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Abstract
According to the existing theory, turbulent flow fields are divided into four layers, including (a) the viscous sublayer, (b) the 
buffer layer, (c) the logarithmic layer, and (d) the core layer. However, in this work, a two-layer description for some bench-
mark turbulent flows is proposed. To arrive at this description, firstly, the logarithmic layer is extended to include the buffer 
layer, which removes the need to consider the buffer layer with its complex formula. Thereafter, the attention is focused on 
some benchmark problems in fluid mechanics (i.e., the Couette flow, the 2D channel flow, the circular pipe flow, and the 
flow over a flat plate) and new descriptions are proposed for their core layers, incorporating the extended logarithmic layer. 
Hence, the accomplished two-layer description divides the considered turbulent flows into only (a) the viscous sublayer and 
(b) the extended core layer, each with a corresponding velocity profile. This description substantially simplifies the analysis 
and can be helpful for future studies. The proposed description is applicable to smooth as well as rough walls and is accu-
rate for low, intermediate, and high Reynolds numbers. It is found that in spite of the simplicity of the proposed two-layer 
description, its outcomes in terms of the time-averaged velocity profile are in excellent agreement with those of previous 
studies, for all of the considered benchmark problems.

Keywords  Turbulent flow · Surface roughness · Viscous sublayer · Buffer layer · Logarithmic layer

List of symbols
A	� Constant coefficient defined in Eq. (32)
B	� Constant coefficient defined in Eq. (32)
C	� Constant coefficient defined in Eq. (32)
C	� Constant coefficient defined in Eq. (28)
D	� Constant coefficient defined in Eq. (32)
Ks	� Equivalent sand roughness
Ktech	� Technical roughness
K+
s

	� Dimensionless value of the equivalent sand 
roughness, K+

s
= Ksu�∕�

K+
tech

	� Dimensionless value of the technical 
roughness,K+

tech
= Ktechu�∕�

h	� Half of the distance between the plates
Lr	� Reference length, Lr = h , R , or �
r	� Radial direction
R	� Pipe radius
Re	� Reynolds number
Recrit	� Critical Reynolds number
Red	� Reynolds number based on the pipe diameter, 

Red = 2umR∕�

Rex	� Reynolds number based on the distance from the 
leading edge, Rex = u∞x∕�

Re�	� Reynolds number based on the friction velocity, 
Re� = u�Lr∕�

Re�,crit	� Critical Reynolds number based on the friction 
velocity

umean	� Mean velocity
u�	� Friction velocity, u� =

√

�w∕�

u+	� Dimensionless velocity, u+ = u∕u�
u+
c
	� Dimensionless velocity at the centerline, 

u+
c
= u+(� = 0)

u+
l
	� Dimensionless velocity at the start of the 

extended logarithmic layer, u+
l
= u+

(

y+
l

)
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u+
wall

	� Dimensionless velocity of the wall for the Cou-
ette flow, u+

wall
= 2u+

c

U∞	� Free stream velocity
u	� Time-averaged velocity
y	� Vertical distance from the wall
y+	� Characteristic wall coordinate, y+ = Re�(1 − �)

y+
l
	� Starting point of the extended logarithmic layer 

from the wall
z	� Parameter defined as z = �∕�l

Greek symbol
�	� Thickness of the hydrodynamic boundary layer
�	� Constant coefficient defined in Eq. (32)
�	� Dimensionless distance from the centerline, 

� = (yorr)∕Lr
�l	� Starting point of the extended logarithmic layer 

from the centerline, �l = 1 − y+
l
∕Re�

�	� Karman constant
�	� Dynamic viscosity
�t	� Turbulent dynamic viscosity
�	� Fluid density
�t	� Turbulent shear stress in a turbulent flow
�total	� Total shear stress in a turbulent flow
�w	� Time-averaged shear stress at the wall
�	� Kinematic viscosity
�t	� Turbulent kinematic viscosity

1  Introduction

Due to the nonlinearity of the Navier–Stokes equations, ana-
lytic solutions of these equations are hard to achieve. Hence, 
only a limited number of such solutions are available in the 
literature. For instance, Saleh and Rahimi [1] accomplished 
an exact solution for unsteady axisymmetric stagnation-
point flow over a moving cylinder subjected to transpira-
tion. Ghiasi and Saleh [2] presented an analytic solution 
for unsteady MHD flow over a shrinking horizontal sheet. 
Housiadas and Georgiou [3] derived an analytical solution 
for the flow of a fluid having pressure-dependent viscosity 
through a rectangular duct. Kannaiyan et al. [4] presented 
an analytic solution for unsteady pipe flows. Akhtar and 
Shah [5] obtained analytic solutions for Couette flow, Gen-
eralized Couette flow, and Poiseuille flow, under unsteady 
conditions. Moreover, Nec and Huculak [6] presented an 
analytic solution for radial flow in a porous medium having 
non-uniform permeability. Some of the analytic solutions 
have been collected in the books of Schlichting and Gersten 
[7] and White [8].

Compared to the laminar flow fields, accomplishing an 
analytic solution for the Navier–Stokes equations in turbu-
lent flows is inherently more complex which goes back to the 
existence of the irregular fluctuations in the flow properties 

therein. These fluctuations can be omitted through the time-
averaging procedure. But, this is accompanied by the appear-
ance of some new terms, which are called the Reynolds 
(turbulent) stresses that need to be approximated through 
turbulence models. Going into the literature indicates that 
analytic solutions of turbulent flows are usually limited to 
simple geometries. For instance, García and Alvariño [9] 
offered an analytic solution for turbulent pipe flows under 
unsteady conditions. In another attempt, an analytic solution 
for a partially-submerged pipe with the attendance of recip-
rocating flow was presented by Hasan et al. [10].

The topic of universality of wall-bounded flows has been 
discussed for many decades. However, the recent study of 
Heinz [11] demonstrates that the structure of such flow fields 
is much more universal than previously expected. To analy-
sis a wall-bounded flow, the flow field is divided into four 
layers, namely, the viscous sublayer, the buffer layer, the 
logarithmic layer, and the core layer. In such a four-layer 
description, each layer is solved separately, while solutions 
of the adjacent layers are matched. A glance at the recent 
review paper of Kadivar et al. [12] shows that this four-layer 
description for turbulent flows has not been changed consid-
erably for many years.

In the present paper, firstly, the shortcomings of the exist-
ing theory for the near-wall layer as well as the core layer 
are presented. Thereafter, the logarithmic layer is extended 
to include the buffer layer, which removes the need to con-
sider the buffer layer with its complex formula. Finally, some 
benchmark problems in fluid mechanics including the fully-
developed Couette flow, the fully-developed 2D channel 
flow, the fully-developed circular pipe flow, and flow over a 
flat plate are considered and new descriptions are proposed 
for their core layers, incorporating the extended logarithmic 
layer. Hence, the proposed description divides the turbulent 
flow field into only the viscous sublayer and the extended 
core layer. This provides substantial simplification in the 
analysis, compared with the existing theory, which divides 
the flow field into four layers. The accomplished description 
is valid for small, medium, and large Reynolds numbers as 
well as smooth and rough walls.

The considered benchmark problems, in spite of their 
geometrical simplicity, have been a matter of constant 
study, due to their practical applications. Recently, Teja 
et  al. [13] discussed the onset of shear-layer instabil-
ity at the interface of parallel Couette flows. Ohta et al. 
[14] analyzed the modulation of turbulent Couette flow 
with vortex cavitation in a minimal flow unit. Hasanuz-
zaman et al. [15] discussed the enhanced outer peaks in 
turbulent boundary layer using uniform blowing. Jiao 
et al. [16] studied how the adverse pressure gradient may 
alter the near-wall turbulence in the Couette flow. Ilter 
[17] simulated the fully developed channel flow over a 
dimpled surface in the turbulent flow regime. Meanwhile, 
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the consequences of the wall roughness have attracted the 
attention of many researchers. In a recent attempt, Man-
gavelli et al. [18] analyzed the effect of surface rough-
ness topography on unsteady channel flows. Kracik and 
Dvorak [19] discussed how the wall roughness may affect 
the secondary flow choking in an air ejector. Li et  al. 
[20] proposed a model for the prediction of the turbulent 
boundary layer downstream of a step-change in the wall 
roughness. Sorgun et al. [21] analyzed the turbulent flows 
of Herschel-Bulkley and power-law fluids in rough pipes. 
Aghaei-Jouybari et  al. [22] paid attention to the fully 
developed supersonic flow over sinusoidal rough walls in 
the turbulent flow regime. Hosseinzade and Berstrom [23] 
proposed a wall stress model for the analysis of turbu-
lent flows over rough walls. Moreover, thanks to a four-
layer description for the mixing length function, She et al. 
[24] presented a Lie-group symmetry analysis to arrive 
at analytical expressions for the mean-velocity profile in 
the fully-developed 2D channel flow, the fully-developed 
circular pipe flow, and flow over a flat plate.

2 � Basic equations

In a turbulent flow field, the shear stress is composed of 
two parts: (a) the stress generated by the fluid viscosity 
(b) the stress generated by the flow turbulence. Hence, the 
total shear stress in a turbulent flow is frequently written 
as [7]:

To provide a universal description for the analysis, we 
define � as the dimensionless distance from the centerline 
or the boundary layer edge. The values of this parameter 
for the current flow problems are introduced in Table 1. 
With this definition, Eq. (1) takes the following form:

Rearrangement of Eq. (2) leads to:

(1)�total(y) = �
du

dy
+ �t

du

dy
=
(

� + �t

)du

dy

(2)�total(�) = −
�
(

� + �t
)

Lr

du

d�

Adopting the friction velocity, u� =
√

�w∕� , the above 
equation can expressed in terms of the dimensionless veloc-
ity, u+ = u∕u� , and the Reynolds number, Re� = u�Lr∕� , as:

The above relation is exact and is applicable to the entire 
flow field. However, some improper use of this relation has 
been occurred, which reduced the accuracy of the existing 
theory. These shortcomings are discussed in the following 
sections.

3 � Shortcomings of the existing theory 
for the near‑wall layer

For a better depiction of the velocity slope in the vicinity 
of the wall, we define the characteristic wall coordinate as 
y+ = Re�(1 − �) . With this definition, Eq. (4) takes the fol-
lowing form for the near-wall layer:

The shear stress in a turbulent flow, �total(�) , is equal to 
�w for the Couette flow and �w� for the 2D channel flow, the 
circular pipe flow, and flow over a flat plate [7]. It is note-
worthy that for the flow over a flat plate, the approximate 
von Karman profile [25] is utilized to arrive at this result. 
Hence, in the Couette flow, one has:

Meanwhile, for the other benchmark problems selected 
here, we can write:

However, in the near-wall layer, y+∕Re� ≅ 0 . This reduces 
Eqs. (7)–(6), simplifying Eq. (5) as:

It should be noted that, if the attention be limited to the 
viscous sublayer, �t∕� ≅ 0 reduces Eq. (8) to:

(3)
du

d�
= −

1

1 +
�t

�

�w

�

Lr

�

�total(�)

�w

(4)
du+

d�
= −

Re�

1 +
�t

�
(�)

�total(�)

�w

(5)
du+

dy+
=

1

1 +
�t

�
(y+)

�total
(

y+
)

�w

(6)
�total

(

y+
)

�w
= 1

(7)
�total

(

y+
)

�w
= � = 1 −

y+

Re�

(8)
du+

dy+
=

1

1 +
�t

�
(y+)

Table 1   The values of � for the current benchmark problems

Flow problem � Lr

The Couette flow � = 1 −
y

Lr
h

2D channel flow � = 1 −
y

Lr
h

Pipe flow � = 1 −
y

Lr
=

r

Lr
R

Flow over a flat plate � = 1 −
y

Lr
�
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which is a familiar relation for this layer.
Shortcoming # 1: The existing theory improperly 

assumes that in the logarithmic layer 𝜐t ≫ 𝜐 . This reduces 
Eq. (8) to:

Although this assumption becomes reasonable at the high 
values of the Reynolds number or far from the wall, it pro-
duces some errors in the low values of the Reynolds number 
or in the vicinity of the wall. We will show later that avoid-
ing this improper assumption extends the applicability of the 
logarithmic layer to the lower values of y+.

Shortcoming # 2: The second shortcoming in the descrip-
tion of the near-wall layer goes back to the relation employed 
for the logarithmic layer. Indeed, in this layer, one has:

However, in the existing theory, the above relation has 
improperly been converted into the following form [7]:

with � = 0.41.
This improper modification reduces the precision of the 

turbulence description in the low values of y+ and neces-
sitates to consider an additional layer (i.e., the buffer layer) 
to capture the flow field between the viscous sublayer and 
the logarithmic layer.

4 � Shortcoming of the existing theory 
for the core layer

One may adopt Eq. (4) for the velocity slope in the core 
layer. Closer scrutiny of this relation shows that it is not 
exactly the same as the common relation utilized in the exist-
ing theory [7]. However, notice that if we assume that 𝜐t ≫ 𝜐 
in the core layer, the denominator reduces to �t∕� and the 
existing relation for the core layer is recovered as:

From the physical point of view, such an assumption may 
not hold in the low values of the Reynolds number or in the 
vicinity of the wall. It will be shown later that avoiding this 

(9)
du+

dy+
≅ 1

(10)
du+

dy+
=

1
�t

�
(y+)

(11)lim
y+→∞

�t

�

(

y+
)

= �y+

(12)
�t

�

(

y+
)

= �y+

(13)
du+

d�
= −

Re�
�t

�
(�)

�total(�)

�w

improper assumption substantially enhances the range of 
applicability of Eq. (4).

5 � The proposed two‑layer description

When the Reynolds number is sufficiently large, the near-
wall layer is not a large domain in comparison with the total 
flow field. Hence, the solution of the near-wall layer is inde-
pendent to the flow geometry and thus a universal solution 
exists for this layer for all geometrical configurations. How-
ever, solution of the core layer is always strongly dependent 
to the geometry of the flow field, and this layer must be 
solved separately for each geometrical configuration.

In the following sections, firstly, the derivation of the 
velocity distribution in the viscous sublayer is reviewed 
in Sect. 5.1. Then, in Sect. 5.2, the logarithmic layer is 
extended to include the buffer layer, which removes the need 
to consider the buffer layer with its complex formula. In this 
section, the smooth walls provide a suitable circumstance to 
validate the proposed two-layer description. The presented 
materials are accompanied by calculating the starting point 
of the extended logarithmic layer in Sect. 5.3. Thereafter, the 
existing geometry-dependent solutions of the core layer are 
presented for the current benchmark problems in Sect. 5.4. 
It will be shown that the main drawback of these solutions 
is the fact that they lose their accuracy in the vicinity of the 
wall. To remove this shortcoming, in Sect. 5.5, a new vari-
able is introduced for the dimensionless distance. Thanks to 
this variable, the extended core layer solutions are proposed 
for the current benchmark problems. These solutions incor-
porate the extended logarithmic layer too. Hence, we will 
arrive at a two-layer description for the current benchmark 
problems in this section. The proposed description is appli-
cable to arbitrary values of the Reynolds number. Finally, 
in Sect. 5.6 this description is utilized to simulate the flow 
field in the current benchmark problems. In order to validate 
the proposed description further, the presented results are 
compared with those of the open literature.

5.1 � The viscous sublayer

The viscous sublayer is a region of a turbulent flow that is 
close to a no-slip boundary and where viscous shear stresses 
play a significant role. The flow velocity decreases toward 
the no-slip boundary due to the no-slip condition, resulting 
in a region near the wall where the flow velocities are small. 
In this region, the viscous term is dominant, and the inertial 
terms in the Navier–Stokes equation are negligible. The rough-
ness height relative to this sublayer has a significant impact 
on hydraulics. Flow is considered hydraulically rough if the 
roughness elements are larger than the laminar sublayer which 
perturbs the flow, and hydraulically smooth if they are smaller 
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than the laminar sublayer, which the main body of the flow 
ignores. Velocity distribution in the viscous sublayer is com-
puted according to Eq. (9) as:

which is a generally accepted relation for this layer in the 
literature. However, it will be shown later (Sect. 5.3) that in 
the proposed description, the ending point of the viscous 
sublayer takes a longer distance from the wall.

5.2 � The extended logarithmic layer

In the extended logarithmic layer (i.e., y+ > y+
l
 with y+

l
 being 

the starting point of this layer), to remove Shortcoming # 2 in 
Sect. 3, instead of the existing equation for the dimensionless 
eddy viscosity in the form of �t∕� = �y+ (i.e., Equation (12)), 
the following relation is proposed:

Notice that the proposed relation reduces to the existing 
relation for the logarithmic layer as y+ → ∞ and thereby, it 
automatically satisfies Eq. (11). Meanwhile, it is obvious that 
�t∕� vanishes at y+

l
 . Hence, y+

l
 in Eq. (15) which is the start-

ing point of extended logarithmic layer represents the thick-
ness of the viscous sublayer. Indeed, this relation extends the 
logarithmic layer up to the viscous sublayer and excludes the 
need to incorporate the buffer layer as a distinct layer with its 
complex formula. The parameter y+

l
 for an arbitrary value of 

the wall roughness will be calculated later in Sect. 5.3. How-
ever, it will be shown there that for flow over a smooth wall, 
one has y+

l
= 7.2 . This indicates that the proposed relation 

(i.e., Eq. (15)) is distinct from the so-called “log-layer offset” 
concept which is utilized in most of the roughness models 
(Durbin [26], Ismail [27], and Squire et al. [28]). We will find 
in Sect. 5.2.2 that in the special case of rough walls, the pro-
posed relation reproduces the log-layer offset concept.

To provide a picture about the suitability of Eq. (15), Fig. 1 
is plotted. The figure indicates the variations of the near-wall 
values of the dimensionless eddy viscosity for different cases 
of the wall roughness. Notice that for flow over a smooth wall, 
provided that y+ ≤ y

+

l
= 7.2 , the viscous sublayer establishes 

with �t∕� = 0 . However, for y+ > 7.2 , �t∕� varies according 
to �t∕� = �

(

y+ − 7.2
)

≅ �y+ − 3 representing the extended 
logarithmic layer. This can be expressed mathematically as:

Closer scrutiny of Fig.  1 demonstrates that with 
increase in the wall roughness, y+

l
 decreases until the 

critical roughness wherein y+
l
= 0 . In this circumstance, 

(14)u+ = y+

(15)
�t

�
= �

(

y+ − y+
l

)

(16)
�t

�
=

{

0 for y+ ≤ 7.2

�y+ − 3 for y+ ≥ 7.2

the viscous sublayer disappears completely and �t∕� alters 
according to �t∕� = �y+ . Here, the extended logarithmic 
layer initiates from the wall. Inspection of Fig. 1 also 
shows that passing the critical roughness (i.e., the fully 
rough wall) leads to y+

l
< 0 . Here, �t∕� is no longer zero 

at the wall in a way that rise in the wall roughness elevates 
the value of �t∕� at the wall. For instance, notice the case 
having y+

l
= −5 and �t∕� = �

(

y+ + 5
)

≅ �y+ + 2 . In this 
condition, again, the extended logarithmic layer initiates 
from the wall.

To remove Shortcoming # 1 in Sect.  3, instead of 
Eqs. (10), (8) is adopted for the velocity gradient in the 
extended logarithmic layer. Combining Eqs. (8) and (15) 
yields:

which takes the following form for flow over a smooth wall:

After integrating Eq.  (17), the following relation is 
obtained for the velocity distribution in the extended loga-
rithmic layer:

(17)
du+

dy+
=

1

1 + �
(

y+ − y+
l

)

(18)
du+

dy+
=

1

1 + �(y+ − 7.2)
≅

1

�y+ − 2

Fig. 1   The near-wall values of the dimensionless eddy viscosity for 
(a) The smooth wall having y+

l
= 7.2 , (b) The critical value of the 

wall roughness with y+
l
= 0 , (c) A typical case of the fully rough wall 

having y+
l
= −5
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5.2.1 � Simplifying the analysis for the smooth walls

The deliberations until now belong to the general case having 
an arbitrary value of the wall roughness. However, the smooth 
walls provide a suitable circumstance to validate the proposed 
description. Hence, in this section the analysis is simplified to 
this special case. We will further discuss the general case in 
Sect. 5.2.2.

Figure 2 depicts the variation of the velocity gradient in 
the extended logarithmic layer (i.e., Eq. (18) for y+ > 7.2 ) 
combined with the viscous sublayer (i.e. Equation (9) for 
y+ ≤ 7.2 ). In this figure, the existing logarithmic layer with 
the form of du+∕dy+ = 1∕�y+ is also depicted for comparison. 
It is obvious that in the existing theory, the buffer layer needs 
to be included to capture the flow field between the viscous 
sublayer and logarithmic layer since the logarithmic layer loses 
its accuracy at the low values of y+ . This is in accord with the 
previous findings which limit the suitability of the logarithmic 
layer to y+ > 70 [7].

It will be shown in Sect. 5.2.2 that for flow over a smooth 
wall, one has: C+ ≅ 5 . Hence, Eq. (19) takes the following 
form for this circumstance:

(19)u+ = C+ +
1

�
ln
(

y+ − y+
l
+

1

�

)

(20)u+ = 5 +
1

�
ln
(

y+ − 4.8
)

≅ 5 +
1

�
ln
(

y+ − 5
)

The above relation represents a more comprehensive rela-
tion than the existing one for the logarithmic layer of the 
smooth walls. Indeed, in the existing theory, the relation of 
u+ ≅ 5 + 1∕�lny+ is adopted for the logarithmic layer (i.e., 
y+ → ∞ ) while a more complex correlation is utilized for 
the buffer layer. The following limit clearly demonstrates 
that the discrepancies appearing between the results of the 
extended logarithmic relation and those of the existing one 
are vanishing at far distances from the wall:

Equation (20) combined with Eq. (14) yields the velocity 
profile for flow over a smooth wall as:

This relation is portrayed in Fig. 3. Here, results of the 
experimental evidences as well as the asymptotes at y+ → 0 
(i.e., u+ = y+ ) and y+ → ∞  (i.e., u+ = 5 +

1

�
lny+ ) are also 

provided for comparison. Notice that the results of the cur-
rent description bear a strong resemblance with those of the 
experimental evidences. It is evident that the existing loga-
rithmic layer losses its accuracy at y+ < 70 , necessitating to 
consider the buffer layer between the viscous sublayer and 
the logarithmic layer. However, notice that the extended log-
arithmic layer is accurate for y+ > 7.2 . Indeed, the relation 
proposed in this study can cover both layers well, indicating 
that there is no need to consider the buffer layer separately. 

(21)lim
y+→∞

[

5 +
1

�
ln
(

y+ − 5
)

]

= 5 +
1

�
ln y+

(22)u+ =

{

y+ fory+ ≤ 7.2

5 +
1

�
ln
(

y+ − 5
)

fory+ ≥ 7.2

Fig. 2   The proposed near-wall velocity gradient for flow over a 
smooth wall including the viscous sublayer and the extended logarith-
mic layer compared with the existing logarithmic layer in the form of 
du+∕dy+ = 1∕�y+

Fig. 3   The proposed near-wall velocity profile for flow over a smooth 
wall compared with the experimental results of Kestin and Richard-
son [35] and Lindgren from the book of White [25] as well as the 
asymptotes at y+ → 0 and y+ → ∞
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With this description, the buffer layer becomes a part of 
this extended logarithmic layer while the starting point of 
the extended logarithmic layer instead of y+

l
≅ 70 occurs at 

y+
l
= 7.2 , which is the edge of the viscous sublayer.

5.2.2 � Analysis of arbitrary value of the wall roughness

In the previous, the smooth walls provided a suitable cir-
cumstance to validate our two-layer description. In what 
follows, attention is focused to the general case, having an 
arbitrary value of the wall roughness. This section will be 
helpful for practical applications wherein the walls exhibit 
some roughness.

According to the experimental results of Tani [29], the 
constant C+ appearing in Eq. (19) is a function of the dimen-
sionless wall roughness. Adopting curve fitting for these 
data, we propose the following relation for C+ in terms of the 
dimensionless sand roughness K+

s
= Ksu�∕� with Ks being 

the sand roughness height:

The variations of C+ with K+
s

 according to Eq. (23) in 
conjunction with the experimental data of Tani [29] are 
depicted in Fig. 4. Notice that the results of the proposed 
relation bear a strong resemblance to the experimental data. 
This demonstrates the suitability of the proposed relation for 
future studies of turbulent flows. Closer scrutiny of the fig-
ure shows that for a “perfectly smooth wall” ( K+

s
= 0 ), one 

(23)C+
(

K+
s

)

= 8 −
1

�
ln

[

K+
s
− 16

(

1 − e
3.1−K+s

16

)]

has C+ = 5 . Then, C+ slightly increases with increasing the 
sand roughness until K+

s
= 6 . Thereafter, it decreases again, 

reaching the value of 5. Therefore, this region is recognized 
as “the hydraulically smooth zone”. With further rise in the 
sand roughness, C+ decreases until the fully rough regime 
occuring at K+

s
> 80 and C+ < −2.175 . It is evident that 

in the limiting case of K+
s
< 6 , Eq. (23) reduces to C+ ≅ 5 

while in the limiting condition of “the fully rough regime” 
( K+

s
→ ∞ ), one has C+ ≅ 8 − 1∕�lnK+

s
 . These limiting rela-

tions are in accord with the correlations presented in [29].
It is noteworthy that if instead of the dimensionless sand 

roughness, one adopts the dimensionless technical rough-
ness, K+

tech
= Ktechu�∕� , (with Ktech being the technical 

roughness height) the Colebrook’s [30] relation should be 
employed as:

It should be noted that for the technical roughness, the 
fully rough regime occurs at K+

tech
> 60 , as suggested by 

Colebrook formula.
In the experimental evidences of McKeon et al. [31], 

the value of C+ has been changed to 5.6. Meanwhile, the 
numbers of 8 and 3.4 in the Colebrook relation have been 
modified to 7.81 and 2.54, respectively [32]. However, since 
the above changes have not been applied in the text book by 
Schlichting and Gersten [7], these new constants have not 
been considered here. However, if one uses these modified 
constants, the constants appearing in Eq. (23) should also 
be modified.

The near-wall velocity profile depicted in Fig. 3 belonged 
to the special case of the flow over smooth walls. Now, we 
replace the proposed relation for C+ (i.e., Eq. 23) in the rela-
tion of the extended logarithmic layer (i.e., Eq. 19) to arrive 
at the near-wall velocity profile corresponding to the gen-
eral case having an arbitrary value of the wall roughness. 
Results for several values of the wall roughness are depicted 
in Fig. 5. Notice the alternation of the velocity profile due 
to the intensification of the wall roughness. The trend of the 
alternation is in accord with Schlichting [33].

5.3 � Starting point of the extended logarithmic layer

The extent to which the extended logarithmic layer starts 
from the wall, y+

l
 , is an important parameter which depends 

on C+ . The relation between these two parameters is as 
follows:

For the wall roughness values smaller than the critical 
roughness (i.e., C+ > −2.175 ), the velocity at the starting 
point of the extended logarithmic layer in Eqs. (14) and (19) 
are matching in a way that y+

l
> 0.

(24)C+
(

K+
tech

)

= 8.0 −
1

�
ln
(

K+
tech

+ 3.4
)

Fig. 4   Variations of C+ with K+
s

 according to Eq. (23) compared with 
the experimental results of Tani [29] under two limiting cases of very 
low roughness (hydraulically smooth) and very high roughness (fully 
rough regime)
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Meanwhile, for the wall roughness values higher than 
the critical roughness (i.e., C+ < −2.175 ), one has y+

l
< 0 . 

The negativity of the viscous sublayer thickness indicates 
that the wall roughness is so high allowing the flow to 
penetrate into the roughness cavities in a way that with the 
kinematic eddy viscosity is practically non-zero at y+ = 0 . 
In this case, the flow starts with the logarithmic layer and 
thereby, the viscous sublayer may not establish. Hence, 
the solution of the logarithmic layer remains true for all of 
the near-wall layer. This case is frequently termed as “the 
completely rough flow”.

However, for C+ = −2.175 , one has y+
l
= 0 indicating 

that the viscous sublayer is completely omitted. This value 
of C+ represents the starting point of a fully rough flow and 
is called “the critical wall roughness”.

Based on the above cases, we propose the following 
relation for y+

l
:

Notice in the above relation that adopting C+ = 5 yields 
the starting point of the extended logarithmic layer for flow 
over smooth walls as y+

l
≅ 7.2.

5.4 � Existing description of the core layer

To arrive at the velocity distribution in the core layer, Eq. (4) 
combined with Eqs. (6) or (7) must be solved, depending on 
the flow configuration. In these equations, the dimension-
less eddy viscosity needs to be obtained from a turbulence 
model, which must satisfy the following criteria [7]:

The solution of the core layer strongly depends on the 
flow geometry. Table 2 summarizes the turbulence models 
employed according to the existing description of the core 
layer as well as the obtained velocity profiles for the current 
benchmark problems. It should be mentioned that for the 
turbulent boundary layer flow over a flat plate, since we are 
interested to provide an analytic solution, the approximate 
von Karman profile for the shear stress of the laminar case 
is adopted here.

In each of the problems presented in Table 2, the follow-
ing parameter is used to analyze the level of consistency of 
the employed turbulence model with the experimental data:

This parameter demonstrates the discrepancies appearing 
between the values of the dimensionless eddy viscosity and 
(a) the linear relation of �Re�(1 − �) for the Couette flow (b) 
the parabolic relation �Re��(1 − �) for the channel flow, the 

(25)y+
l
=

{

C+ +
1

�
ln

1

�
for C+ ≥ −2.175

1

�
− e−�C

+

for C+ ≤ −2.175

(26)
d

d�

(�t

�

)

|

|

|

|�=0

= 0

(27)
d

d�

(�t

�

)

|

|

|

|�→1

= −�Re�

(28)C = − lim
�→1

�

∫
0

(

du+

d�
+

1

�(1 − �)

)

d�

Fig. 5   The near-wall velocity profile for the general case having an 
arbitrary value of the wall roughness, compared with the analytical 
results [33]

Table 2   The utilized turbulence 
models in conjunction with the 
existing core layer solutions for 
the current benchmark problems

*These turbulence models are taken from the book of Gersten and Herwig [34]. However, the relations for 
the Couette flow as well as flow over a flat plate are proposed here in a way that the resulting C ’s fit well 
with their suitable values

Geometry Range of � �t

�
(�) u+

c
− u+ Obtained C

Couette flow −1 < 𝜂 < 1 �Re�

26

(

1 − �2
)(

12 + �2
)

1

�
ln

1+�

1−�
+

�

6�
2.1

Channel flow −1 < 𝜂 < 1 �Re�

6

(

1 − �2
)(

1 + 2�2
)∗

1

�
ln

1+2�2

1−�2
1.0

Pipe flow 0 < 𝜂 < 1 �Re�

6

(

1 − �2
)(

1 + 2�2
)∗

1

�
ln

1+2�2

1−�2
1.0

Flat plate 0 ≤ 𝜂 < 1 �Re�

12
(1 − �

2)
(

1 + 5�2
)

1

�
ln

1+5�2

1−�2
2.7
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pipe flow, and flow over a flat plate. The value of C should 
be ≅ 2.1 for the Couette flow, ≅ 1 for the channel and pipe 
flows, and ≅ 2.7 for the flow over a flat plate, as suggested 
in [7].

The constant u+
c
= u+(� = 0) appearing in Table 2 rep-

resents the dimensionless velocity at the centerline of the 
Couette flow as well as the channel and pipe flows while 
it stands for the dimensionless velocity at the edge of the 
boundary layer (i.e., free stream velocity) for flow over the 
flat plate. This parameter is defined as [7]:

5.5 � The proposed description for the core layer

The existing relations for the core layer lose their accuracy 
in the vicinity of the wall. However, in this section, a new 
description for the core layer (the extended core layer) is 
proposed in a way that the range of applicability of this 
layer enhances substantially. In this description, provided 
that y+

l
> 0 , the core layer solution remains accurate until 

the viscous sublayer in a way that even the extended loga-
rithmic layer is omitted completely. Meanwhile, for y+

l
≤ 0 

(wherein the viscous sublayer vanishes), the extended core 
layer encompasses the entire flow field. With this contri-
bution, we arrive at a two-layer description for the current 
benchmark problems.

As mentioned in Sect. 5.4, at the start of the core layer 
(i.e., � → 1 ), the dimensionless eddy viscosity alter lin-
early according to Eq. (27). In the description proposed 
here, we change the position wherein the linear variation 
of the dimensionless eddy viscosity initiates. Indeed, this 
point is transferred from the wall to the ending point of the 
viscous sublayer. To this aim, a new variable is introduced 
for the dimensionless distance as z = �∕�l . With this defi-
nition, provided that y+

l
> 0 , z = 1 instead of referring to 

the wall position, represents the ending point of the viscous 

(29)u+c = 1
�
LnRe� + C+ + C

sublayer. Meanwhile, for y+
l
≤ 0 , z = 1∕�l refers to the wall. 

The change of variable results in:

Hence, according to Eq. (27), one has:

Table 3 presents the proposed turbulence models in con-
junction with the corresponding core layer solutions for the 
current benchmark problems.

The constants coefficients appearing in Table 3 are:

Meanwhile, u+
l
 is defined here as:

For small values of the wall roughness wherein the vis-
cous sublayer establishes (i.e.,y+

l
> 0 ), one has:

However, in the absence of the viscous sublayer occur-
ring at the high values of the wall roughness (i.e.,y+

l
< 0 ), 

u+
l
 must be obtained from the above equations in a way that 

the velocity at the wall vanishes.

5.5.1 � Simplifying the extended core layer for high Re 
numbers

At the high values of the Reynolds number, the constant 
coefficients appearing in Eq. (32) reduce to:

(30)
d
(

�t∕�
)

dz
= �l

d
(

�t∕�
)

d�

(31)
d
(

�t∕�
)

dz

|

|

|

|

|z=1

= −�Re��l

(32)
A =

√

1 + 8
13

�, B =
√

13
2
A − 11

2
, C =

√

1 + 16
3
�,

D =
√

1 + 20
3
�, � = 1

�Re��l

(33)u+
l
= u+

(

� = �l
)

= u+(z = 1)

(34)u+
l
= Re�

(

1 − �l
)

= y+
l

Table 3   The proposed 
turbulence models in 
conjunction with the extended 
core layer solutions for the 
current benchmark problems

*  For 𝜂l > 1 , the range of applicability of the description is altered to −1∕�l ≤ z ≤ 1∕�l for the Couette flow 
and the channel flow and 0 ≤ z ≤ 1∕�l for the pipe flow and the flat plate

Geometry Range of z for �l ≤ 1* �t

�
(z) u+ − u

+
l

Couette flow −1 ≤ z ≤ 1 �Re� �l

26

(

1 − z2
)(

12 + z2
)

1

�A

[

1

B
ln

(B−z)(B+1)

(B+z)(B−1)
+

4(1−z)

13A+11

]

Channel flow −1 ≤ z ≤ 1 �Re� �l

6

(

1 − z2
)(

1 + 2z2
)

�l

�C
ln
[

(1+3C−4z2)
(4z2+3C−1)

(C+1)

(C−1)

]

Pipe flow 0 ≤ z ≤ 1 �Re� �l

6

(

1 − z2
)(

1 + 2z2
)

�l

�C
ln
[

(1+3C−4z2)
(4z2+3C−1)

(C+1)

(C−1)

]

Flat plate 0 ≤ z ≤ 1 �Re� �l

12
(1 − z2)

(

1 + 5z2
)

�l

�D
��

[

(2+3D−5z2)(D+1)

(5z2+3D−2)(D−1)

]
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This alters the proposed velocity profiles of Table 3 to 
those reported in Table 4. These velocity profiles bear a 
strong resemblance to those of Table 2. The discrepancy 
goes back to the existence of ε, which is a small parameter. 
Notice that at the limiting case of Re� → ∞ , provided that 
z ≠ ±1 , one has � ≅ 0 , which reduces the proposed velocity 
profiles in Table 4 to those of the existing ones, reported in 
Table 2. Unlike the existing velocity profiles for the core 
layer, which approach to infinity at � = ±1 , the proposed 
profiles remain bounded at z = ±1 . Thus, they provide well-
posed solutions.

5.5.2 � The suitability’s of the extended core layer

The following points discuss the suitability of the proposed 
core layer solutions:

Suitability # 1: Unlike the existing relations, in the pro-
posed description, the velocity magnitude remains bounded 
at z → ±1 for the whole ranges of the Reynolds number 
in the turbulent flow regime. More precisely, at z = 1 for 
all of the current configurations, one has: u+ = u+

l
 , which 

is the velocity at the ending point of the viscous sublayer. 
Meanwhile, at z = −1 , the relation of u+ = u+

l
 is recovered 

for the channel flow, while for the Couette flow, one has 
u+ = 2u+

c
− u+

l
= u+

wall
− u+

l
.

Suitability # 2: The following limit clearly shows that 
the velocity profile of the extended core layer automatically 
converts into the velocity profile of the extended logarithmic 
layer, (i.e. Equation (19)) as:

This successfully proves that with the proposed descrip-
tion, the need to incorporate the extended logarithmic layer 
(which itself includes the buffer layer and the logarithmic 
layer) is removed. Hence, with this description, only two 
layers including the viscous sublayer and the extended core 

(35)A ≅ 1 +
4

13
�,B ≅ 1 + �,C ≅ 1 +

8

3
�,D ≅ 1 +

10

3
�

(36)lim
z→1&Re�→∞

u+ = C+ +
1

�
ln
(

y+ − y+
l
+

1

�

)

layer suffice for the analysis. When the Reynolds number is 
sufficiently large, the laminar sublayer become so small that 
can be easily ignored. This confines the attention only to the 
extended core layer.

Suitability # 3: When Re → 0 (i.e., Re < Recrit ), the lami-
nar flow regime prevails and the viscous sublayer covers 
the entire flow field. In this limiting case, one has: �l = 0 . 
Hence:

Hence, one may concluded that the current two-layer 
description is applicable to the arbitrary value of the Reyn-
olds number.

5.6 � Further validation of the proposed two‑layer 
description

Finally, in this section, the proposed two-layer description 
is utilized to simulate the flow field in the current bench-
mark problems. At the same time, the obtained results are 
compared with those of the open literature to validate this 
description further.

In Fig. 6, the obtained results in terms of the velocity 
profile in the Couette flow are compared with the experi-
mental evidences of Reichardt from the book of Schlichting 
[33]. The presented results correspond to different values of 
the Reynolds numbers including Re = 2900, 34000 . Here, 
results of Re = 1200 belonging to the laminar flow regime 
is also provided to explore the suitability of the proposed 
description in the prediction of laminar flow fields. Obvi-
ously, the predicted results closely obey the experimental 
data.

Figure 7 compares the variations of the turbulent shear 
stress and the total shear stress in the channel flow with the 
experimental results of Reichardt from the book of Schlicht-
ing [33]. It is evident that �total∕�w varies linearly within the 
whole channel. Scrutiny of �t∕�w , however, demonstrates 

(37)

u+ =

⎧

⎪

⎨

⎪

⎩

Re�(1 − �) −1 ≤ � ≤ 1 Couette flow
1

2
Re�

�

1 − �2
�

−1 ≤ � ≤ 1 Channel flow
1

2
Re�

�

1 − �2
�

0 ≤ � ≤ 1 Pipe flow and flowover a flat plate

Table 4   Solutions for the 
extended core layer of the 
current benchmark problems at 
the high values of the Reynolds 
numbers

*  For 𝜂l > 1 , the range of applicability of the results is similar to Table 3

Geometry Range of z for �l ≤ 1* u+
c
− u

+
(z) u+

c

Couette flow −1 ≤ z ≤ 1 1

�

[

ln
(1+�+z)

(1+�−z)
+

z

6

]

1

�

[

lnRe� + ln2��l +
1

6

]

Channel flow −1 ≤ z ≤ 1 �l

�
ln

[

2z2+1

1+2�−z2

]

�l

�

[

lnRe� + ln
3��l

2

]

Pipe flow 0 ≤ z ≤ 1 �l

�
ln

[

2z2+1

1+2�−z2

]

�l

�

[

lnRe� + ln
3��l

2

]

Flat plate 0 ≤ z ≤ 1 �l

�

[

ln
5z2+1

1+2�−z2

] �l

�

[

lnRe� + ln3��l
]
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that this parameter follows the trend of �total∕�w within the 
most parts of the channel. Meanwhile, in the vicinity of 
the wall, the trend is altered and �t∕�w approaches to zero. 
Notice that the experimental results of Reichardt verifies the 
accuracy of the proposed description.

In Figs. 8 and 9, velocity profiles at different values of 
the Reynolds number ( Red = 2umR∕� ) are compared with 
the experimental evidences of Nikuradse from the book of 
Schlichting [33], which correspond to the smooth and rough 
pipes, respectively. In both of the figures, the parabolic pro-
file of the laminar flow is also provided for comparison. 
Notice the close agreement between the presented results, 

Fig. 6   Velocity profile in the Couette flow compared with the experi-
mental results of Reichardt from the book of Schlichting [33] under 
different Reynolds numbers (At Re = 2900, 34000 the flow is turbu-
lent while at Re = 1200 the flow is laminar)

Fig. 7   Variations of the turbulent shear stress and the total shear 
stress in the channel flow compared with the experimental results of 
Reichardt from the book of Schlichting [33]

Fig. 8   Velocity profile in a smooth pipe compared with the experi-
mental evidences of Nikuradse from the book of Schlichting [33]

Fig. 9   Velocity profile in a pipe flow with a rough wall compared 
with the experimental evidences of Nikuradse from the book of Schli-
chting [33]



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:181181  Page 12 of 14

which again explore the suitability of the proposed two-layer 
description.

Finally, velocity profile over a flat plate at Rex = 4.3 × 106 
is compared with the experimental results of Schubauer and 
Klebanoff from the book of Schlichting and Gersten [7] in 
Fig. 10. Here, the approximate von Karman parabolic profile 
and the exact Blasius profile belonging to the laminar flow 
as well as the seventh root profile for the turbulent flow are 
also plotted for comparison. This figure again verifies the 
accuracy of the proposed description.

6 � Concluding remarks

In this work, we discussed the basic relation of:

for the Couette flow, the 2D channel flow, the circular pipe 
flow, and flow over a flat plate, which are four benchmark 
problems in fluid mechanics. This relation is exact and appli-
cable to the entire flow field. However, it was discussed that 
some improper use of this relation has been occurred, which 
reduced the accuracy of the existing theory of turbulent 
flows and led to a four-layer description for these turbulent 
flow fields. The shortcomings and the utilized strategies to 
remove them are summarized below:

(38)
du+

dy+
=

1

1 +
�t

�
(y+)

�total
(

y+
)

�w

1) In the existing theory, the linear relation of �t∕� = �y+ 
has improperly been utilized for the near-wall layer. This 
assumption may not hold in the low values of y+ and neces-
sitates to consider an additional layer (i.e., the buffer layer) 
to capture the flow field between the viscous sublayer and 
the logarithmic layer. To remove this shortcoming, in this 
work, the relation of �t∕� = �

(

y+ − y+
l

)

 was proposed. This 
relation extended the logarithmic layer up to the viscous sub-
layer and excluded the need to incorporate the buffer layer as 
a distinct layer with its complex formula. More specifically, 
in the special case of flow over smooth walls, we arrived to 
the following relations for the near-wall layer:

2) In the existing theories, it is improperly assumed that 
𝜐t ≫ 𝜐 in the logarithmic layer as well as the core layer, 
which may not hold in the low values of the Reynolds num-
ber or in the vicinity of the wall. It was shown that avoiding 
this improper assumption substantially enhanced the range 
of applicability of the obtained velocity profile for logarith-
mic layer as well as the core layer.

3) In the proposed theory, a new variable was introduced 
for the dimensionless distance in the analysis of the core 
layer. With the aid of this variable, we changed the posi-
tion wherein the core layer initiated. Indeed, this point was 
transferred from the wall to the ending point of the viscous 
sublayer. This contribution enhanced the range of applica-
bility of the core layer substantially. Hence, we arrived at a 
two-layer description for the current benchmark problems, 
which included only the viscous sublayer and the extended 
core layer.

The work presented here aimed to clarify the analysis of 
some benchmark turbulent flows and make it more acces-
sible to students who are studying fluid mechanics for the 
first time.
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(39)
�t

�
=

{

0 fory+ ≤ 7.2

�y+ − 3 for y+ ≥ 7.2

(40)
du+

dy+
=

{

1 for y+ ≤ 7.2
1

�y+−2
for ≥ 7.2

(41)u+ =

{

y+ fory+ ≤ 7.2

5 +
1

�
ln
(

y+ − 5
)

for y+ ≥ 7.2

Fig. 10   Velocity profile over a flat plate at Rex = 4.3 × 10
6 compared 

with the experimental results of Schubauer and Klebanoff from the 
book of Schlichting and Gersten [7]
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