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Abstract
The present paper investigates the three thermoelastic theories on the propagation of Lamb wave in a linearly isotropic 
microstretch diffusion plate subjected to the thermally insulated/impermeable and isothermal/isoconcentrated boundary 
conditions. The secular equations of the Lamb wave are obtained for both symmetric and anti-symmetric modes of vibra-
tion. The secular equations for Rayleigh surface wave at short wavelength and plate wave at longer wavelength are obtained 
for both the boundary conditions from symmetric vibration. We also obtain the secular equation of flexural wave from the 
anti-symmetric vibration at the longer wavelength compared with the thickness of the plates. The phase velocity and attenu-
ation are computed numerically for a particular model, and these results are compared for the coupled themoelasticity(CT), 
Lord–Shulman ( L − S ) and Green–Lindsay ( G − L ) theories. There are three modes of dispersion and attenuation for each 
symmetric and anti-symmetric vibration. The dispersion curves of the Lamb wave increase from first to third mode of sym-
metric vibration in both thermally insulated/impermeable and isothermal/isoconcentrated plates. Certain special cases are 
reduced from the current formulation.

Keywords Microstretch · Thermoelastic theory · Symmetric vibration · Anti-symmetric vibration · Secular equation · Lamb 
wave

1 Introduction

The theory of micro-continuum explains the complexities 
lying in the microstructures and discusses the microscopic 
motion and long-range material interactions. Eringen [1] was 
perhaps the first who introduced the theory of micromorphic 
bodies. Eringen [2] also generalized the theory of micropolar 
elastic materials to develop the theory of microstretch elastic 
solids. The material points in the microstretch bodies have 
seven degrees of freedom and can independently stretch and 
contract along with translations and rotations.

The thermoelastic theory studies the consequences of the 
disturbances occurred due to thermal, stress and strain fields 

on an elastic body. Biot [3] presented an unified treatment 
of thermoelasticity by employing and further developing 
the method of irreversible thermodynamics using two vec-
tor fields, displacement and an entropy flowfield to describe 
the state of the materials. Lord and Shulman [4] and Green 
and Lindsay [5] generalized the theory of thermoelasticity 
that allows finite velocity of transmission for the thermal 
waves. They introduce one and two thermal relaxation times, 
respectively, to discuss the thermal character in the contin-
uum body. The theory of thermo-microstretch elastic solid 
was developed by Eringen [6] to induce the consequences of 
heat conduction in the microstretch theory and established 
the uniqueness theorem for the mixed initial boundary value 
problem. De Cicco and Nappa [7] verified finite veloci-
ties for thermal waves in the linearized theory of thermo-
microstretch elastic solids. Ciarletta and Scalia [8] studied 
the spatial and temporal response of thermoelastodynamic 
phenomenon on microstretch continuum materials.

Sherief et al. [9] proved the variation theorem and unique-
ness of the governing equations for the generalized ther-
moelastic diffusion materials. Aouadi [10] derived the equa-
tions of generalized thermoelastic diffusion, based on the 
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Lord–Shulman theory and established the uniqueness and 
reciprocity theorem using Laplace transformation. Aouadi 
[11] inferred the field equations for thermoelastic diffusion 
plates considering three distinct heat and diffusion transmis-
sion laws. Khurana and Tomar [12] established the existence 
of three longitudinal and two transverse frequency depend-
ent waves in non-local microstretch solid. Goyal et al. [13] 
investigated the inhomogeneous nature of Rayleigh waves 
with the aid of its secular equations in a swelling porous 
medium. Kumar [14] presented the characteristics of har-
monic waves traveling through thermo-microstretch diffu-
sion medium and obtained the amplitude/energy ratios of the 
reflected and refracted waves. Kumar et al. [15] developed 
the dispersion relations for Rayleigh waves through micro-
stretch thermoelastic diffusion medium under a liquid layer 
with negligible viscosity. Singh et al. [16] derived the reflec-
tion and refraction coefficients in microstretch thermoelastic 
diffusion half-spaces subject to three distinct thermoelastic 
theories. Royer and Dieulesaint [17] summarized the theo-
ries related to the propagation of elastic waves in different 
materials, wave equations and their solutions, energy flow 
and reflection/refraction phenomena. Some important prob-
lems in thermoelastic materials are Singh [18], Zorammuana 
and Singh [19], Singh and Lianngenga [20], Lotfy and Oth-
man [21], Singh and Tochhawng [22], Kumar and Kansal 
[23], Abo-Dahab et al. [24], Kumar et al.[25, 26], Singh 
and Yadav [27].

Lamb [28] examined surface waves in an isotropic 
elastic plate where the wave moves parallel to the medial 
plane. Zhu and Wu [29] obtained the dispersion equa-
tions of Lamb waves of a plate bordered with viscous 
liquid layer/a half-space of viscous liquid on both sides 
and evaluated the numerical solutions of dispersion equa-
tions. Conry et al. [30] solved the problem of low fre-
quency Rayleigh-Lamb waves and detected the defects/
cracks in a centrally embedded aluminum plate. Tomar 
[31] simulated the frequency equation of Rayleigh-Lamb 
wave propagation in a plate of micropolar elastic material 
with voids of finite thickness for velocity and attenuated 
curves. Lianngenga and Singh [32] studied the problem 
of symmetric and anti-symmetric vibrations in micropo-
lar thermoelastic plate with voids and obtained the dis-
persive frequency equations for different surface waves 
propagating in the plate. We have observed interesting 
problems of Lamb waves in Sharma and Pal [33], Kumar 
et al. [34], Kumar and Pratap [35, 36], Sharma and Thakur 
[37], Sharma and Othman [38], Sharma and Kumar [39], 
Apostol [40], Ezzin et al. [41], Sharma and Kumar [42] 
and Goldstein and Kuznetsov [43].

The problems of Lamb wave are frequently used in civil 
engineering, architectures, navigation, chemical pipes, 

aerospace engineering, etc. The interest of researchers in 
such studies are increasing due to its ability to completely 
understand the structure of plates and shells, which are 
using in multi-sensors to detect the damages in metallic 
structures [44], and it is used in health monitoring devices 
[45, 46]. Our study of Lamb wave in microstretch thermoe-
lastic diffusion plates may give new light to explore the 
skull and the human brain with better ultrasound imag-
ing system [47, 48]. This investigation may provide to 
the researchers with an appropriate data to construct new 
medical and engineering devices. We will compare the 
results of Lamb wave propagating through a microstretch 
thermoelastic diffusion plate for the three thermoelastic 
theories, i.e., GL, LS and CT theories. The secular equa-
tions for symmetric and anti-symmetric Lamb wave modes 
will be derived for stress-free thermally insulated/imper-
meable and isothermal/isoconcentrated conditions.

2  Governing equations

The equations of motion for linearly isotropic and homogene-
ous microstretch thermoelastic diffusion media in the absence 
of body forces and heat sources are given by [2, 9]:

(1)
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The constitutive relations for the linearly isotropic and 
homogeneous microstretch thermoelastic diffusion solid 
are given as:

H e r e ,  �1 = (3� + 2� + �)�
t1, �2 = (3� + 2� + �)�

c1,

�1 = (3� + 2� + �)�
t2 , �2 = (3� + 2� + �)�c2 and all the 

parameters are defined in the Table 1 as nomenclature. The 
relaxation times are taken in such a way that they satisfy 
�1 ≥ �0 ≥ 0 and �1 ≥ �0 ≥ 0.

3  Problem formulation and solution

A plate of 2D thick microstretch thermoelastic diffusion 
with initial uniform temperature, T0 , is considered for the 
present model. The Cartesian co-ordinate system is taken 
in such a way that the x3-axis lies normal to the plate, the 
x1 − x2 plane concurs with the middle surface and all three 
axes intersect at the center of the plate. The plate has free 
surfaces at x3 = ±D . Figure 1 provides the outlook geom-
etry of the problem. Take u = (u1, 0, u3) and � = (0,�2, 0) 
for the two-dimensional problem. We introduce the poten-
tials Ω and Ω� for u so that

(6)
tij = �ui,i�ij + 2�eij + �(uj,i − eijk�k) + �0�ij�
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i
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,i
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(8)u1 =
�Ω
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�Ω�
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�Ω
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+

�Ω�
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.

Inserting Eq. (8) into (1–5), we get the following sets of 
equations

Equations (9–12) show four coupled longitudinal waves in 
Ω, �∗, T  and C, while Eq. (13) gives two coupled shear 
waves in Ω� and �2.

For the plane waves propagating along x1-axis, the fol-
lowing form of solution is taken as:
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Table 1  Nomenclature Symbols Symbols

tij Stress tensor mij Couple stress tensor
�∗
i

Microstress tensor d Thermoelastic diffusion constant
� Microrotation vector �∗ Microstretch scalar function
eij Strain tensor �, �, � , � Micropolarity parameters
k Wavenumber �,�, Lamé parameters
T , T0 Temperature C Concentration
eijk Alternating symbol �1, �0, �0, b0 Microstretch parameters
� Density K∗ Thermal conductivity
C∗ Specific heat a Thermoelastic diffusion
u Displacement �c1, �c2 Linear diffusion expansion
v Phase velocity b Coefficient of mass diffusion
j, j0 Microinertia �1, �0 Relaxation times for thermal signals
�ij Kronecker delta �1, �0 Relaxation times for diffusion signals
� Angular velocity �t1, �t2 Coefficients of linear thermal expansion
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where Ω, �∗, C, T , Ω
�

 and �2 are the functions of x3 , 
�(= kv) is the angular frequency, k is the wavenumber and 
v is the phase velocity.

Inserting Eq. (14) into Eqs. (9–13), we obtain the follow-
ing solution:

(14)

{

Ω, T ,�∗

,C,Ω
�

,�2

}

(x1, x3, t)

=

{

Ω,T ,�∗,C,Ω
�

,�2

}

(x3)e
�k(x1−vt),

(15)

{Ω,T ,�∗,C}(x1, x3, t)

=

4
∑

i=1

{1, �1i, �2i, �3i}[Ai cosh(mix3) + Bi sinh(mix3)]e
{�k(x1−vt)},

where Ai and Bi are the unknown amplitudes, mi for 
i = 1, 2, 3, 4 and i = 5, 6 are, respectively, solutions of the 
following equations

where the coefficients A,  B,  C,  E,  F,  L,  M and N are given 
in Annexure-I. The coupling parameters �1i, �2i, �3i and �4i 
are written as:

(16)

{Ω

�,�2}(x1, x3, t)

=

6
∑

i=5

{1, �4i}[Ai sinh(mix3) + Bi cosh(mix3)]e
{�k(x1−vt)},

(17)
A(m2

− k2)4 + B(m2
− k2)3 + C(m2

− k2)2 + E(m2
− k2) − F = 0,

(18)L(m2
− k2)2 +M(m2

− k2) − N = 0,

Fig. 1  Geometry of the problem
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where the expressions of Pri and Pi are given in Annexure-II.

4  Boundary conditions

We consider two types of thermal and diffusion boundary 
conditions for the stress-free plate. At x3 = ±D , these condi-
tions can be written as:

where h1, h2 → 0 stands for thermally insulated and imper-
meable boundary, while h1, h2 → ∞ stands for isothermal 
and isoconcentrated boundary.

Using Eqs. (6) and (7) into (20), we have

Using Eqs. (15) and (16) into the boundary conditions, we 
get

(19)
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(24)

6
∑
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6
∑
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(25)
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a3i[Ai cosh(miD) ± Bi sinh(miD)] = 0,

6
∑

i=1

a4i[Ai sinh(miD) ± Bi cosh(miD)] = 0,

(for thermally insulated and impermeable boundary)

(for isothermal and isoconcentrated boundary)

where the nonzero aji are given by:

5  Secular equation

5.1  For thermally insulated and impermeable 
boundary

We separate Ai and Bi in Eqs. (24–26) by adding and subtract-
ing two suitable equations of the system and obtain the follow-
ing two set of equations as

where Chi = cosh(miD), Shi = sinh(miD).

(26)
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The non-trivial solution of Eqs. (28) and (29) gives the sec-
ular equations for the symmetric and anti-symmetric modes of 
vibrations, respectively, as

and

where

5.2  For isothermal and isoconcentrated boundary

Using Eqs. (24), (25) and (27), we obtain the following two 
set of equations as

(30)
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for i, j, k, l, p, q, r, s = 1(1)6 and for s, r ≥ 5, ajr = ajs = 0, j = 5, 6.
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= 0, The non-trivial solution of Eqs. (32) and (33) gives the secu-
lar equation for the symmetric and anti-symmetric modes of 
vibrations, respectively, as
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a41Ch1 a42Ch2 a43Ch3 a44Ch4 a45Ch5 a46Ch6

a71Sh1 a72Sh2 a73Sh3 a74Sh4 0 0

a81Sh1 a82Sh2 a83Sh3 a84Sh4 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B1

B2

B3

B4

B5

B6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0,

(34)
a2241a

��

3456
t12 + a2143a

��

2456
t13 + a2441a

��

2356
t14 + a2145a

��

2346
t15 + a2641a

��

2345
t16

+ a2342a
��

1456
t23 + a2244a

��

1356
t24 + a2542a

��

1346
t25 + a2246a

��

1345
t26 + a2443a

��

1256
t34

+ a2345a
��

1246
t35 + a2643a

��

1245
t36 + a2544a

��

1236
t45 + a2446a

��

1235
t46 + a2645a

��

1234
t56 = 0,

and

(35)
a2241a

��

3456
ct12 + a2143a

��

2456
ct13 + a2441a

��

2356
ct14 + a2145a

��

2346
ct15 + a2641a

��

2345
ct16

+ a2342a
��

1456
ct23 + a2244a

��

1356
ct24 + a2542a

��

1346
ct25 + a2246a

��

1345
ct26 + a2443a

��

1256
ct34

+ a2345a
��

1246
ct35 + a2643a

��

1245
ct36 + a2544a

��

1236
ct45 + a2446a

��

1235
ct46 + a2645a

��

1234
ct56 = 0,
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where

These secular equations are transcendental by nature and 
contain complete information about the phase velocity, 
wavenumber and attenuation of the surface waves. Since 
the wavenumbers are complex quantities, these waves are 
attenuated.

6  Limiting cases

6.1  Symmetric vibration

We obtain the secular equation for plate wave when the 
wavelength is longer compared to the thickness 2D. The 
quantity kD is small, and hence, miD is also small as long 
as the velocity of the surface wave is finite. In such case, 
tanh x → x . Equations (30) and (34), respectively, reduce 
to

and

where mijkl = mimjmkml , mij = mimj for i, j, k, l = 1, 2, 3, 4, 5, 6.

a��
pqrs

=

|

|

|

|

|

|

|

|

|

a1p a1q a1r a1s
a3p a3q a3r a3s
a7p a7q a7r a7s
a8p a8q a8r a8s

|

|

|

|

|

|

|

|

|

for p, q, r, s = 1(1)6 and for s, r ≥ 5, ajr = ajs = 0, j = 7, 8.

(36)
a1231a

�

3456
m3456 + a1133a

�

2456
m2456 + a1431a

�

2356
m2356 + a1135a

�

2346
m2346 + a1631a

�

2345
m2345 +

a1332a
�

1456
m1456 + a1234a

�

1356
m1356 + a1532a

�

1346
m1346 + a1236a

�

1345
m1345 + a1433a

�

1256
m1256 +

a1335a
�

1246
m1246 + a1633a

�

1245
m1245 + a1534a

�

1236
m1236 + a1436a

�

1235
m1235 + a1635a

�

1234
m1234 = 0,

(37)
a2241a

��

3456
m12 + a2143a

��

2456
m13 + a2441a

��

2356
m14 + a2145a

��

2346
m15 + a2641a

��

2345
m16 +

a2342a
��

1456
m23 + a2244a

��

1356
m24 + a2542a

��

1346
m25 + a2246a

��

1345
m26 + a2443a

��

1256
m34

+ a2345a
��

1246
m35 + a2643a

��

1245
m36 + a2544a

��

1236
m45 + a2446a

��

1235
m46 + a2645a

��

1234
m56 = 0,

For short wavelengths and finite real velocity so that mi 
is real, the quantity kD is very large and tanh x → 1 . In this 
case, Eqs. (30) and (34), respectively, reduce to

and

These equations present the secular equations for Rayleigh 
waves in microstretch thermoelastic diffusion materials, and 
these results exactly match with Kumar et al. [34] for the 
relevant problem.

(38)

a1231a
�

3456
+ a1133a

�

2456
+ a1431a

�

2356
+ a1135a

�

2346
+ a1631a

�

2345
+

a1332a
�

1456
+ a1234a

�

1356
+ a1532a

�

1346
+ a1236a

�

1345
+ a1433a

�

1256
+

a1335a
�

1246
+ a1633a

�

1245
+ a1534a

�

1236
+ a1436a

�

1235
+ a1635a

�

1234
= 0,

(39)

a2241a
��

3456
+ a2143a

��

2456
+ a2441a

��

2356
+ a2145a

��

2346
+ a2641a

��

2345
+

a2342a
��

1456
+ a2244a

��

1356
+ a2542a

��

1346
+ a2246a

��

1345
+ a2443a

��

1256
+

a2345a
��

1246
+ a2643a

��

1245
+ a2544a

��

1236
+ a2446a

��

1235
+ a2645a

��

1234
= 0.

6.2  Anti‑symmetric vibration

If we consider longer wavelength compared to the thickness 
of the plate with real mr , then tanh x → x −

x3

3
 . Equations(31) 

and (35) reduce, respectively, to

(40)

a1231a
�

3456
r12m12 + a1133a

�

2456
r13m13 + a1431a

�

2356
r14m14 + a1135a

�

2346
r15m15

+ a1631a
�

2345
r16m16 + a1332a

�

1456
r23m23 + a1234a

�

1356
r24m24 + a1532a

�

1346
r25m25

+ a1236a
�

1345
r26m26 + a1433a

�

1256
r34m34 + a1335a

�

1246
r35m35 + a1633a

�

1245
r36m36

+ a1534a
�

1236
r45m45 + a1436a

�

1235
r46m46 + a1635a

�

1234
r56m56 = 0,
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and

w h e r e  ri = 1 −
m2

i
D2

3
 ,  rij = rirj, rijkl = rirjrkrl  f o r 

i, j, k, l = 1, 2, 3, 4, 5, 6.
Equations (40) and (41) give the secular equations for the 

flexural waves in microstretch thermoelastic diffusion plate.

7  Special cases

Case (i) In the absence of diffusion effect, the problem reduces 
to Lamb wave propagation in microstretch thermoelastic plate. 
Under this condition, d, a, �c1, �c2, b, �1 and �0 vanish. Con-
sequently, �14 = �24 = �34 = 0 . The secular equations (30, 
31, 34 and 35) for both symmetric and anti-symmetric cases 
reduce, respectively, to

and

where

These expressions match with the results of Kumar and 
Pratap [36].

(41)

a2241a
��

3456
r3456m3456 + a2143a

��

2456
r2456m2456 + a2441a

��

2356
r2356m2356 + a2145a

��

2346
r2346m2346

+ a2641a
��

2345
r2345m2345 + a2342a

��

1456
r1456m1456 + a2244a

��

1356
r1356m1356 + a2542a

��

1346
r1346m1346

+ a2246a
��

1345
r1345m1345 + a2443a

��

1256
r1256m1256 + a2345a

��

1246
r1246m1246 + a2643a

��

1245
r1245m1245

+ a2544a
��

1236
r1236m1236 + a2446a

��

1235
r1235m1235 + a2645a

��

1234
r1234m1234 = 0,

(42)
a1132a

�

356
ct12 + a1331a

�

256
ct13 + a1135a

�

236
ct15 + a1631a

�

235
ct16 + a1233a

�

156
ct23+

a1532a
�

136
ct25 + a1236a

�

135
ct26 + a1335a

�

126
ct35 + a1633a

�

125
ct36 + a1536a

�

123
ct56 = 0,

(43)
a1132a

�

356
t12 + a1331a

�

256
t13 + a1135a

�

236
t15 + a1631a

�

235
t16 + a1233a

�

156
t23 +

a1532a
�

136
t25 + a1236a

�

135
t26 + a1335a

�

126
t35 + a1633a

�

125
t36 + a1536a

�

123
t56 = 0,

(44)
a2142a

��

356
t12 + a2341a

��

256
t13 + a2145a

��

236
t15 + a2641a

��

235
t16 + a2243a

��

156
t23+

a2542a
��

136
t25 + a2246a

��

135
t26 + a2345a

��

126
t35 + a2643a

��

125
t36 + a2546a

��

123
t56 = 0,

(45)
a2142a

��

356
ct12 + a2341a

��

256
ct13 + a2145a

��

236
ct15 + a2641a

��

235
ct16 + a2243a

��

156
ct23+

a2542a
��

136
ct25 + a2246a

��

135
ct26 + a2345a

��

126
ct35 + a2643a

��

125
ct36 + a2546a

��

123
ct56 = 0,

a�
pqr

=

|

|

|

|

|

|

|

a2p a2q a2r
a4p a4q a4r
a5p a5q a5r

|

|

|

|

|

|

|

and a��
pqr

=

|

|

|

|

|

|

|

a1p a1q a1r
a3p a3q a3r
a7p a7q a7r

|

|

|

|

|

|

|

for p, q, r = 1, 2, 4, 5, 6;

ajq =ajr = 0 for j = 5, 6, 7, 8, and q, r ≥ 5.

Case (ii) If we neglect the microstretch, ther-
mal and diffusion effects, the present study reduces 
to the propagation of Lamb wave in micropolar 
elastic plate. In this case, �0, �0, �1, b0, j0, d, a, 
�c1, �c2, b, �

1, �0, �1, �0, K
∗, a, �t1, �t2 and C∗ vanish.  

C o n s e qu e n t ly,  �12 = �22 = �32 = �13 = �23 = �33 = �14
= �24 = �34 = 0 . Equations (30 and 34) reduce to

Similarly, Equations (31 and 35) transform to

(46)a11(a25a36ct6 − a26a35ct5)ct1 + a1635a21ct56 = 0.

(47)a11(a25a36t6 − a26a35t5)t1 + a1635a21t56 = 0,

where cti = coth (miD), and ti = tanh (miD).
These results are similar to those of Kumar and Pratap 

[35].
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Table 2  Numerical values of parameters

Parameters Values Parameters Values

� 7.59 × 109Nm−2 � 1.90 × 109Nm−2

� 1.3234 × 105Nm−2 �0 5.7702 × 102N

�1 3.4650 × 104N j, j0 1.96 × 10−7m2

� 8.3255 × 10N � 1.0282 × 102N

� 3.3349 × 103N � 2192kgm−3

�0 1.5947 × 104N C∗

1.04 × 103Jkg−1K−1

K∗

1.7 × 106Jm−1s−1K−1 �t1 2.33 × 10−5K−1

�t2 2.48 × 10−5K−1 �c1 2.65 × 10−4m3kg−1

�c2 2.83 × 10−4m3kg−1 T0 298K
a 2.9 × 104m2s−2K−1 b 32 × 105kg−1m5s−2

d 0.85 × 10−8kgm−3s b0 9.6 × 104N

D 1 m

Case (iii) If the micropolar and diffusion effects are 
neglected, then the problem reduces to the propaga-
tion of Lamb wave in a thermoelastic plate. In this 
case,  the parameters �0, �0, �1, b0, j0, j, �, �, � , 
�, �2, �2, a, �

0, �1, b and d vanish, and consequently, 
�13 = �23 = �33 = �45 = �14 = �24 = �34 = 0 . Equations (30, 
31, 34 and 35), respectively, reduce to

and

These equations match with a particular case of Kumar and 
Pratap [36].

Case (iv) In the absence of micropolar, diffusion and 
thermal effects, the problem reduces to Lamb wave propaga-
tion of isotropic elastic solid. In this case, all the parameters 
except � , � and � vanish, and consequently, all the coupling 
parameters vanish. The secular equations (30, 31, 34 and 
35) reduce to

where +1 corresponds to symmetric vibration modes and −1 
corresponds to anti-symmetric vibration modes. These are 
well-known secular equations of Rayleigh–Lamb waves in 
classical elasticity [28].

8  Numerical computations

We develop a program in MATLAB to compute the phase 
velocity and attenuation of the Lamb wave. Aluminum 
epoxy has wide use from electrical conduits to airplane 
parts, to household goods and beyond. Hence, the study of 
Lamb wave in the aluminum epoxy medium can be used 
for quick inspection of the structures built using aluminum 
epoxy. The following relevant parameters of aluminum 
epoxy [12] and thermal and diffusion parameters [14] are 
taken as Table 2.

Equations (17 and 18) are of the form G(m, k) = 0 and 
are solved for ‘m’ using the roots function of MATLAB 
at a fixed value of phase velocity corresponding to the 
longitudinal wave. These roots are taken as mi and used 
in solving the secular equations. The secular equations 
(30, 31, 34 and 35) are solved numerically by the iteration 
method using ’for loop’ programming for wavenumbers 

(48)a12a25a51ct2 − a11a25a52ct1 + a15a2152ct5 = 0,

(49)a12a25a51t2 − a11a25a52t1 + a15a2152t5 = 0,

(50)a21a15a72t1 − a22a15a71t2 + a25a1172t5 = 0,

(51)a21a15a72ct1 − a22a15a71ct2 + a25a1172ct5 = 0.

(52)
[

t5

t1

]

±1

=

4k2m1m2�

(�m2

1
+ 2�m2

1
+ �k2)(m2

2
+ k2)

,

of symmetric and anti-symmetric vibrations. We have 
observed from Eqs. (30, 31, 34 and 35) that there exist 
three modes in the solution of secular equations for the 
symmetric and anti-symmetric vibrations in the micros-
tretch thermoelastic diffusion plate. One of these modes is 
the counterpart of the classical Lamb wave and the other 
two modes arise due to the presence of thermo-diffusion 
and microstretch effects. The phase velocity and attenua-
tion for the surface waves are defined as [13]

The velocity curves and attenuation for symmetric and anti-
symmetric vibration with angular frequency (�) are plotted 
in Figs. 2, 3, 4, 5, 6, 7, 8 and 9, and a comparison for the 
three thermoelastic theories has been shown. We choose the 
following suitable values for different thermoelastic theories:

for G − L theory: �0 = 0.001s, �0 = 0.003s, �1 = 0.009s,

�1 = 0.005s,   � = 0, �1 = 0.003s.

for L − S theory: �1 = �1 = 0, �0 = 0.001s, �0 = 0.003s,

� = 1, �1 = 0.001s.

for CT theory: �1 = �1 = �0 = �0 = 0, �1 = 0.002s.
Figures 2 and 3 present the velocities of three modes 

of symmetric and anti-symmetric vibrations for thermally 
insulated and impermeable plate. The velocity curves cor-
responding to mode-1 for both symmetric and anti-symmet-
ric vibration in Figs. 2a and 3a, respectively, ascend with 
the increasing � . The velocity corresponding to mode-2 
diminishes for symmetric vibrations and enlarges for anti-
symmetric vibrations as the impact of � surges. The veloc-
ity curves represented by mode-3 for both symmetric and 
anti-symmetric cases in Figs. 2c and 3c lessen with � . Fig-
ures 4 and 5 represent the attenuation of the three modes 
of symmetric and anti-symmetric vibrations for thermally 
insulated and impermeable plate. The attenuation curves 

vi =
�

Re
(

ki
) , ∣ Ai ∣= −Im

(

ki
)

, (i = 1, 2, 3, 4, 5, 6).
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Fig. 2  Dispersion of symmetric vibrations for thermally insulated and impermeable plate

Fig. 3  Dispersion of anti-symmetric vibrations for thermally insulated and impermeable plate
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Fig. 4  Attenuation of symmetric vibrations for thermally insulated and impermeable plate

Fig. 5  Attenuation of anti-symmetric vibrations for thermally insulated and impermeable plate
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Fig. 6  Dispersion of symmetric vibrations for isothermal and isoconcentrated plate

Fig. 7  Dispersion of anti-symmetric vibrations for isothermal and isoconcentrated plate
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Fig. 8  Attenuation of symmetric vibrations for isothermal and isoconcentrated plate

Fig. 9  Attenuation of anti-symmetric vibrations for isothermal and isoconcentrated plate
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for mode-1 corresponding to anti-symmetric vibration in 
Fig. 5a and mode-3 corresponding to symmetric vibration in 
Fig. 4c escalate, while the attenuation curves in Figures 4b, 
5b and c decrease with � . The attenuation corresponding to 
mode-1 for symmetric vibration shoots up to −0.5955 ms−1 
at � = 1.5 s−1 and then declines up to a certain angular fre-
quency which increases thereafter.

Figures 6 and 7, respectively, depict the velocity of 
symmetric and anti-symmetric vibration for an isother-
mal and isoconcentrated plate. Positive effects of � are 
noticed on the mode-1 velocity curves for both symmetric 
and anti-symmetric vibrations in Figs. 6a and 7a, while 
the mode-2 corresponding to anti-symmetric vibrations 
in Fig. 7b ascends with � . The mode-2 velocity curve 
for symmetric case shoots up from 1581.0039 ms−1 to 
1675.5786 ms−1 at � = 0.4 s−1 and sets off to a gentle 
descending path. The mode-3 curve for symmetric vibra-
tions falls steeply to 1687.9793 ms−1 at � = 0.8 s−1 and 
then declines gently thereafter, while the velocity curve 
of same mode for anti-symmetric vibration in Fig.  7c 
inclines for certain angular frequency and then decreases. 
Figures 8 and 9 represent the attenuations of symmetric 
and anti-symmetric vibration, respectively, for an isother-
mal and isoconcentrated plate. The attenuation curve rep-
resented by mode-1 of symmetric vibration elevates from 
−0.055713m−1 at � = 0.2s−1 to −0.045635m−1 at � = 1.3s−1 
and then descends to ascend thereafter. The mode-2 atten-
uation for symmetric and mode-2 and mode-3 for anti-
symmetric vibration decrease and mode-1 attenuation for 
anti-symmetric vibration and mode-3 for symmetric vibra-
tion increase with �.

For both thermally insulated/impermeable and isother-
mal/isoconcentrated plates, the mode-1 velocity curve for 
symmetric vibration is the lowest in G − L theory and same 
values for the other two theories, while the velocity of 
same mode for anti-symmetric vibration attains the highest 
value in the G − L theory followed by L − S and CT theo-
ries. The mode-3 velocity curve for symmetric vibration in 
Fig. 2c is highest under G − L theory followed by CT and 
L − S theories. The mode-2 and mode-3 velocity curves 
for symmetric vibrations in the isothermal/isoconcentrated 
plate coincide for all the three theories. In both the plates, 
the mode-2 and mode-3 velocity curves for anti-symmetric 
vibration acquire the highest value under the L − S theory 
followed by CT and G − L theories. The mode-1 attenua-
tion curve for symmetric vibration and mode-2 and mode-3 

for anti-symmetric vibration are highest under the G − L 
theory followed by L − S and CT theories. In the thermally 
insulated/impermeable and isothermal/isoconcentrated 
plates, the mode-2 and mode-3 attenuation curves for sym-
metric vibration coincide for all three theories, while the 
mode-1 for anti-symmetric vibration attains the highest 
value under G − L theory and coincide for the other two 
theories.

9  Conclusions

The propagation of Lamb wave subject to thermally insu-
lated/impermeable and isothermal /isoconcentrated bound-
ary conditions in a homogeneous microstretch thermoelastic 
diffusion plate has been investigated. We have obtained the 
secular equations for symmetric and anti-symmetric vibra-
tions in the plate. The velocity curves and attenuation of the 
surface waves are computed numerically for a model, and 
results are depicted graphically. We summarize with the fol-
lowing remarks: 

 (i) The secular equations explicate the behavior of dif-
ferent modes of the symmetric and anti-symmetric 
vibrations of Lamb wave. The secular equations 
corresponding to the plate waves and Rayleigh are 
obtained as a limiting case by considering longer and 
shorter wavelength, respectively.

 (ii) Three modes of solution exist for the secular equation 
of symmetric and anti-symmetric vibrations, plate, 
flexural and Rayleigh waves. The phase velocity 
and the attenuation coefficients for all three modes 
depend on angular frequency, thermal, diffusion, 
microstretch, micropolar and Lamé parameters. The 
velocity of the corresponding Lamb wave increases 
from the first to the third mode of symmetric vibra-
tion.

 (iii) In both thermally insulated/impermeable and isother-
mal/isoconcentrated plates, the velocity curves corre-
sponding to mode-2 and mode-3 for anti-symmetric 
vibration attain the highest values under the L-S 
theory and followed by CT and G-L theories. The 
attenuations corresponding to mode-2 and mode-3 
for symmetric vibration coincide for all three theo-
ries, while the attenuation of mode-1 for anti-sym-
metric vibration attains the highest value under G-L 
theory and the same results for other two theories.
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Annexure ‑ I

Annexure ‑ II
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