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Abstract
Traditional squeeze-film dampers are used in modern aircraft generators as vibration-suppressing devices. However, the 
conventional squeeze-film damper has the disadvantage of highly nonlinear oil film force. This study aims to improve the 
dynamic characteristics of the squeeze-film damper by changing its geometric structure, so a hybrid squeeze-film damper 
(HSFD) is proposed. Besides, the turbulent flow could also be found in lubrication analysis of high rotating speed turbo-
machineries, and the ignorance of turbulent flow would lead to significant failure results. Accordingly, the study presents 
a nonlinear dynamic analysis of a turbulent bearing-rotor system under quadratic damping equipped with HSFD. The 
dimensionless speed ratio and dimensionless unbalance parameter are used to plot the bifurcation diagrams, and abundant 
harmonic, subharmonic, quasi-periodic, and even chaotic motions are found with dynamic trajectories, power spectrum, 
Poincaré maps, Lyapunov exponent, and fractal dimension, simultaneously. Finally, an active control method is applied to 
suppress the chaotic responses. The simulation results will provide valuable suggestions for designing and developing rotat-
ing machinery, such as rotor-bearing systems operating at high rotational speeds and nonlinearity.
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List of symbols
c   Radial clearance, c = R − r
C   Viscous damping of rotor disk
e   Eccentricity,e =

√

X2 + Y2

Fx, Fy   Components of fluid film force in X- and 
Y-directions

Fr, Fτ   The resulting damper forces in the radial 
direction and tangential direction

Fra, Fτa   Forces in the radial direction and tangential 
direction over the axial direction

Frd, Fτd   Forces in the radial direction and tangential 
direction over the rotational direction

Frs, Fτs   Forces in the radial direction and tangential 
direction over the static direction

f   Dimensionless parameter, f = c
√

KM

G� ,Gz  
 1
G�

= 12 + 0.0260(Re∗)0.8265,
1

Gz

= 12 + 0.0198(Re∗)0.741

g  Acceleration of gravity
h  Oil film thickness, 

h = c(1 + � cos(� − �(t))) = c(1 + � cos �)

K   Stiffness coefficient of shaft
kc   Radial stiffness of the stator
L  Bearing length
M   Masses lumped at rotor mid-point
Om   Center of rotor gravity
O1, O2, O3   Geometric centers of bearing, rotor, and 

journal
p  Pressure distribution in fluid film
R   Inner radius of bearing housing
Rx, Ry  Rub-impact forces in the horizontal and 

vertical directions
Re

∗   Local Reynolds number, Re∗ = �Uh

�
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r   Radius of the journal.
s   Rotational speed ratio, s = Ω

Ωn

U  Circumferential speed, U = rΩ

X, Y, Z  Horizontal, vertical, and axial coordinates
x, y  X/c, Y/c
�   Dimensionless parameter, � =

6�R2L2

Mc3Ωn

�   Dimensionless unbalanced parameter, �∕c
ρ   The mass eccentricity of the rotor
ϕ   Rotational angle (ϕ = ωt)
Ω   Rotational speed of the rotor
φ   Attitude angle
θ   Angular position
μ  Oil dynamic viscosity
ε  Eccentricity ratio, ε = e/c
�1   Dimensionless parameter,�1 =

XFr−YF�

�

�2   Dimensionless parameter,�2 =
XFr+YF�

�

Ωn   Natural frequency, Ωn
2 =

K

M

1 Introduction

In the high-speed operation of common turbo-machiner-
ies, the flow of the lubricating liquid film in the bearing 
lubricating cavity will generate a considerable film Reyn-
olds number, so the flow in the bearing clearance may get 
into transition flow or even become turbulent case. Though 
lubricating flow is turbulent, many numerical simulations or 
research ignore turbulent effects or reduce the model to be 
a simplified laminar case. Neglecting turbulent flow would 
lead to significant failure results in simulation or a miss of 
undesired vibrations in the study of turbo-rotating mechani-
cal systems. Therefore, turbulent flow phenomena should 
be considered in studying rotor-bearing system dynamics. 
Some studies [1–5] focus on analyzing the turbulent flow 
effect in turbo-machineries and prove that ignorance would 
bring serious mistakes in predicting dynamic behaviors or 
designing turbo-machineries. In addition, turbo-machiner-
ies operating at high speed may also cause the lubrication 
flow in the bearing gap to enter a turbulent flow situation. 
Some effects, such as rub impact between the rotor and 
stator, may be formed at high rotating speeds and would 
cause the failure of the bearing-rotor system. Zhang et al. 
[6] developed a novel indicator considering force, velocity, 
and phase information over time intervals based on vibra-
tion power flow theory. Through the theoretical analysis of 
collision faults, the energy response of the rotor system and 
the law between input power and collision are obtained. At 
the same time, fault severity detection is achieved using the 

proposed indicators. Liu et al. [7] proposed a new evalua-
tion method—the weighted contribution rate of the nonlin-
ear output frequency response function. This method is an 
extension of traditional indicators based on nonlinear output 
frequency response functions, trying to obtain new indica-
tors with higher recognition of faults. Simulation and experi-
mental results demonstrate the sensitivity of the new index 
to frictional impact faults. Besides, some literature [8–13] 
also emphasized and explained the significance and severity 
of rub impact occurring in the bearing-rotor systems.

Some studies focused on applying some algorithms to 
improve the efficiency of fault diagnosis of bearing-rotor 
systems, e.g., Li et al. [14, 15] presented an enhanced selec-
tive integration deep learning method based on the beetle 
antennae search (BAS) algorithm to adaptively select the 
optimal class-specific thresholds. Experimental bearing data 
are used to verify the effectiveness of the proposed method. 
Zhang et al. [16] introduced the piezoelectric energy har-
vester to study the bearing-rotor system. Rotational energy 
is harvested from rotating machines by installing arc-shaped 
piezoelectric sheets between the outer ring of rolling bear-
ings and the bearing housing. The proposed piezoelectric 
energy harvester can not only power the sensor but also has 
the capability of bearing fault detection. Yu et al. [17–19] 
published a series of research papers focusing on fault detec-
tion of turbo-machineries and also proved that its theory 
is reasonable and the applicability of their studies. Some 
exciting and excellent published documents, e.g., [20–25], 
proposed practical methods to detect and control turbo-
machineries’ faults.

Wang et al. [26] presented the integral magnetorheo-
logical dampers (IMRDs) to replace the traditional mag-
netorheological dampers. Research results show that the 
oil film pressure in each bearing area can be adjusted 
independently with the current, resulting in changes in the 
direction and magnitude of the oil film force. In addition, 
different oil film-bearing areas contribute to the stiffness 
and damping of IMRD. In some cases, IMRD can pro-
vide pure damping with negligible stiffness. In addition, 
magnetorheological fluids with huge journal eccentricity 
ratios are prone to produce strong nonlinearity; however, 
compared with traditional MRD, the IMRD proposed here 
can significantly reduce the nonlinearity level. Zaccardo 
et al. [27] employed active magnetic dampers (AMDs) to 
overcome the inherent trade-offs associated with squeeze-
film dampers. The AMD's design, fabrication, and experi-
mental demonstrated the reduction of lateral rotor vibra-
tion in high-speed rotating shafts through the critical 
speed. The squeeze-film damper is a helpful application 
to enhance the performance of stability of bearings and 
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also suppress the amplitude and irregularity of turbo-
machineries. Chang-Jian et al. [28] presented a model 
of a hybrid squeeze-film damper to study the nonlinear 
dynamics of the rotor-bearing system lubrication with 
couple stress fluid, and they found that the rotor dynamic 
responses of the system will be more stable by using a 
hybrid squeeze-film damper and lubricated with couple 
stress fluid. Ashtekar et al. [29] investigated the dynamics 
of a turbocharger supported by deep groove and angular 
contact ball bearing with a squeeze-film damper, and they 
found that the damper plays an important role not only in 
improving turbocharger dynamics but also in extending the 
bearing life. Giovanni [30] proposed a bifurcation analysis 
of the dynamics of an unbalanced rigid rotor supported by 
two-lobe wave bearings with squeeze-film dampers. Some 
non-periodic behaviors are found in this study. Chang-Jian 
[31] applied the porous squeeze-film damper to improve 
the dynamic stability of gear-bearing systems and proved 
that the usage of a porous squeeze-film damper would be 
helpful in the design and development of a gear-bearing 
system for rotating machinery that operates at highly rota-
tional speed and highly nonlinear regimes. Han and Ding 
[32] used both the linear damping support and squeeze-
film damper support to study the dynamic characteristics 
of the rotor/ball-bearing system during maneuvers. Using 
a squeeze-film damper could suppress sub- and super-
harmonic resonances. Hsu et al. [33] studied the nonlin-
ear dynamic of a turbine generator with a squeeze-film 
damper, considering the effect of flywheel eccentricity 
and squeeze-film damper will fail to support the rotor in a 
specific range of rotor speed but enlarged as the flywheel 
eccentricity increases at the same time.

While turbo-machineries operate with high rotational 
speed, lubricating flow in bearing housing may be transi-
tion or even turbulent. Therefore, these systems' damping 
effect should differ from the viscous damping effect; the 
quadratic damping case would be more suitable. Apply-
ing squeeze-film dampers into turbo-machineries could 
remarkably enhance dynamic characteristics, according 
to the literature review, as shown in the above paragraph. 
We will analyze the nonlinear dynamic responses for the 
turbulent rotor-bearing system with quadratic damping. 
We will prove that the hybrid squeeze-film damper can 
suppress aperiodic responses and even chaotic cases. The 
dynamic trajectories, power spectra, Poincaré maps, bifur-
cation diagrams, the maximum Lyapunov exponent, and 
fractal dimension are applied to analyze the rotor-bearing 
system. Besides we also used PD controllers in the hydro-
static chambers to control the rotor-bearing system.

2  Mathematical modeling

2.1  Modified Reynolds equation under turbulent 
flow assumption

Based on the assumption of turbulent flow, the modified 
Reynolds equation in the hydrodynamic lubrication theory 
may be performed as.

w h e r e  U = R�  ,  1

G�

= 12 + 0.0260(Re∗)0.8265  , 
1

Gz

= 12 + 0.0198(Re∗)0.741[1],  h = c(1 + � cos(� − �(t)))

= c(1 + � cos �) , �h
��

= −c� sin � , 𝜕h
𝜕t

= c�̇� cos 𝜃 + c𝜀�̇� sin 𝜃 , 
� =

e

c
 and Re∗ is local Reynolds number ( Re∗ = �Uh

�
 ). Thus, 

the Reynolds equation considering the turbulent flow effect 
can be rewritten as

Figure 1 represents the supporting region of HSFD, and it 
should be divided into three regions, i.e., static pressure region, 
rotating direction dynamic pressure region, and axial direction 
active pressure region. In the pressure area of the static pres-
sure chamber, the angle relative to the bearing center is � , and 
the pressure is a fixed value, i.e., Pc,i(i = 1, 2, 3, 4 ). In the cir-
cumferential sealing oil groove dynamic pressure area of 
HSFD ( −a ≤ z ≤ a ), the long bearing theory is assumed 
(

�p

�z
= 0

)

 , and Eq. (2) could be modified to be

The modified Reynolds equation for Eq. (3) will then be 
solved with the boundary condition of the dynamic pressure 
region to acquire the pressure distribution p0(�) . The part of 
the pressure zone in the axial oil sealing surface for HSFD 
( 
(

a ≤ |z| ≤ L

2

)

 ), the short bearing theory is assumed 
(

�p

��
= 0

)

 , and the equation will be

(1)�

R��

(

h3G�

�

�p

R��

)

+
�

�z

(

h3Gz

�

�p

�z

)

=
U

2

�h

R��
+

�h

�t

(2)
𝜕

R2𝜕𝜃

(

h3G𝜃

𝜇

𝜕p

𝜕𝜃

)

+
𝜕

𝜕z

(

h3Gz

𝜇

𝜕p

𝜕z

)

= −
𝜔c𝜀 sin 𝜃

2
+ (c�̇� cos 𝜃 + c𝜀�̇� sin 𝜃)

(3)

𝜕

R2𝜕𝜃

(

h3G𝜃

𝜇

𝜕p

𝜕𝜃

)

= −
𝜔c𝜀 sin 𝜃

2
+ (c�̇� cos 𝜃 + c𝜀�̇� sin 𝜃)

(4)𝜕

𝜕z

(

h3Gz

𝜇

𝜕p

𝜕z

)

= −
𝜔c𝜀 sin 𝜃

2
+ (c�̇� cos 𝜃 + c𝜀�̇� sin 𝜃)
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Solving Eq.  (4) with the boundary conditions 
⎧

⎪

⎨

⎪

⎩

z = ±L∕2, Pa(�,±L∕2) = 0

z = ±a, Pa(�,±a) = P0(�) =

�

Pc,i;�i1 − � ≤ � ≤ �i1

Pd,i;�i1 ≤ � ≤ �i2

and then the dynamic pressure distribution in the axis direc-
tion will be obtained. The formula of pressure distribution in 
the whole supporting region will finally be established.

2.2  The resulting damper force for HSFD

Based on the above conditions of pressure distribution, the 
instant oil film pressure distribution considering turbulent 
flow is introduced as follows.

The instant pressure in a rotating direction within the 
range of −a ≤ z ≤ a is

where

(5)p0(�) =

⎧

⎪

⎨

⎪

⎩

pc,i;
�
2
(i − 1) − �

2
− �b ≤ � ≤ �

2
(i − 1) + �

2
− �b

pd,i(�);
�
2
(i − 1) + �

2
− �b ≤ � ≤ �

2
i −

�
2
− �b

, i = 1, 2, 3, 4.

The instant pressure in the axis direction within the range 
is

where.

(6)

pd,i(�) = pc,i +

�

∫
�i1

[

�R2�c� cos �
2

+ �R2(c�̇ sin � − c��̇ cos �)
]

c3(1 + � cos �)3G�
d�

+ c1

�

∫
�i1

1
c3(1 + � cos �)3G�

d�, i = 1, 2, 3, 4,

c1 =
pc,i+1 − pc,i − ∫ 𝜃i2

𝜃i1

[

𝜇R2𝜔c𝜀 cos 𝜃

2
+𝜇R2(c�̇� sin 𝜃−c𝜀�̇� cos 𝜃)

]

c3(1+𝜀 cos 𝜃)3G𝜃

d𝜃

∫ 𝜃i2
𝜃i1

1

c3(1+𝜀 cos 𝜃)3G𝜃

d𝜃
,

�i1 = (i − 1)
�

2
+

�

2
− �b, i = 1, 2, 3, 4.

(7)pa(𝜃, z) =
(

L

2
− |z|

)

{

[

Λ
1
(𝜃)�̇�b𝜀 + Λ

2
(𝜃)�̇�

]

(a − |z|) + p
0
(𝜃)

1

L∕2 − a

}

.

Λ1(�) =
�c sin �

2c3(1 + � cos �)3Gz

;Λ2(�) =
�c cos �

2c3(1 + � cos �)3Gz

.

Fig. 1  The distribution of static and dynamic pressure in HSFD
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The instant oil film forces of each part of the elements are 
determined by integrating Eqs. (5) and (7) over the area of 
the journal sleeve. For the static pressure region, the forces 
in the radial direction and tangential direction will be

For the rotating direction dynamics pressure region, the 
forces in the radial direction and tangential direction will be

For the axial direction dynamic pressure region, the 
forces in the radial direction and tangential direction will be

The resulting damper forces in the radial direction ( Fr ) 
and tangential ( F� ) direction are determined by the sum-
mation of the above-supporting forces, and they could be 
performed as follows, respectively.

(8)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Frs =
4
∑

i=1

pc, i2aR
�

sin

�

�

2
(i − 1) +

�

2
− �b

�

− sin

�

�

2
(i − 1) −

�

2
− �b

��

F�s =
4
∑

i=1

pc, i2aR
�

cos

�

�

2
(i − 1) −

�

2
− �b

�

− cos

�

�

2
(i − 1) +

�

2
− �b

��

,

(9)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Frd =
4
∑

i=1

�i2∫
�i1

2aRpd,i(�) cos � d�

F�d =
4
∑

i=1

�i2∫
�i1

2aRpd,i(�) sin � d�

,

(10)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Fra =
z=−a
∫

z=−L∕2

�=2�
∫

�=0
pa(�, z)R cos � d�dz +

z=a
∫

z=L∕2

�=2�
∫

�=0
pa(�, z)R cos � d�dz

F�a =
z=−a
∫

z=−L∕2

�=2�
∫

�=0
pa(�, z)R sin � d� dz +

z=a
∫

z=L∕2

�=2�
∫

�=0
pa(�, z)R sin � d�dz

,

2.3  Dynamic equations for turbulent bearing‑rotor 
system under quadratic damping with a hybrid 
squeeze‑film damper

Before we introduce the dynamic equations for turbulent 
bearing-rotor system under quadratic damping with HSFD, 
some assumptions are given:

(a) The bearing mass is concentrated in the geometric 
center.

(b) The rotor and the bearing are axisymmetric.
(c) The rotor speed is constant.
(d) The rotor, bearing, and shaft are rigid bodies.
(e) The effect of torsional vibration of the rotating shaft is 

neglected.
(f) The torque of the shaft and the disk is negligible.

Figure 2 shows a rigid rotor supported by two-hybrid 
squeeze-film dampers under turbulent flow and quadratic 
damping considerations. The strongly nonlinear dynamic 
equations of the rotor geometric center in the Cartesian 

(11)
{

Fr = Frs + Frd + Fra

F� = F�s + F�d + F�a

,

Fig. 2  Schematic illustration 
of hybrid squeeze-film damper 
mounted on the rotor-bearing 
system
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coordinate system under the above assumptions can be writ-
ten as

O-XYZ is the fixed coordinate system fixed at the bearing 
center Ob, M represents the mass of the rotor, C is the rotor 
external quadratic damping, K is the spring coefficient of 
restoring force, � is the eccentric displacement of the rotor 
mass, Ω is the rotational speed of the rotating shaft, Fx and 
Fy are the oil film force under turbulent flow effect in the 
x and y directions, X0 and Y0 are the initial deformation of 
the centering spring in the x and y directions, respectively 
(i.e., the initial displacement of the journal center). The 
non-dimensional equations will be introduced with the non-
dimensional parameters defined below.

where Fr and F� are the resulting bearing forces in the 
radial and tangential directions and could be obtained from 
Eq. (11). Then, Eq. (12) become

Equation (13) is a nonlinear dynamic system describing 
a turbulent bearing-rotor system under quadratic damping 
with a hybrid squeeze-film damper, and the approximate 
solution for the coupled nonlinear differential equation can 
be carried out by numerical method, i.e., the fourth-order 
Runge–Kutta method.

2.4  PD controller design

To control the hybrid squeeze-film damper bearing, two 
pairs of PD controllers are applied in the hydrostatic cham-
bers to stabilize the HSFD bearing-rotor system. The pres-
sure difference between hydrostatic chambers 1 and 3 is 
assumed to be Δp1 = kpx + kdẋ , and the pressure differ-
ence of hydrostatic chambers 2 and 4 is considered to be 
Δp2 = kpy + kdẏ . The controllable pressure distributions in 
the hydrostatic chambers are

(12)
{

MẌ + CẊ|
|

Ẋ|
|

+ KX = MρΩ2cos𝜔t + Fx + KX0

MŸ + CẎ|
|

Ẏ|
|

+ KY = M𝜌Ω2sin𝜔t + Fy + KY0

x = X∕c, y = Y∕c, x0 = X0∕c, y0 = Y0∕c,
d
dt

= Ω d
d�

,

s = Ω
Ωn

,Ω2
n =

K
M
, � = �∕c, f = c

√

KM
, � =

6�R2L2

Mc3Ωn
,

�1 =
XFr − YF�

�
, �2 =

XFr + YF�

�

(13)

{

x�� +
f

s
x�|x�| +

1

s2
x = �cos� +

��1

s
+

1

s2
x0

y�� +
f

s
y�|y�| +

1

s2
y = �sin� +

��2

s
+

1

s2
y0

Substituting the pressure distributions in the hydrostatic 
chambers, i.e., (14), into Eqs. (8)–(11), the resulting damper 
forces in the radial and tangential directions can be obtained.

3  Results and discussions

To ensure the data used corresponds to the steady state, the 
time series data of the first 800 revolutions of the system are 
deliberately excluded from the dynamic behavior. Besides, 
the time step for direct numerical integration is designated 
to be π/300, and the tolerance is appointed to 0.0001. Stand-
ard tools for analyzing nonlinear dynamic characteristics are 
dynamic trajectories, power spectra, Poincaré maps, bifurca-
tion diagrams, fractal dimension, and the maximum Lyapu-
nov exponent. The Lyapunov exponent of a dynamic system 
characterizes the rate of separation of infinitesimally close 
trajectories and provides a useful test for the presence of 
chaos. In a chaotic system, the points of nearby trajectories 
starting initially within a sphere of radius �0 form after time 
t an approximately ellipsoidal distribution with semi-axes of 
length �j(t) . The Lyapunov exponents of a dynamic system 
are defined by�j = lim

t→∞

1

t
log

�j(t)

�0
 , where �j denotes the rate of 

divergence of the nearby trajectories. The exponents of a 
system are usually ordered into a Lyapunov spectrum, i.e., 
𝜆1 > 𝜆2 > ... > 𝜆m . A positive value of the maximum Lya-
punov exponent ( �1 ) is generally taken as an indication of 
chaotic motion [34–37]. Chaotic vibration in a system is 
generally detected using either the Lyapunov exponent or 
the fractal dimension property. The Lyapunov exponent test 
can be used for both dissipative and non-dissipative (i.e., 
conservative) systems, but is not easily applied to the analy-
sis of experimental data. Conversely, the fractal dimension 
test can only be used for dissipative systems, but is easily 
applied to experimental data [38]. In contrast to Fourier 
transform-based techniques and bifurcation diagrams, which 
provide only a general indication of the change from peri-
odic motion to chaotic behavior, dimensional measures 
allow chaotic signals to be differentiated from random sig-
nals. Although many dimensional measures have been pro-
posed, the most commonly applied measure is the correla-
tion dimension dG defined by Grassberger and Proccacia due 
to its computational speed and the consistency of its results. 
However, before the correlation dimension of a dynamic 
system flow can be evaluated, it is first necessary to generate 
a time series of one of the system variables using a time-
delayed pseudo-phase-plane method. Assume an original 

(14)
pc,1 = ps − Δp1, pc,2 = ps − Δp2, pc,3 = ps + Δp1 and pc,4 = ps + Δp2.
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Fig. 3  a Orbit,   power spectrum and Poincaré section at s = 1.0, 4.0, 6.8, and 8.8 b Bifurcation diagram of the rotor geometric center using 
dimensionless rotational speed ratio s as bifurcation parameter (s = 0.1–10.1)
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time series of xi = {x(iτ); i = 1,2,3,…N}, where τ is the time 
delay (or sampling time). If the system is acted upon by an 
excitation force with a frequency ω, the sampling time, τ, is 
generally chosen such that it is much smaller than the driv-
ing period. The delay coordinates are then used to construct 
an n-dimensional vector X = (x(jτ), x[(j + 1) τ], x[(j + 2) 
τ],….., x[(j + n−1) τ]), where j = 1,2,3,…(N−n + 1). The 
resulting vector comprises a total of (N−n + 1) vectors, 
which are then plotted in an n-dimensional embedding 
space. Importantly, the system flow in the reconstructed 
n-dimensional phase space retains the system’s dynamic 
characteristics in the original phase space. In other words, if 
the system flow has the form of a closed orbit in the original 
phase plane, it also forms a closed path in the n-dimensional 
embedding space. Similarly, if the system exhibits a chaotic 
behavior in the original phase plane, its path in the embed-
ding space will also be chaotic. The characteristics of the 
attractor in the n-dimensional embedding space are generally 
tested using the function 

∑N

i,j=1
H(r −

�

�

�

xi − xj
�

�

�

) to determine 
the number of pairs (i, j) lying within a distance |xi − xj|< r 
in
{

xi
}N

i=1
 , where H denotes the Heaviside step function, N 

represents the number of data points, and r is the radius of 
an n-dimensional hyper-sphere. For many attractors, this 
function exhibits a power law dependence on r as r → 0, i.e., 
c(r) ∝ rdG . Therefore, the correlation dimension, dG, can be 
determined from the slope of a plot of [log c(r)] versus [log 
r]. Grassberger and Proccacia [39] showed that the 

correlation dimension represents the lower bound to the 
capacity or fractal dimension dc and approaches its value 
asymptotically when the attracting set is distributed more 
uniformly in the embedding phase space. A set of points in 
the embedding space is considered fractal if its dimension 
has a finite non-integer value. Otherwise, the attractor is 
referred to as a ‘strange attractor.’ To establish the nature of 
the attractor, the embedding dimension is progressively 
increased, causing the slope of the characteristic curve to 
approach a steady state value. This value determines whether 
the system has a fractal or strange attractor structure. If the 
dimension of the system flow is found to be fractal (i.e., to 
have a non-integer value), the system is judged to be 
chaotic.

The bifurcation diagram of the rotor geometric center 
using dimensionless rotational speed ratio s as bifurcation 
parameter (s = 0.1–10.1) can be found in Fig. 3b. Moreo-
ver, the dynamic trajectory, power spectrum, and Poincaré 
section are also attached to show which dynamic behaviors 
they are (Fig. 3a). The bifurcation diagram reveals that the 
dynamic responses behave 1T-period and 2T-period at low 
rotational speeds. That may be because HSFD plays a vital 
role in suppressing aperiodic motions. We could also check 
from the dynamic trajectory, power spectrum, and Poincaré 
section (just one single point), so we could say that it is a 
1T periodic response at s = 1.0 and behaves in subharmonic 
motions with a 2T period at s = 4.0. Even though the sys-
tem is under strong nonlinear effects, including quadratic 
damping, nonlinear oil film force, and turbulent flow, the 
dynamic behaviors persist in periodic motions until s > 6.0, 
when the system breaks from periodic motion and enters 
non-periodic motion. The dynamic behaviors perform ape-
riodic ones in the bifurcation diagram with increasing rota-
tional speed, the dynamic trajectory is aperiodic, the power 
spectrum is rich and broad, and the closed curves present 
in the Poincaré section at s = 6.8 and s = 8.8, so the quasi-
periodic motions are found at higher rotational speeds by 
observing those diagrams. In Fig. 4, we use the dimension-
less unbalanced parameter β as a bifurcation parameter to 
discuss dynamic responses in a bifurcation diagram for the 
rotor geometric center. The bifurcation diagram suggests 
that periodic, subharmonic, and chaotic motions exist in the 
rotor geometric center (Fig. 4a). Therefore, dynamic trajec-
tory, power spectrum, and Poincaré section are also applied 
to identify those trajectories clearly (Fig. 4b). At first, a dis-
ordered course could be found in the dynamic orbit, and 
then numerous excitation frequencies could also be found 
in power spectra at β = 0.11. Then, the return points in the 
Poincaré section are a geometrically fractal structure. We 
could determine that the dynamic response is chaotic for 
β = 0.11. Besides, the dynamic responses are quasi-periodic 
at β = 0.25, 7T-periodic at β = 0.40, 5T-periodic at β = 0.56 
and 3T-periodic at β = 0.60. The Lyapunov exponent and 

Fig. 3  (continued)
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Fig. 4  a Orbit, power spectrum, 
and Poincaré section at β = 0.11, 
0.25, 0.40, 0.56, and 0.60 b 
Bifurcation diagram of the rotor 
geometric center using dimen-
sionless unbalance parameter 
β as bifurcation parameter 
(β = 0.001–1.00)
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the fractal dimension are vital tools to verify whether the 
dynamic response performs chaos. Therefore, we apply 
them to detect the dynamic response for β = 0.11 in Fig. 5. 
The maximum Lyapunov exponent is positive. The fractal 
dimensions show the plot of (log c(r)) vs. (log r) for differ-
ent embedding dimensions at β = 0.11. It is clear that as the 
embedding dimension is increased, the linear part of the 
slope approaches a constant value, 1.25 for β = 0.11, so we 
prove again that the dynamic response is a chaotic motion at 

β = 0.11. The pressure distributions in the four oil chambers, 
i.e., pc,1, pc,2, pc,3 and pc,4 are also shown in Fig. 6. The pres-
sure distribution in the static pressure chamber at β = 0.11 
without active control is aperiodic.

The PD controllers with two pairs are constructed in the 
hydrostatic chambers to stabilize and control the HSFD-
equipped bearing-rotor system. They are assuming that the 
pressure difference between hydrostatic chambers 1 and 3 is 
and the pressure difference between hydrostatic chambers 2 

Fig. 4  (continued)

Fig. 5  Fractal Dimension and Lyapunov Exponent with β = 0.11
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and 4 is. The controllable pressure distributions in the hydro-
static chambers are defined as pc,4 = ps + Δp2 . Then substi-
tuting pc,1, pc,2, pc,3 and pc,4 into equations, and the resulting 
damper forces in the radial and tangential directions can be 
obtained and used to avoid the system operating in a chaotic 
motion, e.g., when the dimensionless unbalance parameter 
β = 0.11, an increased proportional gain is applied to control 
this system by the active control method we have published 
[40] shown in Fig. 7. It can be seen that the rotor trajectory 
is 1T-periodic motion at β = 0.11 with the proportional gain 
kp = 75000 demonstrated in the rotor trajectory (8(a)), Poin-
caré section (8(b)), and power spectrum (8(c)). The pressure 
distributions in the static pressure chambers are also per-
formed periodically for pc,1, pc,2, pc,3 and pc,4 in Fig. 8d–g.

4  Conclusion

The nonlinear dynamic analysis of a turbulent bearing-
rotor system under quadratic damping equipped with 
HSFD is presented in this study. Due to the strongly non-
linear effect inclusive of the nonlinear oil film force and 
quadratic damping, the dynamic responses of these sys-
tems would perform aperiodic potions, so we take HSFD 
to suppress the aperiodic motions, which works effectively. 
We use two bifurcation parameters, i.e., dimensionless 
speed ratio and dimensionless unbalance parameter, to 
plot the bifurcation diagrams, and we found abundant 
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Fig. 6  Pressure distribution in the static pressure chamber at β = 0.11 without active control

Fig. 7  The flow rate control structure of HSFD [12]



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:123123 Page 12 of 13

harmonic, subharmonic, quasi-periodic, and even cha-
otic motions with dynamic trajectories, power spectrum, 
Poincaré maps, Lyapunov exponent, and fractal dimension, 
simultaneously. We also use the PD controllers constructed 
in the hydrostatic chambers to control the bearing-rotor 
system and avoid chaotic motions. The results of this study 
enhance our understanding of the importance of turbu-
lent journal bearings, considering quadratic damping and 
the application of HSFD and active control. The analysis 
of the model would help improve turbo-machineries and 
related industrial applications in designing or operating.
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