sending of information 
from a variety of sources with varying characteristics, such 
as knowledge of the properties, state, functioning, defects, 
and disruptions of the system. Digital devices will gather 
this data and send it across the network. A timely, intel-
ligent response will also be made by connected physical 
devices in accordance with the response guidance from the 
virtual space. Data and device attributes can be mapped 
(both directly and indirectly) to connect the virtual and real 
worlds.

Data gathering and transmission protocols are crucial 
in DT technology, enabling efficient and accurate data col-
lection from various sources within the physical space and 
transferring to the information processing layer. Key pro-
tocols include Operational Process Control (OPC), Unified 
Architecture (OPC UA), Representational State Transfer 
(REST), Message Queuing Telemetry Transport (MQTT), 
Constrained Application Protocol (CoAP), Serial Communi-
cation Protocol (Modbus), HTTP, and HTTPS. These proto-
cols are chosen based on the specific requirements of the DT 
application and the nature of the data sources. They enable 
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real-time monitoring, analysis, and control by collecting 
data from sensors, devices, and systems within the physical 
space. The selection of the appropriate protocol depends on 
factors such as data volume, latency requirements, device 
compatibility, and security considerations.

Security protocols like Transport Layer Security/Secure 
Sockets Layer (TLS/SSL) and Open Authorization (OAuth) 
ensure data transmission between the physical space and 
the digital counterpart. These protocols protect data from 
eavesdropping and tampering and manage authorization and 
access rights. By combining these protocols, the digital twin 
can connect with physical components, gather accurate data, 
and transmit it securely.

2.5.2 � The information processing layer

The physical and digital worlds may be mapped and inter-
acted in both directions due to the information exchange 
at this level. The information processing layer serves as a 
connection between the real and the virtual space. There 
are three major operational components at this level. They 
are data processing, data storage, and data mapping. The 
data processing consists of four processes: data collection, 

preprocessing of data, data analysis and mining, and data 
fusion. Various databases of Management Information Sys-
tems (MISs), Programmable Logic Controllers (PLCs), and 
production systems are the data sources.

DT relies on specific protocols for data collection, includ-
ing the Message Queuing Telemetry Transport protocol for 
real-time data transmission from sensors and IoT devices, 
HTTP/HTTPS for Web-based data collection from APIs 
and cloud services, Simple Network Management Protocol 
(SNMP) for network device monitoring, OPC Unified Archi-
tecture (OPC UA) for industrial and manufacturing applica-
tions, and Constrained Application Protocol (CoAP) for real-
time streaming and data collection in resource-constrained 
devices for IoT services [111–113]. These protocols ensure 
efficiency and accuracy in data collection and transmission. 
Secure communication protocols and authentication mecha-
nisms are implemented to prevent unauthorized access, data 
interception, and data tampering, ensuring data integrity and 
protection against data tampering. The process of preproc-
essing the raw data set consists of information based on rules 
cleansing, data structure, and primary clustering [23]. Data 
preprocessing is a crucial step in DT workflow, involving 
various protocols to clean, transform, and prepare data for 
analysis. These protocols depend on the data’s nature and 

Fig. 6   Framework of Digital 
Twin: Comprising of physical 
space, information process-
ing layer, and virtual space, 
enabling two-way connection 
and mapping between real and 
virtual worlds through informa-
tion sharing
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application requirements. Common protocols include Open 
Database Connectivity (ODBC), Extensible Markup Lan-
guage (XML), JavaScript Object Notation (JSON), custom 
data cleaning, data normalization, aggregation, compression, 
and encryption [114]. Custom preprocessing pipelines are 
often tailored to specific applications, ensuring high-quality, 
reliable data. Integrating these protocols enhances security, 
protects sensitive data, and mitigates cyber threats. Data 
analysis and mining are crucial for digital twins to provide 
insights and predictions. Advanced machine learning tech-
niques like regression clustering, and deep learning are used 
for predictive maintenance, anomaly detection, and opti-
mization. Data analysis security involves anonymizing or 
encrypting sensitive information, particularly when sharing 
results or collaborating with external parties, to prevent data 
leakage during the analysis process. Digital twin technology 
uses data mining algorithms like association rule mining, 
decision trees, and clustering to discover patterns and trends. 
Security measures protect intellectual property by preserv-
ing sensitive data, while privacy-preserving protocols like 
secure multi-party computation extract valuable knowledge.

Information or data requiring storage at this level comes 
from both the real world and the virtual realm. Physical envi-
ronment data typically includes information on manufactur-
ing, apparatus, materials, labor, services, and the workshop 
setting. Information gleaned from cyberspace primarily con-
sists of data from simulations, data from evaluations and 
predictions, and data used in making decisions.

Protocols for data storage in the digital twin are essential 
to ensure the efficient and secure handling of data associated 
with physical assets or systems. DTs rely on extensive data 
storage and management to create and maintain a virtual rep-
resentation of the physical world. As a result of the growing 
amount and diversity of data from multiple sources in the 
field of DT technology, there is a growing interest in big data 
storage technologies such as distributed file storage (DFS), 
Not Only SQL (NoSQL) database, NewSQL database, and 
cloud storage [115]. Distributed File System (DFS) enables 
concurrent access to shared files and directories by several 
hosts. NoSQL is designed to handle large amounts of data by 
scaling horizontally. NewSQL is a high-performance data-
base that supports ACID properties and SQL functionality 
of traditional databases. It also incorporates replication and 
failback mechanisms using redundant computers.

In addition, synchronization, correlation, and time-
sequence analysis of data constitute the three components 
of data mapping. Data mapping facilitates the simultaneous 
connection between the real object and digital object func-
tionality by utilizing the information from  the storage 
module and the data processing module. Synchronization 
protocols, such as Network Time Protocol (NTP) and Pre-
cision Time Protocol (PTP), ensure consistency between 
physical and digital representations of an object in real time. 

Correlation protocols, such as XML or JSON, help identify 
and associate related information from various sources for 
contextual analysis. Semantic Web technologies like RDF 
and OWL enable semantic data integration, creating a uni-
fied view of data for better decision-making. Time-sequence 
analysis protocols, like InfluxDB and Apache Cassandra, 
track historical data and predict future events based on 
observed data points. Security protocols, like TLS and SSL, 
protect sensitive information during transmission and stor-
age. Access control and authentication protocols like OAuth 
and OpenID Connect ensure authorized users can access and 
modify data within the Digital Twin. Proper implementation 
of these protocols is crucial for the successful deployment 
of Digital Twins across various industries.

Digital twin technology security is crucial and involves 
implementing protocols and measures to protect data, sys-
tems, and communication channels. Key protocols include 
SSL or TLS, which encrypts data during transmission to pre-
vent unauthorized access [116, 117]. Authentication proto-
cols like Oauth 2.0 and OpenID Connect verify user identity, 
while role-based access control (RBAC) ensures data access 
is limited to relevant roles. Strong encryption algorithms 
like the Advanced Encryption Standard (AES) protect sensi-
tive information [118]. Intrusion Detection and Prevention 
Systems (IDPS) monitor networks and systems for unusual 
activities, while Security Information and Event Manage-
ment (SIEM) systems gather and analyze security data to 
detect security incidents [119, 120]. Public Key Infrastruc-
ture (PKI) protocols manage digital certificates and keys, 
while secure APIs provide authorization and access control 
mechanisms [121]. Blockchain technology is used to ensure 
data integrity and transparency [122–124]. Regular secu-
rity audits and penetration testing identify vulnerabilities, 
while data privacy regulations like the General Data Protec-
tion Regulation (GDPR) compliance ensure data manage-
ment [125, 126]. A secure Software Development Lifecycle 
(SDLC) is essential for developing and maintaining secure 
digital twin systems [127, 128]. By incorporating these 
protocols and security measures organizations can enhance 
digital twin system security by implementing protocols and 
measures, protecting sensitive data, mitigating cyber threats, 
and ensuring technology safety and reliability.

2.5.3 � Virtual space

The virtual world framework and the digital twin application 
subsystem constitute the virtual space. The virtual world 
framework is completely digital. Three-dimensional rep-
resentations of applications are established by the virtual 
world framework, which also offers a working environment 
for a variety of algorithms. The virtual environment plat-
form offers a variety of virtual models, such as poly-physical 
models, workflow models, and simulation models. As part 



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:420	 Page 17 of 46  420

of the activity, DT compiles a variety of models, techniques, 
and historical data into a virtual environment platform. By 
collecting the features of the virtual model obtained from 
the computer system's database and utilizing the associated 
interfaces, it is possible to model actual entities in a virtual 
space. Feedback from 3D models is then recorded in the 
database. The DT system uses information from the past and 
the present from 3D virtual models and actual products to 
power the synchronized working of the digital twin. Real-
world mapping of physical objects enables the simulation 
of complicated systems in addition to product visualization. 
Virtual models may be used to test or forecast disputes and 
disruptions before they happen in the actual world and then 
feed that knowledge back into the real world.

Depending on the demands and utilization goals, data 
fusion, database administration, algorithmic refinement, 
state assessment, forecasting, plan, and instruction release, 
as well as other capabilities, are included in the DT program 
subsystems to accommodate the needs. They can carry out 
testing of the product, ergonomics analysis, efficiency fore-
casting, functionality assessment, planning the arrangement 
of the production line, device status forecasting, prediction 
of product failure, the study of plant operations to enhance 
the quality of the product, and assessment of an execution 
process.

The digitization of physical objects is crucial in DT as it 
enables the processing, analysis, and management of data by 
computers. This allows for the use of information represen-
tation techniques in various areas such as quality assessment, 
analysis, computer numerical control machining, production 
management, and product design. DT-related modeling tech-
nologies encompass behavioral modeling, geometric mod-
eling, rule modeling, and physical modeling.

Physical models necessitate a thorough comprehension of 
the physical characteristics and their interplay. Hence, the 
use of multi-physics modeling is crucial for achieving an 
accurate and detailed representation of a digital twin. Mod-
elica is the prevailing multi-physics modeling language. Sun 
et al. [129] combined a theoretical model with a physical 
model to validate the assembly of high-precision goods. The 
theoretical model was derived via the use of Model-Based 
Definition (MBD) approaches, while the physical model was 
constructed through the process of point cloud scanning.

Geometric models represent a physical object by its geo-
metric shape, structure, and visual characteristics, without 
including specific details or limitations of the object. These 
models are created using data structures including surface, 
wireframe, and solid modeling. Wireframe modeling uses 
simple lines to delineate the prominent edges of the object, 
creating a three-dimensional framework. On the other hand, 
surface modeling involves defining each surface of the object 
and then combining them to create a complete and unified 
model. Solid modeling refers to the representation of the 

internal composition of a three-dimensional object, encom-
passing details such as vertices, edges, surfaces, and bodies.

Behavioral models elucidate the diverse behaviors exhib-
ited by a physical entity to accomplish tasks, adapt to altera-
tions, engage with others, regulate internal processes, and 
sustain well-being. The simulation of physical behaviors is 
an intricate procedure that encompasses various models, 
including problem models, state models, dynamics mod-
els, assessment models, and so forth. These models can be 
constructed using finite-state machines, Markov chains, and 
ontology-based modeling techniques. The study by Negri 
et al. [43] proposed incorporating black-box modules into 
the main simulation model. In their studies, behavior mod-
els of the digital twin were selectively engaged as required. 
The modules communicate with the main simulation model 
via a standardized interface. Ghosh et al. [130] explored 
the development of DTs using hidden Markov models. The 
twins were comprised of a model component and a simu-
lation component, which together created a Markov chain 
to contain the dynamics of manufacturing phenomena. The 
models represented the dynamics of the phenomena by 
employing discrete states and their corresponding transi-
tion probabilities.

Rule models encompass the rules that are derived from 
past data, expert knowledge, and predetermined logic. The 
virtual model is endowed with the capacity to engage in 
reasoning, judgment, evaluation, optimization, and predic-
tion. Rule modeling encompasses the processes of extract-
ing, describing, associating, and evolving rules. Important 
modeling technologies encompass solid modeling for the 
geometric representation, texture technologies for enhanc-
ing realism, finite element analysis for the physical model, 
finite-state machines for the behavioral model, XML-based 
representation for the rule model, and ontology representa-
tion for the rule model. In the World Avatar project, Akroyd 
et al. [131] showcased a digital twin that utilized a versatile 
dynamic knowledge network. They made use of ontology-
based information representation to create a unified interface 
for querying data. Banerjee et al. [132] exploited the rea-
soning power in a knowledge graph and developed a query 
language to extract and infer knowledge from large-scale 
production line data to support manufacturing process man-
agement in digital twins.

The Model Verification, Validation, and Accreditation 
(VV&A) process is incorporated to enhance model accu-
racy and simulation confidence by assessing the extent to 
which the correctness, tolerance, availability, and running 
results align with the specified requirements. Static methods 
assess the static elements of modeling and simulation, while 
dynamic methods verify the dynamic elements of modeling 
and simulation.

Existing modeling methods predominantly prioritize geo-
metric and physical models, neglecting the incorporation 
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of multi-spatial scale and multi-time scale models that can 
accurately depict behaviors and characteristics across vari-
ous spatial and temporal dimensions. The integration of sys-
tems is hindered by the inability of current virtual models to 
adequately represent physical phenomena. Future modeling 
technologies should prioritize the development of synthesis 
methods that integrate several disciplines and functions. The 
process of DT modeling should be approached as an inter-
disciplinary synthesis process. Optimizing multi-objective 
and full-performance modeling is essential for accurately 
replicating both static and dynamic characteristics with high 
precision and dependability.

The comprehensive framework of DTs unveils a struc-
tured and multifaceted approach to the utilization of DT 
technology. The delineation of three key components, such 
as physical space, information processing layer, and vir-
tual space, crafts a holistic framework where the dynamic 
interplay between the physical and digital realms unfolds 
seamlessly. The physical space involves the integration 
of IoT technologies, such as OPC, MQTT, and CoAP, to 
link scattered elements encompassing people, equipment, 
materials, laws, and the environment. The Information 
Processing Layer focuses on data processing, storage, and 
mapping, with protocols like MQTT, HTTP/HTTPS, SNMP, 
OPC UA, and CoAP. Security protocols like TLS/SSL and 
OAuth ensure data transmission integrity. Data preprocess-
ing involves protocols like ODBC, XML, JSON, and custom 
cleaning, while advanced machine learning techniques like 
regression clustering and deep learning provide insights. 
Virtual Space focuses on the digital transformation of physi-
cal objects, with DT applications syncing to create a digital 
environment. Future modeling technologies should prior-
itize synthesis methods that integrate various disciplines and 
functions.

3 � Applications of digital twin

After evaluating and filtering the papers concentrating on 
DT application from Sect. 2, the studies with developed DT 
application in the past 5 years were 81 related to aerospace, 
building and construction, energy, education, information 
technology (IT), medical and healthcare, and manufactur-
ing. As shown in Fig. 7, manufacturing is by far the most 
prominent DT research field, accounting for more than 52% 
of the entire application. The majority of the study focuses 
on improving manufacturing planning, modeling, monitor-
ing, and prediction of tools and machines regarding sustain-
able production. DT was initially launched as a tool for pro-
duction and product lifecycle management, and due to this, 
manufacturing accounts for more than 50 percent of all DT 
application research. It is, nevertheless, expanding to other 
sectors. Performance monitoring and fault detection, power 

plant efficiency improvement, and energy grid growth and 
development are prominent energy topics. DT application 
research on building and smart cities includes monitoring 
the health of structures, building control and administration, 
project planning optimization, and maintenance prediction. 
Next, DT research on computer systems, communication 
security, and cloud services accounts for 5% (IT). Automo-
tive, aerospace, and education DT application research is 
mostly for product state monitoring and prediction, testing 
and simulation, and online teaching optimization. Finally, 
medical-surgical simulation has increased DT applications 
in healthcare. Based on the idea, review, and case studies 
offered in the various publications, the different applications 
of DT may be categorized as manufacturing, design, and 
services, as summarized in Table 4. Figure 8 presents some 
industrial applications of DT.

3.1 � Application in design

The DT’s goal is to perceive, diagnose, and predict the status 
of a physical object in real time using testing, simulation, 
and data analysis according to the physical and digital model 
and to rectify it as well as capable of completing their own 
iteration optimization via reciprocal learning between digital 
models, thereby expediting the design process and cutting 
down on redesign expenses [178]. DT’s abilities have been 
projected in task description, design principles, and virtual 
verification [179].

Tao et al. [179] stated that using a DT provided design-
ers with a comprehensive grasp of a product’s digital foot-
print throughout its construction. It served as an “engine,” 
transforming vast amounts of data into useful information. 
Designers may utilize the knowledge right away to assist 
their decisions during multiple design phases. In their work, 
a detailed digital twin framework for product design focused 

Fig. 7   Distribution of major DT application areas: Presents the distri-
bution of published papers from the key application study areas
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on linking the physical and virtual products was explained 
and analyzed. They discussed Pahl and Beitz's structural 
design approach, which partitions the process of design into 
four phases, namely task clarification, conceptual design, 
embodiment design, and detail design. They affirmed that 
a commonly used combination-based design theory and 
methodology allows designers to accomplish various design 
tasks. In addition, the study presented a DT-based bicycle 
design, which showed that DT-product design is particularly 
beneficial for the iterative redesign of a preexisting product 

as opposed to the design of a novel product or an entirely 
new one.

3.1.1 � Iterative optimization

The ultimate objective of excellent design is to constantly 
enhance the product requirements from an idea to a detailed 
design. According to Liu et al. [178], the usefulness of DT 
can be extended to predict how products or systems will 
function and to identify potential faults that may need fixing. 

Table 4   Major DT application areas

Areas Relevant applications Contribution References

Building and construction industry Project planning and management optimization Service [133–139]
Predictive maintenance Service
Building management and control Service
Virtual prototyping and verification Design

Automotive industry Identification and monitoring of the vehicle’s health Service
Automatic driving monitoring Service [140–145]
Digital validation and assessment Design
Damage assessment Service
Condition-based maintenance Service
Driver intention prediction Service

Aerospace industry Virtual testing and verification Design [146–150]
Determining damage in real time Service
Condition-based maintenance Service
Damage assessment Service
Predictive maintenance Service

Medical and healthcare sector Healthcare logistics network Service [30, 51, 85, 151]
Surgery or medical simulation Service
Optimize elderly healthcare services Service

IT industry Virtualization and communication between [33, 152–154]
physical and digital systems Service
Utilization of DT in edge computing system Service
Cloud services implementation Service

Education sector The utilization of DT to enhance the effectiveness of distance learning 
or online teaching methodologies

Service [155–159]

Simulation for engineering teaching Service
Cyber-physical environment for learning Service

Manufacturing industry Improve manufacturing planning and resource distribution Service [81, 160–173]
Optimization of manufacturing workshop layout service
Production process simulation Manufacturing
Digital trial manufacturing system
Smart customization Manufacturing
Detection and monitoring of manufacturing equipment Manufacturing
The manufacturing industry’s implementation of Industry 4.0, the Inter-

net of Things, as well as cyber-physical production systems
Manufacturing

Toward sustainable manufacturing Service
Energy industry Toward energy grid development Service [174–177]

Power plant performance optimization Service
Operation monitoring and fault diagnosis Service
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Also, iterative optimization is possible by monitoring design 
improvements and historical tendencies via a digital twin for 
the product in question.

Furthermore, using the DT technique, it is feasible to 
achieve static setup and dynamical execution as well as 
iterative design optimizations [180]. They demonstrated by 
developing a mechanism for bi-level iterative coordination 
that achieved optimal design performance for the needed 
functionalities of an automated flow-shop manufacturing 
system (AFMS) and proposed a DT-driven technique for 
speedy personalized designing of the AFMS. The DT inte-
grated physics-based system modeling with semi-physical 
simulation gave analytical capabilities for engineering solu-
tions to provide a reliable digital design. Further, their work 
presented feedback on acquired decision-support informa-
tion from the intelligent multi-objective optimization of the 
dynamic execution, which evidenced the usefulness of the 
DT vision in AFMS design. Their developed digital twin 
prototype was successfully designed in a sheet material auto-
mated flow-shop production system proving the proposed 
digital twin prototype gives a design with an intelligent 
simulation and optimization engine.

The application of DT was extended to enhance the pre-
cision and effectiveness of green material optimal selection 
(GMOS) in product development by selecting materials 
more accurately and effectively [181]. Xiang and colleagues 
suggested a brand-new technique, the 5D Evolvement Digi-
tal Win Model (5D-EDTM), powered by a digital twin. In 
which all of the data was combined into a perfect model of 
evolution. The technique enabled material selection through 

simulation and assessment that was based on mode and 
fused data. As shown in Fig. 9a, the laptop case was utilized 
to demonstrate the effectiveness of the digital twin-driven 
5D-EDTM as well as how the technique has evolved.

3.1.2 � Provide data integrity

Data from the real world are continually collected, pro-
cessed, and added to by the DT. Full digital processes are 
made available by the DT for a wide range of perspectives 
and stakeholders, allowing for the disclosure of sensitive 
data while maintaining the privacy of the information being 
shared. As shown in Fig. 9d, e, Caputo et al. [182] proposed 
a framework utilizing DTs of stations to reduce the required 
time to plan and establish a brand-new production line. In 
their work, a real-world case study was utilized to show how 
the procedure could be applied, as well as how numerical 
simulation could produce accurate results that were in good 
agreement with those produced by more conventional exper-
imental methods. The given process proved usable in prac-
tice, which allowed the development of an in-depth strategy 
for line design. The process of application prevented the 
actualization of a line that would have exposed ergonomic 
issues and addressed design faults before and during produc-
tion. By using this DT framework, it can save a lot of money 
on fixing design mistakes and get products to market faster. 
This allows for design modifications to be made at 'virtu-
ally no cost and decisions to be made based on complicated 
numerical evaluations that save time. A research group led 
by Martin [183] showed how the use of a DT allowed sys-
tem integrators to obtain adequate component information 

Fig. 8   Applications of DT categorized according to different pur-
poses

Fig. 9   Some proposed DT applications in design. a Selecting the 
most eco-friendly material for a laptop case using 5D-EDTM: The 
technique improved the precision and effectiveness of green material 
optimal selection (GMOS) in product development by selecting mate-
rials more accurately and effectively [181]. (Reproduced with per-
mission, license number: 5615211433981). b Product development 
processes based on DT: The ultrahigh-fidelity virtual manufacturing 
system facilitated the virtual production of trial versions of products, 
product verification, facilitated design improvement, and acceler-
ated the construction of the new product's digital twin. Adapted from 
[184]. c DT-based virtual factory. Model for combining (1), virtual 
reality training simulations and (2) linear simulations: Multi-user 
virtual reality learning or training scenarios aided industrial system 
modeling, simulation, and assessment [185]. (Reproduced with per-
mission, license number: 5615231256666). d Traditional production 
process development is used in comparison to the DT-based product 
development process [182]. (Reproduced with permission, license 
number: 5615350034527). e Concurrent engineering approach in 
digital production process development prevented production line 
errors by addressing design faults, saving money on fixing mistakes, 
and expediting product market entry through virtual cost-free design 
modifications [182]. (Reproduced with permission, license number: 
5615350034527)

◂
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without compelling LED vendors to provide confidential 
information.

3.1.3 � Virtual assessment and validation

The objective of the assessment is to lessen the gaps between 
observed and anticipated conduct. Then, the unexpectedly 
unfavorable are discovered and removed using the digital 
twin idea [52]. The digital twin methodology has advantages 

over more conventional approaches to evaluation and veri-
fication due to the high-fidelity representation of the item 
and the working environment it provides. As a result, there 
are cross-scale and interdisciplinary interactions between 
the product and its potential working surroundings. Digital 
twins are used in the design phase to conduct virtual proto-
typing and test several product revisions.

In Fig. 9b, in the year 2022, Huang and colleagues 
developed a product development framework that utilizes 

Fig. 9   (continued)
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a digital twin for digital validation to compensate for the 
drawbacks of conventional product development [184]. In 
their work, the ultrahigh-fidelity virtual manufacturing 
system served as the basis for the digital trial manufactur-
ing system, which allowed for the virtual production of 
trial versions of products, as well as supported the overall 
verification of products and design improvement in the 
virtual space while also accelerating the construction of 
the new product's digital twin. A digital trial manufactur-
ing system was created after they modified the ultrahigh-
fidelity virtual manufacturing system, which provided a 
more cost-effective and accurate alternative for virtual 
product trial production and also allowed full virtual prod-
uct validation. Their proposed digital trial manufacturing 
approach results in a digital prototype with extremely high 
fidelity that speeds up the creation of the DT of the new 
product in addition to being utilized for digital validation 
and design refinement. The suggested approach's results 
revealed that digital validation might also enhance the 
preparatory manufacturing procedures of the new prod-
uct, reducing the normal operating time of new product 
manufacture [184].

Yildiz led research that proposed a DT-based virtual fac-
tory shown in Fig. 9c that allowed manufacturing system 
modeling, simulation, and assessment while utilizing multi-
user virtual reality learning or training situations [185]. In 
addition, the notion of a DT-based virtual factory supporting 
factory lifecycle operations was proven in a wind turbine 
manufacturing facility in their work. They conducted expert 

studies which revealed that the suggested strategy has the 
potential to improve product, process, and system engineer-
ing efficiency and effectiveness.

From the reviewed papers, the integration of DT in the 
design and optimization phases of product development is 
facilitating a paradigm shift in several key aspects. This tech-
nological trend focuses on real-time perception, diagnosis, 
prediction, and iterative optimization of physical objects. 
By leveraging testing, simulation, and data analysis, the DT 
expedites the design process and significantly reduces rede-
sign expenses. Notably, it enables the continuous enhance-
ment of product requirements from the initial concept to the 
detailed design stage. This iterative optimization is made 
possible by monitoring design improvements and historical 
trends, empowering designers to make informed decisions 
at each stage of product development.

Furthermore, the DT technology extends its influence 
to support static setup and dynamic execution, allow-
ing for iterative design optimizations. This is exemplified 
by a mechanism for bi-level iterative coordination, which 
optimizes the design performance of automated flow-shop 
manufacturing systems. In practice, the digital twin proto-
type for such systems efficiently integrates physics-based 
system modeling with semi-physical simulation, enabling 
intelligent simulation and optimization. This amalgamation 
of computational capabilities showcases the potential of DT-
driven design processes.

An emerging trend in product development also empha-
sizes the precision and effectiveness of green material 

Fig. 9   (continued)
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optimal selection (GMOS) through the application of the 
DT. A new approach, the 5D Evolvement Digital Twin 
Model (5D-EDTM), powered by a digital twin, simplifies 
material selection through simulation and assessment based 
on mode and fused data. This approach provides a holis-
tic model of material evolution, significantly improving 
the accuracy and effectiveness of material selection, thus 
enhancing sustainability and efficiency.

Data integrity in product development benefits from DT's 
ability to collect and process real-world data. This facilitates 
full digital processes from various perspectives and stake-
holders while ensuring the privacy of shared information. 
It allows the reduction of planning and setup time for new 
production lines, as illustrated in a framework that utilizes 
DTs of stations. The approach combines numerical simula-
tion with real-world case studies, leading to cost savings and 
faster time-to-market by addressing design issues upfront.

Virtual assessment and validation have also become a 
central theme in product development. The high-fidelity 
representation and interdisciplinary interactions of DT 
offer a superior approach to evaluation and verification. For 
instance, a product development framework leverages DT for 
digital validation, compensating for the limitations of tradi-
tional product development. It allows the virtual production 
of product trials and supports their verification, speeding up 
the creation of DTs for new products. Similarly, a DT-based 
virtual factory contributes to manufacturing system mod-
eling, simulation, and assessment, enhancing engineering 
efficiency and effectiveness throughout the factory lifecycle.

The emerging trend in product development revolves 
around the extensive integration of DT technology, facili-
tating real-time perception, iterative optimization, precise 
material selection, data integrity, and virtual assessment and 
validation. These trends underscore the evolving landscape 
of product development processes, where DTs play a pivotal 
role in streamlining operations, enhancing sustainability, and 
ensuring product reliability and performance.

3.2 � Application in manufacturing

The industrial sector has increasingly relied on "smart tech-
nologies" for its output procedures since the advent of the 
internet, IoT, big data, cloud computing, and AI. Gantz et al. 
[186] predicted that over 40 zettabytes (ZB) of data would be 
generated by 2020, including organized, partially organized, 
and unorganized data. Also, Mourtzis et al. [187] projected 
that over 20 billion gadgets, mostly from the production sec-
tor, would be linked to the Internet by 2020. The industrial 
sector has progressed through several phases of innovation 
before arriving at the era of massive data management. Fol-
lowing the industrial revolution, the manufacturing sector 
went through several distinct phases, summarized by Roy 
et al. [188]. The steam engine, used in what is now known 

as Industry 1.0, seemed like a step in the right direction at 
the time but was inefficient and slow. The assembly line idea, 
made possible by Industry 2.0, has shortened production 
times. Computer-integrated production was widely adopted 
in the third industrial revolution.

Industry 4.0 is currently operating, and it has adopted 
automation, whose function is to connect both the digital 
and physical worlds (Digital Twin). According to Tao et al. 
[189], the Internet of Things (IoT) allows for the automatic 
and real-time gathering of manufacturing data, which has 
become increasingly important as manufacturing's transition 
to digital tools has opened smart manufacturing's numerous 
potential benefits.

Due to the elevated requirements for product attributes 
and faster market feedback, manufacturing production has 
evolved from its traditional meaning, which referred in the 
context of a manufacturing procedure of transforming raw 
ingredients into completed products, to one in which main 
procedures have given way to smart procedures [190, 191]. 
To facilitate contemporary manufacturing, closed-loop vir-
tual and physical communication is required. Fundamental 
to DT development is the understanding of how the digital 
and physical worlds are intertwined. Visualizing the underly-
ing procedures of production, comparing the development 

Fig. 10   Some proposed DT applications in manufacturing. a A 
screenshot of the DT system prototype enabled swift customization 
of flow-type smart manufacturing systems [193]. (Reproduced with 
permission, license number: 5615270242686). b CNCMT DT model 
consistency retention functional diagram showing the DT system 
for the CNCMT model [195]. (Reproduced with permission, license 
number: 5615271043884). c Reconfiguring a smartphone production 
line with the help of a DT platform: Digital Twin System, a free-to-
use semi-physical simulation platform, used the Unity3D engine to 
support the reconfiguration of the manufacturing system, collect-
ing and utilizing real-time data for individualized designs [194]. 
(Reproduced with permission, license number: 5615270525245). d 
Data-driven smart customization framework based on the DT: The 
various modules and sub-modules such as manufacturing systems and 
user environments  interact with the customized product throughout 
the product lifecycle from the design stage to the usage stage [196]. 
(Reproduced with permission, license number: 5615280167074). e 
Digital twin-augmented elevator customization: The elevator cus-
tomization system involved three stages. Thus designing, collabora-
tive production, and personalized service, using big data analytics 
for intelligent material assignment, tracking, and energy-efficient 
management [196] (Reproduced with permission, license number: 
5615280167074). f A DTS scenario involving a body-in-white manu-
facturing company: The manufacturing involved cutting, welding, 
bending, and digital equipment. Managers need to select appropriate 
MRs for different MTs to increase productivity. MT semantic mod-
eling was applied, compared, and optimized [197] (Reproduced with 
permission, license number: 5615290276610). g A hybrid data rec-
ommendation model based on the DNN approach to analyze real-time 
simulation, production, and historical data to construct mapping-rela-
tionship data [197]. (Reproduced with permission, license number: 
5615290276610)

◂
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Fig. 10   (continued)
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of the real product to the digital product, and eventually 
working with others to stay up to date on the products we 
are making are all ways to ensure that the product we are 
generating is the product we plan to make. Real-time super-
vision, production management, workpiece efficiency pro-
jection, human–robot cooperation and communication, pro-
cess assessment and improvement, asset administration, and 
product forecasting are all possible due to DT technology in 
the industrial sector.

In the research by Guo et al. [192], faced with the chal-
lenge of designing an effective layout for a workshop, plan-
ners turned to a combination of twin data fusion, informa-
tion fusion, physical interaction fusion, data analysis, and 
optimization. Their study concentrated on the improvement 
of workshop layout for discrete production utilizing digital 
twins. The sub-framework for DT-based workshop partition-
ing was constructed, and simulation analysis was employed 
to optimize workshop partitioning. The sub-framework of 
digital twin-based equipment layout optimization was given 
with the help of real-time data collecting and value-added 
processing of twin data. Using digital twins, they built an 
optimization sub-framework for distribution routes. Their 
proposed method was tested on a welding production work-
shop and yielded the following results: the manufacturing 
capacity was enhanced by 29.4%, the WIP was lowered by 
51%, the quantity of tooling was reduced by 41%, the operat-
ing time was shortened by 114.5 min per day, and multiple 
expenditures were whittled down by 350,000 yuan per year, 
suggesting that this layout optimization method promotes 
workshop layout optimization in industrial practices.

As part of Industry 4.0's focus on optimizing processes, 
Liu et al. [193] proposed a Configuration, Motion, Control, 
and Optimization (CMCO) strategy for design based on 
DT. In their work, the CMCO quad-play model's iterative 

building rationale was explained in-depth. Methods for 
building convenient-type smart manufacturing systems were 
also given and discussed; these methods included configu-
ration design, mobility planning, control development, and 
optimizing decoupling. Major essential technologies for the 
development of flow-type smart manufacturing systems were 
also detailed, including the generalized encapsulation of the 
quad-play CMCO design model and the digital twin method. 
Their studies also brought forth a prototype of a DT-based 
design platform, the DT System, allowing quick customiza-
tion of flow-type smart manufacturing systems, as depicted 
in Fig. 10a. Their proposed CMCO technique based on digi-
tal twins enabled hardware-in-the-loop simulation that mini-
mizes potential design inefficiencies as well as analyzes the 
performance of a brand-new production system in real time 
in the initial phases of implementation. The manufacturing 
system's operational effectiveness was enhanced by incorpo-
rating fast-response algorithms into the DT to do real-time 
optimization, which generally expands the applicability of 
DT and contributes to the effectiveness and uniqueness of 
their strategy [193].

To enhance the reconfiguration of automated manufac-
turing systems, Leng et al. [194] proposed a unique DT-
driven strategy for the rapid restructuring of automated 
production systems to improve the overall capability of 
such systems, as depicted in Fig. 10c. Part one of their 
digital twin was a semi-physical simulation that mapped 
system data and sent that information into the optimiza-
tion phase. The semi-physical simulation was updated 
using the optimization part's results to verify the results. 
In addition, they conceptualized and created a new cat-
egory of machine tools called Open-architecture machine 
tools (OAMT), which have a standardized base platform 
and several customizable add-ons and replacements. 

Fig. 10   (continued)
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To facilitate faster reconfiguring with more reuse and 
decreased time expenses, they provided an open machine 
tool design in the mechanical and software systems. They 
identified and quickly created reconfigurable OAMTs. By 
incorporating unique modules into the OAMT framework, 
their suggested technique gives engineers greater flexibil-
ity in adapting the production system to process planning. 
Moreover, they presented a REST-based IoT architecture 
for the automatic reconfiguration of control and sensor 
networks. Their method, if implemented, could enable the 
quick rollout of newly ordered products by allowing for 
easy modification of production system capacity and the 
quick combination of different processes into current sys-
tems. They also used bi-level programming to determine 
the best possible reconfiguration, taking into account both 
productivity rebalancing at the top level and the cost of 
moving things about on the bottom. By automating and 
improving the reconfiguration procedure, their proposed 
strategy reduced the overhead of the operation [194].

Figure 10b depicts the work done by Wei et al. [195], in 
which they employed the DT model and presented a model 
consistency retention method for the Computer Numerical 
Control Machine Tool (CNCMT). In their work, they devel-
oped the DT model's consistency retention architecture with 
both virtual and real spaces in an account. The data manage-
ment and performance-reducing ideas updates in the digital 
space were also elucidated. The workflow for performance 
attenuation updates due to wear and other damage was 
examined independently to determine the best technique for 
implementing the CNCMT DT model's consistency reten-
tion. Their average deviation of 8.7% between experimental 
and simulated values validated the feasibility, practicability, 
and efficacy of their proposed approach, which centered on 
a rolling guide rail for the development and implementation 
of a realistic DT model on the test bench [195].

To significantly expand the scope of personaliza-
tion options, Smart customization facilitated by data and 
enhanced by digital twins, as illustrated in Fig. 10d, was 
the focus of a novel paradigm described by Wang X et al. 
[196]. The new framework was designed to make it easier for 
all parties involved in the customization procedure to work 
together more effectively. This improved product-service 
ecosystem was made possible because manufacturers could 
construct a virtual model using real-world data. Open inno-
vation and the proliferation of customizable goods would 
both benefit greatly from the use of digital twins since cus-
tomers would have a more active role in the virtual modi-
fication activities. The digital twin also makes industrial 
processes more adaptable and predictive, which lessens the 
impact of unpredictability-related problems. As shown in 
Fig. 10e, they demonstrated the feasibility of their suggested 
framework by offering an analysis of the elevator industry 
as a case study [196].

Liu et al. [198] developed a unique digital twin-based 
strategy for reusing and assessing Process Knowledge (PK). 
Machining planning was represented in their work by intro-
ducing a DT-based process knowledge model that included 
geometric data and real-time monitoring of process equip-
ment. In addition, guidelines for relating the three layers 
were used to build the big data process, which is where the 
process knowledge is stored and utilized. In addition, they 
suggested using the scene model's similarity calculation 
technique to sift out any mismatched process information. 
The candidate knowledge's process reusability evaluation 
approach was established based on the real-time machining 
state, and the computed accuracy was offered by reusing 
the process knowledge. Components of diesel engines are 
used in their built prototype module to test the efficiency of 
their suggested technique, demonstrating that it may boost 
the smart process strategy development and implementation 
[198].

Also, Liu et al. [199] suggested an augmented reality 
(AR) monitoring technique where the DT machining sys-
tem served as the foundation for the machining process. 
The augmented reality dynamic multi-view was built using 
data from several sources. In addition, the integration of 
AR technology into the real-time monitoring of complex 
goods' intermediate processes was implemented to enhance 
cooperation among workers and the DT machining system. 
Their suggested technology eliminated irreversible mistakes 
when the end product was almost finished. Also, their sug-
gested digital twin paradigm assists operators in managing 
and interacting with digital twin data simply and naturally. 
Furthermore, their monitoring mode deeply combines the 
human and the processing system on-site, performs real-time 
data transfer, and the technology facilitates real-time control 
for individuals, demonstrating the efficacy of their suggested 
technique [199].

In another application, Li et al. [197] designed a frame-
work aimed at the semantic modeling of Manufacturing 
Tasks (MT) and dynamic recommendation of Manufactur-
ing Resources (MR) for digital twin shop-floor (DTS). The 
objective of this framework was to produce effective and 
efficient manufacturing resource recommendations for pro-
duction services. Based on ontology, their model provided 
an efficient and successful solution to MT conceptualization 
and description, MT semantic indexing and retrieving, and 
MR suggestions for DTS are all part of the DTS process. 
They used a deep neural network (DNN)-based technique 
to propose and evaluate real-time simulation, real-time 
production, and historical production data to generate the 
mapping-relationship data, as shown in Fig. 10g. The case 
study analysis they gave also indicated that their strategy is 
successful and practicable, as seen in Fig. 10f [197].

Based on the reviewed information, it is evident that the 
manufacturing sector is currently experiencing a significant 
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trend known as “Industry 4.0”. This trend is characterized 
by the increasing reliance on "smart technologies," includ-
ing the Internet of Things (IoT), big data, cloud comput-
ing, and artificial intelligence (AI), to optimize industrial 
processes and manufacturing. This trend is driven by the 
massive generation of data, with over 40 zettabytes of data 
predicted by Gantz et al. [186] and the connection of over 
20 billion devices, primarily from the manufacturing sector 
to the internet by Mourtzis et al. [187]. Industry 4.0 rep-
resents a shift from traditional manufacturing processes to 
smart procedures, where the digital and physical worlds are 
interconnected.

One prominent aspect of this trend is the adoption of 
Digital Twins (DT) technology, which plays a pivotal role 
in Industry 4.0. Digital Twins allow for real-time data gath-
ering, manufacturing data analysis, and the optimization of 
various industrial processes. They enable real-time super-
vision, production management, process assessment, and 
improvement, among other capabilities. Digital Twins are 
instrumental in connecting the digital and physical aspects 
of manufacturing, providing a holistic view of production 
processes.

The trend further emphasizes the importance of recon-
figuration and optimization in automated manufacturing sys-
tems. Researchers have proposed strategies and frameworks 
that leverage Digital Twins to rapidly restructure automated 
production systems, enhance their overall capabilities, and 
reduce operational overhead. These approaches involve tech-
niques such as semi-physical simulations, open-architecture 
machine tools, and the use of digital twins for consist-
ency retention. It extends to the CNC machine tool indus-
try, where consistency retention architecture is employed 
to maintain the integrity of the Digital Twin model. The 
approach involves real-time data updates, wear and dam-
age analysis, and the alignment of virtual and real spaces to 
validate the effectiveness of the Digital Twin model.

Another aspect of this trend involves enhancing person-
alization options in product design through Smart Customi-
zation facilitated by data and Digital Twins. This paradigm 
shift allows manufacturers to construct virtual models using 
real-world data, promoting open innovation and the prolif-
eration of customizable goods. Digital Twins contribute to 
making industrial processes more adaptable and predic-
tive, reducing the impact of unpredictability-related issues. 
Furthermore, the application of augmented reality (AR) in 
monitoring, with Digital Twins serving as the foundation for 
the machining process, is becoming increasingly significant. 
AR technology is integrated into real-time monitoring of 
complex goods' intermediate processes, enhancing coopera-
tion among workers and the Digital Twin machining system.

The emerging trend in the industrial sector is charac-
terized by the adoption of "smart technologies" and the 
increasing use of Digital Twins for real-time monitoring, 

optimization, and reconfiguration of manufacturing pro-
cesses. This trend is driven by the massive generation of data 
and the need for more efficient and flexible manufacturing 
practices, ultimately reshaping the landscape of industrial 
production.

3.3 � Application in the service phase

During the service stage, distributors and producers often 
have limited or no influence over the distribution of prod-
ucts. For this reason, it is difficult to achieve a closed-loop 
data stream or to manage and retrieve their data. On top of 
that, the current virtual model could precisely describe the 
design of the product, but it is unconnected to any produced 
component [200]. Goods from the same group individual's 
performance might vary across various service scenarios 
since a manufactured element is not linked to a specific uti-
lized product. At this stage, users care more about the prod-
uct's reliability and usefulness, as well as its current state 
of functionality and how it can be maintained are mostly 
concerns raised by stakeholders at various levels. Virtual 
testing, operation forecasting, state observation, predictive 
maintenance, fault identification, and diagnosis are all fea-
sible with the DT technology [178].

Complicated goods, such as airplanes, automobiles, and 
power devices, are distinguished by their complicated archi-
tecture, various components, diverse and multifunctional 
materials, and uneven deterioration of material function. 
Faults may cause malfunctioning of the product, resulting 
in major safety mishaps. As a result, everyday maintenance 
is especially crucial for sophisticated items. Traditional tech-
niques tend to be receptive instead of proactive, depending 
on heuristic knowledge and the worse situation from the 
concept and features of a DT, the physical entity, the virtual 
entity, and linked data that connects the physical and virtual 
product. Degradation and aberrant occurrences may be com-
prehended using the digital twin technique, and unknowns 
can be predicted in advance. Relevant services concerning 
complicated products will be supplied to product consumers 
and makers on this basis [13].

DT extends outside just using a computer to create a 
product and then organizing its production. It also serves 
as a base from which virtual supervision and manipulation 
of the actual object can be exercised. According to Zhuang 
et al. [201] by incorporating DT into the production process, 
products can be more easily monitored while in use, ensur-
ing that customers receive high-quality and value-added 
services. Real-time physical system monitoring with multi-
source product data updates, including product utilization 
status information, environmental data, functioning parame-
ters, product environment simulation, and precise remaining 
life, fault, and solution prediction using real-time data from 
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Fig. 11   Some proposed DT applications in the service phase a Func-
tional schematic of the Digital Twin life prediction concept: The 
DT, a system comprising various models, is used to simulate flight 
trajectory, loads, and environments for specific aircraft, capturing the 
effects of aerodynamic pressures and structural deflections aiding the 
prediction of airplane structural life. Adapted from [150]. b Elements 
of the Airframe Digital Twin (ADT) which consolidates various inde-
pendent models into a single, comprehensive cradle-to-grave model 
that assesses an aircraft structure's capacity to meet mission require-
ments. Adapted from [203]. c A Conceptual illustration of the DT 
concept: The concept utilized integrated multiphysics models, sensor 

information, and input data to create methodologies for damage diag-
nostics and prognostics in damaged aircraft structures. Adapted from 
[204]. d A conceptual illustration of the DT involved in the trauma 
management process: The design represented the evolution of trauma 
management, with rescuers deciding if a patient's situation is severe, 
triggering the trauma team in the PreH phase. Adapted from [205]. 
e The framework of simulation and optimization: The historical data 
provided the probabilities of each location as a starting point and end-
point by utilizing the RPA and SIMIO software to create the DT pro-
gram. Adapted from [206]
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Fig. 11   (continued)
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the physical products and historical data, are all examples 
of these value-added services.

Tuegel et al. [150] demonstrated this by proposing a 
method for predicting airplane structural life based on an 
ultrahigh-fidelity model of individual aircraft by tail number, 
as shown in Fig. 11a. They went into great depth about the 
technical difficulties of creating and implementing Digital 
Twin. The flight direction and moves that would be per-
formed during the operation were reasonably estimated. The 
probability of the airframe's survival under the demands of 

the mission could subsequently be evaluated when deciding 
whether to send that specific aircraft on that specific mis-
sion [150].

The detection and monitoring of structural deteriora-
tion is an essential aspect of the DT initiative. Bielefeldt 
et al. [202] created a finite element model of an airplane 
wing with embedded shape memory alloy (SMA) particle 
response in critical areas. The model used a method known 
as substructure analysis, which maintains degrees of free-
dom at designated places critical for scaling transitions while 

Fig. 11   (continued)
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drastically lowering computational cost. They were able to 
simulate the reaction of these localized particles while also 
lowering computation time by using their method to model 
an aircraft wing exposed to loading encountered during 
flight. Their model, which was created using the aircraft's 
wings, showed important aspects of the detection method as 
well as for monitoring damage in aircraft [202].

In another study, as illustrated in Fig. 11b, Gockel et al. 
[203] used DT to evaluate flight conditions, which aids in 
determining damage in real time, known as Airframe Digital 
Twin (ADT). They evaluated the current state of the art for 
conducting such a simulated flight by piloting a basic ADT 
using the flight parameters captured during the flight. In 
their work, they found the technical gaps that prohibited the 
complete realization of the ADT vision and offered alterna-
tive methods that are feasible with current technology [203].

Seshadri and Krishnamurthy [204] proposed a damage 
assessment technique based on a wave propagation response 
approximated at multiple sensor sites utilizing DT in another 
service phase application shown in Fig. 11c. They estab-
lished an optimization method combining wave propagation 
analysis to forecast damage position, size, and orientation. It 
is proven that the reaction predicted at different sensor sites 
can be used to accurately forecast the location, magnitude, 
and direction of the damage [204]. They provided numerical 
instances of the genetic algorithm (GA) optimization method 
in various damage configurations. They also approximated 
the position and size of the damage while maintaining the 
damage orientation fixed. They found that the damage loca-
tion was predicted to be within 5% of the actual value for the 
damage combinations studied. Furthermore, the magnitude, 
position, and orientation of the damage were assessed. For 
the combinations studied, the damage magnitude, position, 
and orientation were approximated to be within ten percent. 
According to their results, the wave propagation-based 
Structural Health Management (SHM) technique appears to 
be appropriate for diagnosing damaged aircraft structures 
utilizing advanced DT concepts [204].

DT service applications were identified in healthcare. 
Croatti et al. [205] researched the combination of agents 
with DT and Multi-Agent Systems (MAS) technologies in 
healthcare administration. They provided an overview of 
the implementation of DT in healthcare in their research, 
followed by a case study for the management of trauma in 
healthcare, as illustrated in Fig. 11d. Their goal was to better 
record-keeping in trauma cases and help healthcare workers 
perform their tasks before the trauma patients arrived [205].

Another DT application in healthcare involved increas-
ing the productivity of the healthcare delivery network by 
using Robotic Process Automation (RPA) by Liu et al. [206]. 
They demonstrated a case study using Greenfield Hospital 
in Singapore. Their DT application was created to enhance 
the transportation system. They recognized necessary 

measures to increase productivity and processes to handle 
greater numbers of patients without increasing costs or com-
plexities in their research. Their DT solution for the delivery 
system included creating an efficient supply chain system, 
establishing a solid RPA solution, and minimizing the distur-
bance caused by automation implementation. The Greenfield 
Hospital had 1800 beds, eight medical buildings of seven 
floors, each connected by a shared main floor, and two base-
ments [206]. The 3D building information, RPA creation, 
the hospital's operations plan, flow modeling and optimiza-
tion, and scenario evaluations were essential elements of 
the DT framework for their design. As shown in Fig. 11e, 
RPA and SIMIO software were the tools used to create the 
DT program. Their studies fulfilled the goal of optimizing 
the hospital delivery system, lowering building operational 
costs and operational uncertainties [206].

According to Sivalingam et al. [207], Condition-Based 
Maintenance (CBM) concentrates on anticipating prob-
lems in a product or an entire system. CBM is the preferred 
method because it aids in diagnosing machine health and 
identifying potential remedies. In their studies, this form of 
preventive maintenance was combined with DT to provide 
real-time monitoring and administration. Sivalingam et al. 
[207] discovered that in Europe, a CBM approach is uti-
lized to gather data on the state and efficacy of turbines by 
employing the DT, and a network-integrated Supervisory 
Control and Data Acquisition (SCADA) platform was uti-
lized to acquire information to develop the DT. They imple-
mented the CBM concept for efficient maintenance in the 
context of DT, which lowered the expense of Operations 
and Maintenance (O&M) as well as the Levelized Cost of 
Energy. Condition monitoring from the viewpoint of DT 
was used in their research for prediction because it provides 
a simple way to forecast damage accumulation and Remain-
ing Useful Life (RUL). Also, the CBM using the DT strategy 
for facilities management helped to optimize the efficiency 
of built projects by monitoring and managing their physical 
state in real time.

To optimize communication among smart connected 
gadgets, He et al. [208] used DT to optimize communica-
tion among smart connected gadgets utilizing the Industrial 
Internet of Things (IoT) by implementing a Cross-Technol-
ogy Communication platform w.r.t. tackling issues involving 
delay in network transmission, high cost, restricted band-
width, confidentiality, and the fact that cloud-based remedies 
for large-scale videos for industrial objectives are unfeasible 
due to the price of high-performance cloud servers. With 
cross-technology communication (CTC), gadgets from dif-
ferent manufacturers can communicate with one another, 
making it possible to swiftly and directly satisfy the needs 
of the industrial Internet of Things (IoT) [208].

In service applications, diverse industries face unique 
challenges and opportunities. Managing data during this 



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:420	 Page 35 of 46  420

phase presented significant challenges to diverse industries, 
particularly in product distribution and utilization. Achiev-
ing a closed-loop data stream would bridge the gap between 
manufacturers and distributors is an intricate task. Effec-
tive solutions were needed to streamline data management, 
ensuring that critical information is efficiently maintained 
and easily retrievable.

The focus shifts toward ensuring reliability, functionality, 
and maintenance. Stakeholders at various levels are primarily 
concerned with the current state of products and how they can 
be effectively maintained. Predictive maintenance, real-time 
state observation, and the rapid identification of faults become 
key concerns in this context. Complex products, such as air-
planes, automobiles, and power devices, demand meticulous 
maintenance efforts. In this phase, Digital Twins play a pivotal 
role in monitoring and predicting issues, enabling proactive 
maintenance to prevent safety mishaps and maintain product 
performance at optimal levels. Furthermore, the utility of Digi-
tal Twins extends beyond the design and production. They 
provide real-time monitoring of physical objects during their 
utilization. This empowers customers to access high-quality, 
value-added services while ensuring ongoing product perfor-
mance and reliability.

Advanced DT models were also employed for predictive 
purposes. These models can accurately predict the structural 
life of individual aircraft, aiding in making mission-specific 
decisions. This proactive approach enhances safety and cost-
effectiveness in the aviation industry. The technology is also 
instrumental in damage detection and monitoring. It offers 
real-time insights into structural health, which is vital for the 
safety and functionality of various products, including critical 
components like aircraft wings. Digital Twins provides a pro-
active solution for damage assessment and mitigation.

In healthcare administration, Digital Twins, coupled with 
Multi-Agent Systems (MAS), enhance record-keeping and 
healthcare worker performance, particularly in trauma cases. 
This integration improves the efficiency and quality of health-
care services, ensuring that patients receive optimal care. 
Moreover, the integration of Robotic Process Automation 
(RPA) with Digital Twins is transforming healthcare delivery 
networks. This approach optimizes productivity and efficiency, 
with a focus on improving transportation systems and stream-
lining supply chain processes in healthcare settings.

Condition-Based Maintenance (CBM) in conjunction 
with Digital Twins anticipates issues in products or systems, 
enhancing machine health diagnosis and facilitating timely 
remedies. This approach lowers operational and maintenance 
costs while ensuring the Levelized Cost of Energy remains 
manageable. Lastly, Cross-Technology Communication 
(CTC) enables the optimization of communication among 
smart connected devices, particularly in the context of the 
Industrial Internet of Things (IoT). This technology enables 

seamless communication between devices from various 
manufacturers, facilitating the efficient operation of the IoT.

In summary, these emerging trends highlight the adapt-
ability and far-reaching impact of Digital Twin technology 
in diverse service applications. They underscore the poten-
tial for real-time monitoring, proactive maintenance, and 
enhanced service quality across a range of industries. Digital 
Twins have become integral in ensuring safety, efficiency, and 
cost-effectiveness in modern industrial and service contexts.

4 � Challenges and prospects

In this section, we provide a summary of some of the chal-
lenges to DT construction and implementation that were 
identified by our study.

To enable capturing real-time processes and dynamic 
characters of physical objects, the DT needs models that 
have complicated architectures and characteristics. A 
general platform based on the construction of a physical 
model using a common approach does not yet exist. There 
is no common way to develop and implement digital twin 
concepts. This is a prerequisite for putting the digital twin 
idea into action. Implementing digital twin technology 
necessitates the design of a digital model for each compo-
nent of the physical model. Because of the wide range of 
parts in the physical model, a standard system for creating 
the DT using particular tools deserves to be established. 
A model development method should be specified to first 
assist users in creating simple virtual models and then 
assist them in completing their high-complexity model. 
In addition, the integration of multiple distinct models and 
processes by the DT requires verification and validation. 
How to prove the model matches the actual copy is not 
investigated.

Through the assessment of the research of the key tech-
nologies of the DT platform, it was found that there are 
the following problems in the research of the application 
deployment of the DT: requires the collaboration of mul-
tiple software, the software and hardware are high, and the 
access often requires large three-dimensional software, and 
the access cost is high. The studies on the construction of DT 
focus on the design of a specific DT system. However, adapt-
ing such systems to diverse scenarios often requires a more 
complex flow path, weak malleability, and poor universality.

Digital twinning technology has the following problems 
in processing technology: the research on digital twinning 
construction of tools and parts has been more in-depth. 
Researchers often map the data to a certain actual tool or 
workpiece model to predict the tool life or health manage-
ment, but the research on the processing technology data is 
less; some researchers map the actual data into the DT model 
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for analysis to achieve the purpose of process evaluation 
and parameter optimization. However, this is essentially the 
analysis of process information without realizing the fusion 
of process information, workpiece, and tool mold in the DT.

The bidirectional process of exchanging information 
between the actual entity and the virtual entity is the inno-
vative element of DTs in simulations. However, in most 
of the suggested DT applications, the interaction can be 
characterized as either one-way, or there is no indication 
of how the DT is connected to the physical entity control 
system. It is necessary to present an inquiry pertaining to 
the methodology by which the control system will evalu-
ate and anticipate all novel directives determined using DT 
external input. Furthermore, to speed up construction and 
make conventional DT solutions more reusable, the creation 
of DT tools is crucial. Modular techniques may be beneficial 
in the development of adaptable solutions by making room 
for novel uses. The DTs from various service suppliers can 
be integrated with an integrated set of tools and protocols.

5 � Case study: digital twin‑based real‑time 
visual control method for 6‑DOF parallel 
robots

In this section, the 6-DOF parallel robot is taken as a case 
study to illustrate one of the future applications of modes 
of digital twin technology by proposing a real-time visual 

control method for the parallel robot based on the digital 
twin drive of Unreal Engine for the control problem of the 
parallel robot as shown in Online Resources 1 and 2. The 
6-DOF parallel robot is a parallel mechanism with high 
stiffness and high accuracy, which can be used to simulate 
high-degree-of-freedom motions such as earthquakes, car 
vibration, and aircraft flight. The control method of the par-
allel mechanism is mainly achieved by using the solved data 
method, which involves manual input into the program to 
drive the parallel robot in the simulation time set in advance. 
This control method does not have real-time visibility. At 
the same time, because large hydraulic parallel robots have 
experimental challenges in research experiments, such as 
reliance on large equipment, long debugging time, and unin-
tuitive visualization of operational health, it is necessary to 
construct a digital twin control model for parallel robots 
to accelerate the control and dynamics research of parallel 
robots.

5.1 � Digital twin‑driven control technology 
architecture for 6‑DOF parallel robots

The role of the DT model built in this case study utilizing 
the parallel robot control system is to provide a real-time, 
manipulable visual control method for the parallel robot 
based on a real-time visual control method that can simu-
late the working conditions provided for the parallel robot.

Fig. 12   DT-based real-time control of the 6-DOF seven-cylinder par-
allel robot: A digital skeleton model is created for a parallel robot, 
defining position and motion constraints a real-time relationship 

model is established, and data is transmitted to the robot control side 
for real-time interaction



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:420	 Page 37 of 46  420

As illustrated in Fig. 12, firstly, a digital skeleton model 
of the parallel robot is established, and the relative position 
and motion constraints of each component in the parallel 
robot are defined in the skeleton model, and a real-time rela-
tionship model is established between the operation input 
and the motion of the skeleton based on the digital skeleton 
model. On the digital side, the dynamics simulation of the 
parallel robot is completed by the skeleton model, and the 
visualization of the parallel robot is realized. Finally, the 
motion displacement of each branch of the parallel robot is 
solved according to the relative positions of the components 
in the skeleton model, and the data are transmitted to the par-
allel robot control side in real time frame by frame through 
the socket protocol, to achieve the real-time control of the 
parallel robot. The physical space and the digital space gen-
erally achieve virtual–real interaction and real-time control.

In addition, this method has the following two main fea-
tures compared with the traditional parallel robot control 
method.

a)	 Visual control of real and imaginary interaction. The 
physical entity and digital skeletal model move in a vir-
tual–real interactive manner. On the one hand, the digital 
skeleton model drives each branch cylinder of the paral-
lel robot in real time according to the solved data of the 
digital skeleton model; on the other hand, the sensor 
data of the parallel robot are transmitted to the digital 
end through data communication, and then, the opera-
tion state of the physical entity is monitored in real time. 
The virtual model posture change controls the operation 
of the physical entity in real time; relatively, the state 
change of the physical entity will also be presented in 
real time at the virtual end.

b)	 The control method of real-time operation. For the par-
allel robot, the operation state of the physical entity is 
bound to the dynamics simulation results of the digital 
skeleton model in real time. In terms of specific control 
methods, on the one hand, the operator input data can 
be collected in real time through data collection devices 
such as key and mouse, and joystick handle, and on the 
other hand, the virtual model can be manipulated by 
the operator to drive on the simulated environment, and 
then, the virtual model’s posture changes can be col-
lected in real time. In terms of real-time control, the sys-
tem can carry out the reverse dynamics solution frame 
by frame according to the posture changes of the parallel 
robot moving platform, and then, the parallel robot can 
be controlled in real time.

5.2 � The physical entity of a 6‑DOF parallel robot

The case study object is a 6-DOF seven-cylinder parallel robot 
of Jiangsu University School of Mechanical Engineering, 
which mainly consists of a base platform, two reaction walls, 
a moving platform, seven ball hinges, seven Hooke hinges, 
seven cylinders, and it is mainly used for vibration simula-
tion tasks in automotive test experiments. The parallel robot 
is shown in Fig. 13.

From Fig. 14, it can be seen that the parallel robot can be 
divided into four types of components according to the motion 
mode, which is as follows:

(a)	 Fixed supports: base platform, reaction wall transition 
plate, and lower hinge fixed hinge.

(b)	 Moving platform: upper hinge, fixed hinge.
(c)	 Cylinder outer cylinder: lower hinge, movable hinge.
(d)	 Inner cylinder: upper hinge, dynamic hinge.

5.3 � Construction of reverse dynamics of digital 
skeleton model

For the modeling of the parallel robot, tools such as Creo 
Parametric (CREO) and Unreal Engine (UE) Datasmith 

Fig. 13.   6-DOF seven-cylinder parallel robot showing the main com-
ponents of the parallel robot

Fig. 14   The digital skeleton model of the parallel robot showing divi-
sion into four types of components based on motion mode
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plug-in are used to combine the data such as the size of 
each component of the parallel robot, the relative posi-
tion of the hinge points, and the range of motion of the 
cylinders. The three-dimensional (3D) modeling is car-
ried out and given materials according to the component 

division as depicted in Fig. 14 and then imported into 
Blender for model combination, and the model skeleton 
is built according to the position relationship and motion 
mode and then imported into the Unreal Engine, using 
Control Rig plug-in to control the skeletal model binding, 

Fig. 15   Control blueprints in 
unreal engine
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the formation of real-time control of the digital skeletal 
model, as shown in Fig. 14. The digital skeleton model can 
solve the inverse dynamics in real time according to the 
input information of platform position change and display 
the parallel robot motion in real time in the interface.

5.4 � Control signal acquisition and transmission

The case study utilizes a keyboard and mouse to control the 
movement of the interface camera, the displacement and 
tilt of the 6-DOF parallel robot, and the Unreal Engine's 
blueprint visual programming language for control signal 
acquisition and transmission. The control system can be 
operated by two people, one person uses the keys "WASD" 
on the keyboard and mouse to control the camera to adjust 
the viewing angle in the interface, and the other person uses 
the arrow keys and numeric keypad (or handle) to control the 
movement of the skeletal model of the parallel robot. When 
the corresponding key is pressed (or the joystick is toggled), 
the blueprint event in the Unreal Engine is activated, and a 
value of ± 1 is generated, which is then multiplied by the 
sensitivity to obtain the platform pose change value, and 
then, the change value is passed to the animation blueprint, 
which drives the simulated camera and the parallel robot 
skeleton model to change, as shown in Fig. 15.

5.5 � Bone model update

After determining the dynamic platform posture, the direc-
tion vector of the cylinder can be obtained according to the 
difference between the upper and lower hinge point posi-
tions, while the modulus of the vector is the cylinder length, 
and then, the cylinder displacement can be obtained by sub-
tracting the cylinder initial test length from the cylinder 
length. Thus, the posture change of each branch cylinder of 
the parallel robot can be obtained. In this case, during the 
posture change of the moving platform, the aim function is 
used to make the inner and outer cylinders of each branch 
cylinder point to relatively fixed points so that the cylinders 

can determine the posture and control the bones of the skel-
eton model frame by frame in real time, as shown Fig. 16.

5.6 � Transferring data

This case study uses the Socket protocol to transfer data 
between digital and physical ends in the process of real-time 
control. It requires low data transfer delay, is non-blocking, 
and can allow partial data loss, so it uses the User Data-
gram Protocol (UDP) or Internet Protocol (IP) in Socket for 
data transfer. The data passed are all decimal floating-point 
data with only 3 to 5 valid digits, so the data passed can be 
encoded and compressed into a data stream in the Unreal 
Engine program before transmission and then decoded in 
Simulink and passed to the Incremental Potential Con-
tact (IPC) of the parallel robot, which in turn controls the 

Fig. 16   Digital twin of the 6-DOF seven-cylinder parallel robot

Fig. 17   The experimental results show the delay between the 
physical entity and the virtual entity. a 65sin(2� × 0.25t) , and b 
30sin(2� × 0.4t)
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parallel robot. This can significantly reduce the data collec-
tion time in simulation experiments and realize real-time 
visual control of parallel robots.

The system delay is an important indicator of the parallel 
mechanism digital twin system. In this case, the control fre-
quency of the industrial computer used is 1000 Hz, and the 
sampling frequency of the developed digital twin is 50 Hz, 
with a minimum delay of 20 ms.

To verify the delay of the digital twin system, motion sig-
nals of 65sin(2� × 0.25t) and 30sin(2� × 0.4t) were applied 
to the four hydraulic legs beneath the parallel mechanism 
in the Z direction. The other three hydraulic legs were 
constrained from extending or retracting through the posi-
tion servo. Using the collected displacements of the seven 
cylinders as input, the actual displacement of the dynamic 
platform of the parallel mechanism was solved using the 
kinematic forward solution model. Simultaneously, the dis-
placement of the dynamic platform in the digital twin was 
collected. Figure 17 shows the displacement change of the 
physical entity and the digital entity central platform in the 
Z direction.

As seen from Fig. 17, the delay of the digital twin system 
designed in this case is stable at 20 ms, which can better 
reflect the kinematic state of the parallel mechanism.

6 � Conclusions

The integration of various technological advancements, 
namely the Internet of Things (IoT), Cloud Computing, and 
Artificial Intelligence (AI), has resulted in the emergence 
of a cohesive Digital Twin (DT) technology, which makes 
the application of the DT technology beneficial to a variety 
of industrial sectors. This paper examined the current state 
of DT studies and assessed and evaluated the most recent 
developments in DT concepts, essential fundamental tech-
nologies, and applications. Following the review, some pre-
sent challenges in DT advancement and possible DT direc-
tions are proposed. A comprehensive review reveals that the 
digital twin is progressively emerging into an era of swift 
advancement in which researchers commence an inquiry into 
practical applications in the real world and technologies in 
the industry. Despite the progress, there is no universal defi-
nition for the DT or an integrated design and implementation 
procedure. The implementing procedure and description of 
the digital twin always pertain to the area of application. 
Through the reviewed papers on the DT application, the 
scope of application was in the design of a product, in the 
manufacturing sector, and in providing a service.

In manufacturing and production, advances in DT have 
transformed conventional manufacturing methods into ones 
in which primary processes offer smart procedures. In short, 

the function of the DT in manufacturing is to enhance prod-
uct quality and lower production costs more effectively and 
dynamically than the conventional method. Digital twins are 
used in a variety of industrial processes, including live moni-
toring, managing production, and production scheduling. In 
design, a DT is utilized in product design and manufactur-
ing system design to optimize continuously, provide data 
fidelity, evaluate, and validate digitally. The review articles' 
primary applications were virtual assessment and verifica-
tion. With DT in service, users' concerns about the reliability 
of goods, as well as manufacturers' and dealers' problems 
about real-time product operation status and upkeep strate-
gies, are all alleviated. The digital twin was used to provide 
predictive maintenance, defect identification and repair, and 
condition monitoring services. In conclusion, the utilization 
of digital twins delivers the full strategic potential of huge 
data in numerous industrial domains.
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