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Abstract
This paper demonstrates the existence of Sommerfeld effect in a vibration system driven by AC motor. The spring-mass damping 
system, excited by an unbalanced rotor, is considered as the object, and the differential equations of motion are established 
by introducing the electromagnetic torque of AC motor. By using the averaging method, the first approximation solution of 
the system is obtained to deduce the torque balance equation. The mechanism of frequency capture is discussed numerically 
and experimentally based on the relationship between the electromagnetic torque and the load torque. The changes in the 
electromagnetic torque and the power of AC motor are emphatically observed during the occurrence of frequency capture 
in the experimental process. Combining the sweep and fixed-frequency experiments, a comprehensive analysis is conducted 
on the amplitude-frequency characteristics of the hard nonlinearity, the velocity jump phenomenon, and the selected motion 
characteristics of the system. By applying the principle of energy conservation, the energy transfer between the mechanical system 
and the motor system is determined, revealing the coupled relationship between the vibration amplitude and the motor velocity.

Keywords Sommerfeld effect · Unbalanced rotor · Non-ideal vibration system · AC motor

1 Introduction

Indeed, the accurate establishment of mathematical mod-
els that reflect the motion behavior of a system is crucial 
for dynamic analysis [1, 2]. In the context of the vibration 
system driven by unbalanced rotors, extensive research has 
been conducted from various perspectives [3–6], resulting 
in significant contributions to the advancement of vibration 
theory. However, certain complex problems cannot be fully 
explained solely from the mechanical system's perspective. 
The interaction between the mechanical and electrical com-
ponents becomes essential to understanding and address-
ing these issues. This consideration leads to the concept of 
non-ideal systems [7, 8], where the coupling between the 
mechanical and electric parts plays a significant role in the 
system's behavior.

Brazilian scientist Balthazar led a team that has made sig-
nificant contributions to the study of non-ideal systems and 
established a series of researches [9, 10]. Summarizing their 
findings and results, the non-ideal system has two remark-
able characteristics as follows: firstly, the energy source is 
limited, referred to as the non-ideal source; secondly, there 
is an energy exchange between the energy source and its 
support structure. For instance, an unbalanced motor or an 
exciter mounted on a flexible support structure can influence 
the response of the rotary system [11].

In many physical phenomena of the non-ideal system, Som-
merfeld effect must be mentioned, which was first proposed 
by Sommerfeld [12] and comprehensively summarized by 
Kononenko [13]. In engineering, the rated velocities of some 
machines fall within the far resonance range, meaning they 
inevitably pass through the resonance point [14]. For non-ideal 
systems, the structural response provides a kind of energy trap 
or energy sink, causing the rotatory velocity to get stuck at 
resonance [15]. As the power supply continues to increase, a 
jump phenomenon in the velocity occurs [16]. In summary, 
the frequency capture and the velocity jump are two prominent 
features of Sommerfeld effect.

In some excellent books by Nayfeh [1], Blekhman [2] and 
Cveticanin [17], different analytical methods are presented 
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to explain the mechanism of Sommerfeld effect. These clas-
sical methods involve adding the equation representing the 
motion of the motor to the mathematical model of the non-
ideal system. This inclusion allows for the depiction of the 
coupled relationship between the vibration system and its 
driven energy source. Consequently, the non-ideal system 
possesses one more degree of freedom compared to the ideal 
system. It is important to highlight that the differential equa-
tions of motion for the non-ideal system exhibit nonlinear-
ity due to this coupled relationship. The nonlinearity is a 
result of the interaction between the vibration system and 
the driven energy source, which introduces complexities into 
the dynamic behavior of the system.

With the development of the coupling dynamics of 
electromechanical systems, a significant number of 
engineering problems have been successfully addressed. As 
a result, there has been increasing attention from scholars 
toward investigating Sommerfeld effect in various classical 
vibration systems to avoid energy sink phenomena [18–22]. 
One proposed method to quickly pass through resonance 
is to increase the foundation damping. However, it is 
acknowledged that this approach is not the ideal solution 
due to the potential loss of vibration efficiency. To avoid 
frequency capture issues, another approach involves using 
two unbalanced rotors installed on the same plate [19]. 
This method is considered to act as a vibration absorber, 
effectively controlling the frequency capture phenomenon 
[20]. Furthermore, researchers have studied signal 
processing techniques to characterize and identify the 
Sommerfeld effect, which can potentially be extended to 
actively or passively control this phenomenon [21].

In recent years, Samantaray and his teammates have 
conducted extensive research on Sommerfeld effect in 
numerous rotating machinery applications, which has proven 
to be highly beneficial for mechanical design [23–26]. 
They specifically studied a rigid rotor system driven by a 
universal joint, using the method of the bond graph model 
to analyze the transient dynamics [27]. Furthermore, they 
explored Sommerfeld effect in systems where the universal 
joint was connected to a flexible shaft, and interestingly, they 
observed jump phenomena at two different velocity ranges 
[28]. Their research also extended to reciprocating systems 
like the crank and rocker mechanism, where they considered 
the safety and reliability of machines. In this context, they 
deduced the power requirement necessary for a smooth 
transition through resonance [26].

The current research on the Sommerfeld effect 
mechanism is comprehensive; however, most of the findings 
heavily rely on the equation of DC motor as the driven 
source. In practical industrial applications, AC motor is 
more commonly used as the driven source. Therefore, there 
is a pressing need to investigate the dynamic characteristics 
of non-ideal systems driven by AC motor. Unfortunately, 

there are relatively few studies on the dynamic behavior of 
such systems, and experimental investigations are scarce. 
To address this gap in experimental research, this paper 
introduces a study of a non-ideal system driven by an 
AC motor. The primary focus is on exploring the effects 
of the Sommerfeld effect while taking into account motor 
parameters such as electromagnetic torque and power. By 
conducting this investigation, the paper aims to enhance our 
understanding of non-ideal systems driven by AC motors 
and how the Sommerfeld effect manifests in such scenarios. 
This research could have significant implications for 
practical industrial applications, bridging the gap between 
theoretical knowledge and real-world AC motor-driven 
systems.

This paper is structured as follows: In Sect.  2, the 
dynamic model of the vibration system is presented, and 
the differential equations of motion for the model are 
established. In Sect. 3, the response solution of the system 
is derived, and its stability conditions are obtained. Section 4 
is dedicated to the numerical analysis of the Sommerfeld 
effect, with experimental verification of the results. Finally, 
conclusions are given.

2  Dynamic model and motion differential 
equations

Figure 1a shows the dynamic model of a spring mass 
damping system excited by an unbalanced rotor. The cor-
responding experimental machine is shown in Fig. 1b. It is 
essential to note that the unbalanced rotor is driven by an 
AC motor, which also serves as the vibration motor. The 
vibration motor is mounted on an aluminum plate sup-
ported by rubber springs, making the system a non-ideal 
vibration system [9]. For the vibration motor, two unbal-
anced mass blocks are fixed at both ends of AC motor shaft 
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Fig. 1  The non-ideal vibration system. a Dynamic model. b Experi-
mental machine
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(the unbalanced rotor), where m0 denotes the unbalanced 
mass and r denotes the unbalanced radius. The unbalanced 
rotor rotates counterclockwise around point o, where � is 
the phase angle. The aluminum plate can only move in 
x direction due to the constraints of the guide rail. The 
stiffness and damping of the rubber spring are k and c, 
respectively. Finally, the mass of the vibration system is 
represented by m1 (excluding the unbalanced rotor).

Based on Fig. 1, generalized coordinates x and � are 
selected to deduce the kinetic energy, the potential energy 
and the dissipation function of the vibration system. By 
applying Lagrange equation and introducing the steady-
state electromagnetic torque of AC motor, the motion 
differential equations of the system can be derived as 
follows[6]:

where ∙̇ = d(∙)∕dt , ∙̈ = d2(∙)∕dt2 , m = m1 + m0,J  is the 
moment  of  iner t ia  of  the unbalanced rotor, 
Te =

3npRrU
2

(𝜔s−np�̇�)

[

(Lr+Ls)
2𝜔2

s
+(Rs+

Rr𝜔s

𝜔s−np�̇�
)2
] is the steady-state electro-

magnetic torque, �s = 2πf  is the angular frequency of stator 
power, and the definition of the other parameters of AC 
motor and the values of all parameters are shown in Table 1.

(1)mẍ + cẋ + kx = m0r(�̇�
2 cos𝜑 + �̈� sin𝜑)

(2)J�̈� + c1�̇� = Te(�̇�) + m0rẍ sin𝜑.

3  Theoretical analysis

3.1  Analytical solution

By comparing the motion equation of the motor, it is 
evident that the second term m0rẍ sin𝜑 on the right-
hand side of Eq.  (2) represents the load torque, which 
is also referred to the electromechanical coupling term. 
Considering the characteristics of the non-ideal source, it 
becomes essential to study whether AC motor can supply 
sufficient power to overcome the energy sink when the 
response amplitude x of the system is at its maximum [17]. 
It is well known that x approaches its maximum only when 
the system operates at the resonant point. Therefore, the 
investigation will focus on the scenario when the system 
resonates.

Since Sommerfeld effect refers to the change in the 
angular velocity of the rotor near the resonance region, the 
damping term and the external excitation term in Eq. (1) 
can be regarded as small or weak terms compared to 
others [17]. So, the small parameter 𝜀 << 1 is introduced 
to indicate the smallness of certain terms in the equations. 
Considering that the angular velocity is close to a constant 
in the steady state, the term �̈� sin𝜑 can be neglected. 
Introducing symbols �2

n
= k∕m , ��1 = m0r∕m , �� = c∕m 

to obtain the standard equation, the expression form of 
Eq. (1) with the small parameter � is arranged as follow:

If the system runs in steady-state motion, the amplitude 
A, the angular velocity �̇� = Ω and the phase angle Θ of the 
system response should be constant. Based on the average 
method, the solution of Eq.  (3) can be assumed in the 
following form [1]:

When � ≠ 0 , the constraint condition of Eq. (5) needs 
to be added as follow:

Substituting Eqs. (4–6) into Eq. (3), we have:

(3)ẍ + 𝜔2

n
x = 𝜀(𝜒1�̇�

2 cos𝜑 − 𝜍ẋ)

(4)x = A cos(� + Θ) = A cos�

(5)ẋ = −A𝜔n sin𝜓

(6)ẍ = −Ȧ𝜔n sin𝜓 − (Ω + Θ̇)A𝜔n cos𝜓

(7)Ȧ cos𝜓 − Θ̇A sin𝜓 = (Ω − 𝜔n)A sin𝜓

(8)
− Ȧ𝜔

n
sin𝜓 − AΘ̇𝜔

n
cos𝜓 − A𝜔

n

(Ω − 𝜔
n
) cos𝜓 = 𝜀(𝜒1Ω

2 cos𝜑 + 𝜍A𝜔
n
sin𝜓),

Table 1  System parameters

Variable Description Value

np Magnetic pole number 1
f Power frequency 0–50 Hz
U Rated voltage 220 V
Rs Stator resistance 37Ω
Rr Rotor resistance 20Ω
Ls Inductance 0.116 H
Lr Mutual inductance 0.122 H
J Moment of inertia 0.0206 kg  m2

c1 Motor damping coefficient 0.003N·ms/rad
m All mass 7.55 kg
c System damping 53.555 Ns/m
k System stiffness 19 kN/m
r Unbalanced radius 0.0315 m
m0 Unbalanced mass 0.6 kg
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By combining Eqs. (7) and (8), the analytical expres-
sion of Ȧ and Θ̇ can be derived as follows:

From the right-hand side of Eqs. (1) and (2), it can 
be observed that x and � are coupled to each other. 
Substituting d� = Ωdt and �̈� = Ω̇ into Eqs. (9) and (10), 
the state equations of the electromechanical coupling system 
changing with � can be obtained:

w h e r e  �Tm(Ω) = [Te(Ω) − c1Ω)]∕J  ,  ��1 = �n − Ω

,��2 = m0r∕J.
If time t is considered as a variable,Ω , A and Θ are also 

the functions of � . Therefore, they can be considered small 
fluctuations around their mean values � , a , � . Based on 
the perturbation method, Ω , A and Θ are expressed in the 
following forms:

where f
�
, f
a
 and f

�
 are small quantities to represent the small 

fluctuations around the mean values.
Taking the average of Ω , A and Θ over a motion period 

of 0 ∼ 2π as their mean values, the integral average of Eqs. 
(11–13) are as follows:

(9)
dA

dt
= −

�

�
n

(�1Ω
2 cos� + A�

n
� sin�) sin�

(10)
dΘ

dt
= ��1 −

�

A�
n

(

�1Ω
2 cos� + A�

n
� sin�

)

cos�

(11)
dΩ

d�
=

�

Ω
(T

m
(Ω) − A�2�n

Ω cos� sin�)

(12)
dA

d�
= −

�

Ω�
n

(�1Ω
2 cos� + A�

n
� sin�) sin�

(13)
dΘ

d�
=

��1

Ω
−

�

A�nΩ
(�1Ω

2 cos� + A�n� sin�) cos�

(14)

Ω = � + �f
�

A = a + �f
a

Θ = � + �f
�

(15)�� =
�

�

[

T
m
(�) +

1

2
�2a�n

� sin �

]

(16)a
� = −

�

2�

(

a� + �1

�2

�
n

sin �

)

where ��2 = �n − �,∙� = d(∙)∕d�.
Although the higher-order approximate solutions of 

the system can be obtained by Eq.  (14), the first-order 
approximation of each physical quantity is enough for 
qualitative analysis based on the solution form of the 
perturbation method. Therefore, when �� = 0 , a� = 0 and 
�� = 0 , we can obtain the first approximation solution 
(amplitude a and phase angle � ) for the steady state motion 
of the system as follows:

By substituting Eqs. (18) and (19) into Eq.  (15) and 
considering �� = 0 , the torque balance equation of the motor 
when the system runs in the steady state can be obtained as 
follow:

where TL(�) = c1� + c�2
n
a2∕(2�) is the total load torque of 

the motor.

3.2  Stability analysis

Based on Lyapunov-Poincare method, the first approximation 
solutions are perturbed as follows[6]:

where �c , ac , �c represent the steady-state value, and ��1 , 
�a1 , ��1 represent the perturbed terms.

Substituting Eq. (21) into Eqs. (15–17), the state equation 
of the system can be obtained as follow:

 where �� = [�1
�, a1

�, �1
�]T , � = [�1, a1, �1]

T , � = [bij](i,j=1,2,3)
.

The characteristic roots of Eq. (22) are deduced as follow:

By applying Routh-Hurwitz criterion, the stability 
conditions of the system are derived. The first stability 
condition is as follow:

(17)�� =
�

�

(

�2 −
�1�

2

2a�
n

cos �

)

(18)a =
m0�

2r

m�n

√

4(�n − �)2 + c2∕m2

(19)tan � =
c

2m(�n − �)

(20)Te(�) − TL(�) = 0

(21)� = �c + ��1, a = ac + �a1, � = �c + ��1

(22)�� = ��

(23)�3 + B1�
2 + B2� + B3 = 0
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where Tn = d[Te(𝜔) − c1𝜔]∕d𝜔 < 0.
The second stability condition is as follow:

The third stability condition is as follow:

4  Numerical analysis and experiment

This section will adopt quantitative and qualitative 
investigations on Sommerfeld effect by using methods of 
numerical analysis and experiment. The relevant parameters 
are shown in Table 1.

4.1  Sweep frequency experiment

To prove the existence of the Sommerfeld effect in the exper-
imental machine shown in Fig. 1b, acceleration and decel-
eration experiments of the motor are conducted as depicted 
in Fig. 2. The experimental scheme is as follows: firstly, the 
target velocity is initially set to 650rpm; secondly, the motor 
velocity is changed by 2rpm every second, and the motor is 
driven by a Siemens frequency converter G120; finally, dur-
ing the experiment, the velocity and the vibration amplitude 
are recorded using a DH5922D data acquisition instrument.

From Fig.  2a, it is evident that the motor velocity 
exhibits two jumps during both acceleration (point a to b) 
and deceleration (point e to f). This observation confirms 
the existence of Sommerfeld effect in the vibration system 
driven by AC motor. Furthermore, it is noteworthy that the 
jump amplitude during acceleration is greater than that 
during deceleration.

In Fig. 2b, we can observe a similar difference in vibration 
amplitude jumps as in the motor velocity. A larger jump in 
velocity corresponds to a larger jump in vibration amplitude. 
When observing the amplitude curve changes, we notice 
that the amplitude increases slightly when the motor starts 
and stops. This occurs because the rotational velocity of the 
motor is relatively low, approaching the natural frequency 
of the fixed base in the experimental system. This proximity 
to the natural frequency leads to resonance, causing a slight 

(24)B1 =
1

J

(

c𝜔2
n
a2

2𝜔2
− Tn

)

+
c

m0

> 0

(25)

B3 =
ca2�2

n

J�2

[

(2�n − �)(�n − �) + 3c2
8m2

]

−
c2Tn
4Jm2

− 1
J

(

ca2�2
n

2�2 + Tn

)

(�n − �)2 > 0

(26)
B1B2 − B3 =

1

4J2m3𝜔4

{

c
{

4T2

n
m2𝜔4 − 4JTnmc𝜔

4 + J2𝜔4c2 + 4J2𝜔4m2(𝜔n − 𝜔)2
}

+ 2a4m2c𝜔4

n
m2

(

2𝜔2

n
− 3𝜔n𝜔 + 𝜔2

)

+ 2a4m2c𝜔4

n
c2 + a2m𝜔2

n
𝜔2

{

−6Tnmc
2 + Jc[3c2 + 4m2(𝜔n − 𝜔)2] − 4Tnm

3(2𝜔2

n
− 3𝜔n𝜔 + 𝜔2)

}}

> 0

increase in vibration amplitude during motor startup and 
shutdown.

In Fig. 2c, the changes in the electromagnetic torque of 
AC motor Te are displayed. According to the mechanical 
characteristics of AC motor, once the motor is powered, 
the electromagnetic torque Te rapidly reaches the maximum 
value, indicated by point g, corresponding to the goal veloc-
ity. At this point, the electromagnetic torque significantly 
exceeds the load torque, resulting in an additional electro-
magnetic torque being utilized to increase the motor's veloc-
ity. As the motor continues to operate, it seeks the torque 
balance point, leading to a reduction in the electromagnetic 
torque. This behavior is consistent with the mechanical 

characteristics of an AC motor. As the motor reaches its 
desired velocity, the electromagnetic torque approaches a 
level that matches the load torque, achieving a stable operat-
ing condition.

There are three jumps in Fig. 2c. The first and third jumps 
are caused by Sommerfeld effect, while the second jump 
is due to the deceleration command of the velocity. When 
Sommerfeld effect occurs, such as point a to b and point e 
to f, it also has a significant impact on the electromagnetic 
torque of AC motor. For example, the curve from g to c 
would be smooth if there were no Sommerfeld effect. The 
curve jumps from a to b because the motor's velocity escapes 
the frequency capture of the vibration system. As a result, 
the motor no longer requires as much electromagnetic 
torque. Similarly, the curve will suddenly increase when 
there is a frequency capture, such as at point e to f, which 
also causes the curve to become unsmooth.

In general, the electromagnetic torque decreases as the 
motor's velocity increases, according to the mechanical 
characteristics of AC motor. By observing Fig. 2c, it can be 
seen that the electromagnetic torque value from point g to c 
is greater than that of point d to h, even though the velocities 
are the same. This is because deceleration is different from 
acceleration, and the motor does not require a significant 
amount of electromagnetic torque during deceleration. Only 
when the electromagnetic torque is less than the load torque 
will there be a negative angular acceleration, reducing the 
velocity to zero.

Comparing Fig. 2a–c, the change in the electromag-
netic torque is consistent with the change in the veloc-
ity. Between 150 and 200 s in Fig. 2a, the velocity barely 
increases, indicating that the vibration system captures the 
motor’s velocity. Similarly, the velocity barely decreases 
from 280 to 340 s. When observing points g to a in Fig. 2c, 
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the electromagnetic torque curve decreases significantly at 
the beginning and then becomes slow when Sommerfeld 
effect occurs. Especially during the later stage of the veloc-
ity deceleration, the electromagnetic torque curve hardly 
changes when frequency capture happens.

Comparing the velocity, amplitude, and torque, the sys-
tem enters the capture state after 150 s due to the almost 
horizontal velocity curve. However, the vibration amplitude 
increases dramatically during this stage. The electromag-
netic torque decreases more slowly. When the phenomenon 
of the velocity jump occurs, the electromagnetic torque 
curve also exhibits a jump. These variations can be ana-
lyzed by considering the vibration amplitude. The significant 
decrease in vibration amplitude is a result of the velocity 
exceeding the resonance point, causing it to escape the fre-
quency capture of the vibration system. As a consequence, 
the load torque reduces, and the motor no longer requires 
as much electromagnetic torque. Consequently, the motor 
quickly finds a new balance point, leading to the observed 
jump in the electromagnetic torque curve.

The change in motor power is essentially consistent with 
its electromagnetic torque change, as shown in Fig. 2d. 
The only difference is that the power increases after the 
frequency capture occurs. This observation also elucidates 
the mechanism of Sommerfeld effect, wherein the motor's 

energy is utilized to increase the vibration rather than the 
velocity.

Based on Fig. 2c and d, it is evident that Sommerfeld 
effect still exists in the vibration system driven by the 
unbalanced rotor, even if the electromagnetic torque and 
motor power are sufficient to achieve the goal velocity. The 
reason for this is that during the occurrence of Sommerfeld 
effect, the torque and power of the motor do not reach their 
maximum values but remain less than the load torque for a 
certain period. In other words, as long as the electromagnetic 
torque remains greater than the load torque, the frequency 
capture of the vibration system does not occur. Similarly, 
this is also because the motor's torque is large enough to 
avoid the frequency capture.

In summary, Sommerfeld effect does exist in the vibration 
system driven by AC motor with an unbalanced rotor. If 
the electromagnetic torque of AC motor is insufficient to 
overcome its load torque during the frequency capture 
region, the motor's velocity will not increase. On the other 
hand, if the electromagnetic torque is sufficient, there 
will be a jump in the motor's velocity. This phenomenon 
highlights the significance of the electromagnetic torque in 
determining the behavior of the motor and its interaction 
with the vibration system.

Fig. 2  Sweep frequency experi-
ment. a Velocity of motor. b 
Vibration amplitude. c Elec-
tromagnetic torque of motor. d 
Power of motor
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4.2  Numerical analysis

In the sweep frequency experiment, clear asymmetry jumps 
in the acceleration and deceleration of velocity are observed. 
It is well known that the AC motor velocity is related to 
the power frequency. To better understand the mechanism 
of Sommerfeld effect's jumps, especially the relationship 
between input (power) and output (velocity and amplitude), 
the data in Fig. 2 is represented differently, with the power 
frequency f from the converter as the abscissa axis in Fig. 3a 
and b. Since the motor velocity is changed by 2 rpm every 
second in the experimental process, the changed rate of the 
frequency is approximately equal to 1/30 every second. 
Numerical analysis based on Eqs. (18) and (20) is shown in 
Fig. 3c and d. By comparing the theoretical and experimen-
tal results, it is evident that the two trends are consistent. The 
comparison between theory and experiment in Fig. 3 allows 
for a deeper understanding of Sommerfeld effect’s behavior 
and the correlation between power frequency and jumps in 
the system's acceleration and deceleration velocities.

When f is greater than 8.5  Hz, the vibration system 
begins to capture the motor's velocity. As shown in Fig. 3a, 
the velocity curve becomes almost horizontal. Despite 
the increasing frequency, the motor gains more and more 
energy. However, the motor's velocity does not increase. 
This is because the extra energy is used by the vibration 

system to increase the vibration, as depicted in Fig. 3b. 
As the frequency increases, the amplitude experiences a 
significant rise. In conclusion, Sommerfeld effect adheres 
to the principle of energy conservation. The additional 
energy is directed toward increasing the vibration amplitude 
rather than accelerating the motor's velocity, resulting in the 
observed behavior in the system.

Both theoretical analysis and experimental results 
demonstrate that the vibration amplitude curve exhibits a 
hard nonlinearity, curving to the right. Without considering 
the effect of the non-ideal source, the amplitude would 
show linear vibration as depicted in Fig. 1. Therefore, it is 
essential to take into account the impact of the non-ideal 
source in dynamic analysis. In summary, the nonlinearity 
introduced by the non-ideal source significantly affects 
the vibration behavior, and its consideration is crucial for 
accurate dynamic analysis.

Due to its nonlinear characteristics, the jump point of the 
upward velocity does not coincide with that of the downward 
velocity, reflecting the feature of time delay. Specifically, as 
the power frequency f increases, the amplitude x changes 
from point a to b; on the other hand, as f decreases, x from 
point c to d. While Sommerfeld effect exhibits hard non-
linearity, it is fundamentally different from stiffness non-
linearity, as observed in Fig. 3b. The nonlinear behavior in 
the amplitude-frequency curve of the non-ideal system is 

Fig. 3  Comparison of experi-
mental data and numerical 
results. a Experimental veloc-
ity. b Experimental vibration 
amplitude.c Numerical velocity. 
d Numerical vibration ampli-
tude
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primarily caused by the system's frequency capture phenom-
enon. This occurs when the angular velocity of the motor 
matches the excitation frequency of the external excitation 
force, leading to resonance near the natural frequency of 
the system and causing the frequency capture phenomenon.

As it is well known, once resonance occurs, the system's 
amplitude increases rapidly. In this scenario, the larger 
amplitude necessitates more energy input, considering 
energy conservation. However, the non-ideal source cannot 
provide infinite energy, leading to the situation where all the 
increased energy from the AC motor is utilized to maintain 
the resonant motion of the system. Consequently, there is 
no excess energy available to increase the angular velocity 
of the motor.

However, the frequency capture ability of the system 
does not persist indefinitely. Its existence is contingent on 
the condition that the amplitude increases with the rise 
of the power frequency. In reality, when the amplitude 
surpasses the resonant point, it starts to decrease, causing 
the system to vibrate without requiring as much energy. 
According to Eq. (2), assuming the same amount of input 
energy as before, the vibration now releases the excess 
energy, with some energy suddenly applied to the angular 
acceleration of the motor. Consequently, after the motor 
acquires significant angular acceleration, its angular 
velocity jumps from point a to b, as illustrated in Fig. 3c.

Next, let's analyze the velocity jump when the power 
frequency f decreases. As shown in Fig. 3d, although f 
passes through point b during the downward process, 
there is no jump phenomenon. This absence of a jump is 
because the system's amplitude does not change rapidly 
from point b to c. However, when f passes through point c, 
the amplitude jumps from point c to d. This sudden change 
in amplitude causes the load torque to increase rapidly. 
If the original input electromagnetic torque remains 
unchanged, the right-hand side of Eq. (2) will include a 
negative torque, leading to negative angular acceleration. 
Consequently, the velocity of the motor jumps again.

In summary, the Sommerfeld effect exhibits both the 
frequency capture ability and the amplitude-frequency 
characteristics of hard nonlinearity. Additionally, 
the existence of multiple equilibrium states in non-
ideal vibration systems is demonstrated by theory and 
experiment in Fig.  3. These dynamic properties are 
analyzed from the viewpoint of torque balance in the 
following content.

The experiments confirm the existence of Sommerfeld 
effect in the non-ideal vibration system driven by AC 
motor. Therefore, it is essential to investigate the mecha-
nism of Sommerfeld effect in this type of system. Figure 4 
illustrates the relationship between the electromagnetic 
torque and the load torque near the resonance region under 
different power frequencies of the motor.

From Fig. 4a, it is evident that the electromagnetic torque 
curve of AC motor is a nonlinear function of velocity, 
which distinguishes it from the mechanical characteristics 
of DC motor [9]. The electromagnetic torque Te of AC 
motor initially increases with the velocity until it reaches 
its maximum value. Afterward, the electromagnetic torque 
decreases with the further increase in velocity until it 
intersects with the load torque TL. It is worth noting that 
the velocity corresponding to the intersection between the 
electromagnetic torque and the load torque satisfies the 
torque balance equation Eq. (20).

Based on Eq. (18), the first approximation amplitude 
is also a nonlinear function of velocity, which results in 
a peak in the TL curve near the resonance region. Due to 
the existence of three intersections between TL and certain 
portions of the Te curves, it reflects the multi-solution 
characteristic of the nonlinear equation. The frequency 
region with three intersection points corresponds to the 
region where Sommerfeld effect appears. As a result, 
Sommerfeld effect can occur only when the velocity is 
within this specific frequency region. In other words, the 
Sommerfeld effect can only occur near the resonance region.

To better illustrate the relationship of the three 
intersection points, TL is subtracted from Te, as shown in 
Fig. 4b. It can be observed that not all curves have three 
zero points, indicating that certain conditions need to be met 
for the occurrence of Sommerfeld effect. The mechanism 
of Sommerfeld effect lies in the presence of three points 
simultaneously, which leads to the velocity jump. For 
instance, at 9.4 Hz and 11.1 Hz, there is no jump because of 
two reasons. Firstly, the velocity at 9.4 Hz operates in sub-
resonance. Secondly, the electromagnetic torque at 11.1 Hz 
always exceeds its load torque, which prevents frequency 
capture. As the power frequency enters the region between 
9.9 Hz and 10.7 Hz, the motor's velocity becomes captured. 
Therefore, only when the power frequency is greater than 
10.7 Hz can it escape from frequency capture.

In summary, Fig. 4 employs the torque balance method 
to explain the mechanism of Sommerfeld effect. It is 
demonstrated that the occurrence of Sommerfeld effect 
depends on the relationship between the electromagnetic 
torque and the load torque.

As is well known, the existence of multi-roots in nonlin-
ear systems necessitates further stability criteria. Figure 5 
presents the three stability conditions corresponding to 
Fig. 3. It can be observed that the first stability condition 
in Fig. 5a and the third stability condition in Fig. 5c are 
satisfied under different power frequencies, while only the 
second stability condition in Fig. 5b is not satisfied in certain 
frequency regions. Therefore, the stability criterion condi-
tion of the non-ideal vibration system driven by AC motor in 
this model can be simplified to use only the second stability 
condition.
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Based on the previous analysis, we understand that 
the velocity jump is caused by the abrupt change in the 
load torque of the AC motor due to system resonance. 
Observing Fig. 5b, if the stability coefficient corresponding 
to the amplitude is negative, it implies that the amplitude is 
unstable. In other words, the actual system will not operate 
at this amplitude.

If the Sommerfeld effect occurs, there will be three 
zero points on the curve Te − TL in Fig. 4b. According to 
the stability criterion in Fig. 5b, one of these points is 
unstable. Therefore, the final stable state of the system 
will be chosen between the other two points. When the 
electromagnetic torque curve is tangent to the load torque 
curve at a critical frequency, there are only two points of 
intersection between the two torque curves in Fig. 4a, and 
both points of intersection are stable. Assuming that the 
system is at the maximum value of the critical frequency, 
even a slight increase in the power frequency will cause a 
jump in the motor's velocity. Similarly, when the system is 
at the minimum critical state, a slight reduction in the power 
frequency also leads to a jump.

In summary, the selected motion characteristic of the 
nonlinear vibration system leads to the velocity jump. In 

other words, the torque balance equation of the motor has the 
property of multiple solutions, resulting in multiple steady-
state motions. Based on Fig. 5b, it can be observed that the 
zero point of the torque difference curve in the ascending 
stage is unstable, while the zero point in the descending 
stage is stable.

4.3  Fixed frequency experiment

To verify the presence of multiple steady state motions, 
velocities corresponding to specific goal velocities are 
chosen based on Figs.  3 and 4. Velocities of 400rpm, 
500rpm, and 650rpm are selected, which all lie outside the 
frequency capture region. Specifically, 400rpm and 500rpm 
represent power frequencies that belong to sub-resonance, 
while 650rpm represents a power frequency that belongs to 
super-resonance.

As illustrated in Fig. 6a, when the goal velocity is set 
at 600rpm, two different actual velocities are observed. It 
is evident that the motor velocity jumps between 600 and 
650rpm during the acceleration stage and between 600 and 
500rpm during the deceleration stage. This observation con-
firms that 600rpm is within the frequency capture region.

Fig. 4  Torques with different 
power frequencies. a Veloc-
ity and torques.b Velocity and 
torque differences
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According to Fig. 6b, the system exhibits two stable 
actual velocities in the sub-resonance and super-resonance 
regions, respectively. This distinction can also be observed 
in the amplitude change, as the amplitude of 600rpm in sub-
resonance is greater than that in super-resonance. These 
findings further support the existence of multiple steady 
state motions in the non-ideal vibration system driven by 
AC motor.

In Fig. 6c, it can be observed that the electromagnetic tor-
ques of the two steady-state motions at 600 rpm are different. 
The electromagnetic torque of 600 rpm in the sub-resonance 
region is greater than that in the super-resonance region due to 
the different amplitudes, leading to different load torques. The 
switching of the power frequency in the converter results in 
several curve spikes in the acceleration stage. However, such 
spikes do not exist in the deceleration stage because the elec-
tromagnetic torque must be less than the load torque during 
deceleration.

Comparing Fig. 6a and c, it should be noted that the elec-
tromagnetic torque is a function of the actual velocity. In the 
acceleration stage, when the actual velocities of 500 rpm and 
600 rpm are close, their electromagnetic torques are also close. 
However, the power of the motor is dependent on the ampli-
tude since the load torque is related to the amplitude. In other 
words, the power of the motor represents the input energy, 
while the amplitude represents the output energy. Therefore, 

the change in motor power must follow the law of energy 
conservation.

In conclusion, this set of fixed frequency experiments con-
firms that Sommerfeld effect will occur whenever the capture 
condition is satisfied. Additionally, the motion of the electro-
mechanical coupling system must adhere to the law of energy 
conservation. The experimental observations and analyzes 
support the understanding of Sommerfeld effect and its impact 
on the dynamics of the non-ideal vibration system driven by 
AC motor.

5  Conclusion

Taking the mechanical characteristics of AC motor into 
consideration, this paper investigates Sommerfeld effect 
theoretically, numerically, and experimentally in a spring 
mass damping system excited by an unbalanced rotor. The 
results demonstrate the presence of Sommerfeld effect in 
the vibration system driven by an AC motor. Even when 
the torque and power of the motor are sufficient to reach 
the desired velocity, frequency capture can still occur if 
the electromagnetic torque of the motor is less than its 
load torque. The mechanism behind frequency capture 
lies in the fact that the non-ideal source cannot provide 
infinite energy instantaneously. As a result, the increased 

Fig. 6  Fixed frequency experi-
ment. a Velocity of motor. b 
Vibration amplitude.c Electro-
magnetic torque of motor. d 
Power of motor
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energy of AC motor is used to sustain the resonant motion 
of the system rather than increasing the angular velocity. 
Once the angular velocity of AC motor surpasses the reso-
nance point, the vibration amplitude of the system rapidly 
decreases, releasing excess energy to boost the motor's 
angular velocity. This leads to a jump phenomenon in the 
system's velocity. Additionally, the electromagnetic torque 
and power of AC motor undergo significant changes dur-
ing this process. Particularly, the substantial change in 
power reflects the occurrence of frequency capture, as 
confirmed by experimental verification. The torque bal-
ance equation can be utilized to determine whether the 
system exhibits Sommerfeld effect. If the condition for 
the existence of Sommerfeld effect is satisfied, there will 
be three intersection points between the electromagnetic 
torque and the load torque, resulting in the jump phenom-
enon in the motor's velocity. It is important to note that 
the jump phenomenon occurs both during the accelera-
tion and deceleration of the motor's velocity, with a time 
lag between them. This is attributed to the hard nonlinear 
nature of the amplitude-frequency characteristic curve, 
which contributes to the selective motion characteristics 
of the system.
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