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Abstract
The dynamics of a cantilevered fluid-conveying straight piping system composed of a left pipe, a right pipe and a short 
threaded joint implemented intermediately is investigated. First of all, the flow-induced equation of motion is deduced with 
the consideration of rotatory inertia as well as flexural stiffness of the joint, where the joint is treated as a segment of pipe 
according to the principle of equivalent substitution and a regulatory factor is introduced to represent the reduction of flexural 
stiffness at the joint. Secondly, DTM-Galerkin (Galerkin’s method whose shape functions are derived by differential trans-
formation) is employed to discretize the above equation of motion, and the eigenfunction for calculating the piping system’s 
natural frequency is obtained. Finally, influences of some vital parameters including regulatory factor, length of the left pipe 
and rotatory inertia of the joint on the piping system’s dynamics are studied under given conditions. The research proposes 
an equivalent method to study the influence of short threaded joint on the pipe dynamics, which has reference meaning on 
the experimental research about the impact of threaded joint on pipe dynamics, especially in curve fitting when studying the 
dynamic characteristics of pipes, and can be radiated to study other connection forms in piping system.

Keywords Fluid-conveying piping system · Short threaded joint · Rotatory inertia · Regulatory factor · DTM-Galerkin

List of symbols
di  Inner radius of two pipes and the equivalent joint
do  Outer radius of two pipes
Do  Outer radius of the equivalent joint
w  Lateral displacement
x  Horizontal coordinate
t  Time
L1  Length of the left pipe

L2  Total length of the left pipe and the joint
L  Total length of the whole piping system
Ep  Elastic modulus of two pipes
ρp  Density of two pipes
Ap  Cross-section area of two pipes, Ap = �(d2

o
− d

2
i
)∕4

mp  Mass per unit length of two pipes, mp = �pAp

Ip  Cross-section moment of inertia of two pipes, 
Ip = �(d4

o
− d

4
i
)∕64

Ej  Elastic modulus of the equivalent joint
ρj  Density of the equivalent joint
Aj  Cross-section area of the equivalent joint, 

Aj = �(D2
o
− d

2
i
)∕4

mj  Mass per unit length of the equivalent joint, mj = �jAj

Ij  Cross-section moment of inertia of the equivalent 
joint, Ij = �(D4

o
− d

4
i
)∕64

Jj  Rotatory inertia per unit length of the equivalent joint
ρf  Density of fluid
Af  Cross-section area of fluid, Af = �d

2
i
∕4

mf  Mass per unit length of fluid, mf = �fAf

U  Cross-section average flow velocity
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1 Introduction

Pipes are indispensable accessories in various fluid-con-
veying occasions, such as oil exploration, gas transmis-
sion, urban water supplying, rocket propulsion, nuclear 
reactor cooling, etc.; therefore, the related fluid–structure 
coupling dynamics has attracted extensive attentions in 
recent years. Scholars have carried out a lot of researches 
on this problem and have made fruitful achievements 
in mechanical models, modeling theories, numerical 
algorithms, etc. To be specific, beam theories including 
Euler–Bernoulli [1, 2] or Timoshenko beams [3, 4] are 
commonly used to model pipes’ mechanical behavior. 
Typical theories such as Hamilton principle [5, 6], New-
ton’s second law [7], energy method [8], D’Alembert prin-
ciple [9], etc., have been successfully adopted to model 
the governing equation with regard to pipe’s movement. 
Numerous methods developed from scratch or transplanted 
from other fields have been successfully on the problem, 
such as transfer matrix method (TMM) [10, 11], Galerkin’s 
method [12–14], differential quadrature method (DQM) 
[15, 16] and its general format (GDQM) [17], green func-
tion method (GFM) [18, 19], differential transformation 
method (DTM) [20], etc., as concluded by Païdoussis [21], 
dynamics of pipes conveying fluid has become a model 
dynamical problem, the experience gained in studying 
this problem can be radiated into other areas of applied 
mechanics.

Referring to relevant researching contents, it can be 
concluded that the investigations surrounding pipe dynam-
ics can be divided into two branches, i.e., experimental and 
theoretical researches, respectively. In terms of theoretical 
research, the basic researching path can be summarized as 
follows: (i) abstracting the actual problem into mechanical 
model; (ii) using appropriate mathematical tools to express 
the mechanical model as a partial differential equation 
(PDE) of displacement and (iii) developing a numerical 
algorithm to solve the above PDE. Based on the above 
three steps, scholars have published a large number of sig-
nificant achievements, e.g., for straight pipes, Païdoussis 
[22] proposed a wide spread PDE to describe its linear 
vibration, where he considered numerical factors affect-
ing pipe’s transverse motion, which inspired subsequent 
researchers a lot. Guo et al. [23] established a linear PDE 
considering the flow model modification factor and figured 
out its exact values for different flow patterns. In 2019, 
aiming at a fluid-conveying pipe composed of functionally 
graded material, Tang and Yang [24] studied its post-buck-
ling behavior and nonlinear vibration; in the same year, 
they studied the fractional dynamics when the pipes are 
subjected to the excitation of supporting foundation [25] 
and nonlinear free vibration of a fractional dynamic model 

for the viscoelastic pipe conveying fluid [26]. For curved 
pipes, Misra et al. [27, 28] established the linear equation 
of motion and proposed three theories, i.e., inextensible, 
modified inextensible and extensible theories, respectively, 
in 1988, their work laid a theoretical foundation for later 
researchers. In 2017, Zhao and Sun [29] studied the in-
plane forced vibration with the consideration of added 
mass and damping along both axial and transverse direc-
tions according to modified inextensible theory. In 2019, 
Łuczko and Czerwiński [30] employed Timoshenko beam 
model to study flow-induced 3D motions of a curved pipe, 
and 2 years later, they investigated the dynamic behavior 
of curved pipes in the shape of circular arcs conveying 
fluid [31]. As a summary, it can be found that a number 
of research directions have gradually formed where typi-
cal ones are mainly composed of: (i) nonlinear vibration 
including geometric nonlinearity and motion nonlinear-
ity, such as Zhu et al. [32] studied nonlinear nonplanar 
dynamics of porous functionally graded pipes conveying 
fluid on the basis of Euler–Bernoulli beam theory. Wang 
et al. [1] investigated three-dimensional dynamics of a 
cantilevered pipe conveying fluid with the consideration 
of pulsating flow velocity, where the pipe is also modeled 
by Euler–Bernoulli beam; (ii) dynamics of complex spatial 
configuration, such as Zhang et al. [8] proposed a semi-
analytical method analyzing the dynamics of U-shaped, 
Z-shaped and regular spatial pipelines supported by mul-
tiple clamps based on Timoshenko beam theory, where the 
key steps are discretizing the piping system into charac-
teristic elements and replacing connections by equivalent 
springs. Guo et al. [33] analyzed the vibration response of 
L-shaped fluid-conveying pipes subjected to base excita-
tion and pulsation excitation concurrently by a modified 
transfer matrix model. Wang et al. [34] solved the flow-
induced vibration of a piping system composed of a flex-
ible pipe, and a rigid pipe is a class of hybrid flexible-rigid 
dynamical problem and (iii) more refined research object, 
such as Dou et al. [7] modeled and performed parametric 
studies of retaining clips on fluid-conveying pipe, where 
the clip is modeled as a rigid body with a certain width, 
which is elastically connected to the base. Cao et al. [35] 
proposed a hybrid energy transfer matrix method to ana-
lyze the dynamics of fluid-conveying piping system with 
arbitrary branches.

Threaded connection is very common seen in engineering 
practice, while pipes connected by threaded joint are often 
used to extend the conveying distance of inner fluid, which 
makes the application scenarios of pipes more diverse. 
Even though great progresses have been made with regard 
to fluid–structure coupling dynamics of fluid-conveying pip-
ing system as mentioned above, the theoretical research on 
the impact of threaded joints on the dynamic behavior of 
piping system is seldom mentioned to the best of authors’ 
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knowledge, one reason is it’s rather difficult to accurately 
formulate the mechanical behaviors at the joint. In order to 
solve the problem while avoiding complex processes, a new 
idea modeling the whole piping system is proposed on the 
premise of equivalent flexural stiffness in this paper, that is, 
a coefficient describing the reduction of elastic modulus at 
the joint is introduced, besides, due to the large radial size of 
the joint, its rotatory inertia is also taken into account in the 
modeling process, then obeying the basic researching path 
as mentioned above, the governing equation of the whole 
piping system can be predictably founded as a result.

The rest of this paper is organized as follows: In Sect. 2, 
the mechanical model of a cantilevered fluid-conveying 
piping system composed of a left pipe, a right pipe and 
a short threaded joint is founded, and the corresponding 
governing equation is deduced based on the existed litera-
tures. In Sect. 3, the characteristic equation is obtained by 
discretizing the above governing equation with the aid of 
DTM-Galerkin [36]. In Sect. 4, numerical calculations are 
performed, and the influences of some vital parameters on 
the dynamics of this piping system are studied under given 
conditions; in addition, appropriate discussions are made. In 
Sect. 5, conclusions are drawn.

2  Mechanical model and governing 
equation

A cantilevered fluid-conveying piping system composed of 
a left pipe, a right pipe and a short threaded joint as Fig. 1 is 
considered in this paper, where the left pipe is connected to 
the right pipe by a joint through screw thread.

To promote the following investigation, some assump-
tions are made beforehand as follows: (i) Both the left and 
the right pipes are uniform and slender so that the whole 
piping system behaves like a Euler–Bernoulli beam although 
there is a short threaded joint; (ii) the internal fluid is incom-
pressible and non-viscous so that it is modeled by plug flow 
and (iii) both pipes and the joint are made of the same mate-
rial, and cross-section shapes are all circular; furthermore, 
there is no gap between pipes and the joint.

It is inevitable that the flexural stiffness at the joint will 
reduce due to threaded connection, then according to the 

principle of equivalent substitution, if the cross-section 
size of the joint keeps unchanged, its elastic modulus 
should decrease to some extent to describe the reduction 
of flexural stiffness as it is the product of elastic modulus 
and cross-section moment of inertia; therefore, the elastic 
modulus at the joint can be written as the product of a 
coefficient α (defined as regulatory factor in this paper) 
and Ep, i.e., Ej = �Ep ; however, since the mass and volume 
have not changed, the density remains unchanged, i.e., 
�j = �p . In addition, in order to describe the variation of 
cross-section moment of inertia and mass when it comes to 
the equivalent joint, two parameters are defined as follows:

In the following, ‘joint’ is used instead of ‘equivalent 
joint’ without causing ambiguity. According to Newton’s 
second law, the force balance equation of the piping sys-
tem can be written as follows [37, 38]:

where 

In Eq. (3), the bending restoring force is on the left of 
the equal sign, and on the right of the equal sign, there 
are acting force from fluid, inertia forces of pipe and 
joint and moment of inertia of joint from the left to right, 
respectively.
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Fig. 1  Mechanical model of 
the researched fluid-conveying 
piping system L

L2

x

w

Oρf, U

L1



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:636

1 3

636 Page 4 of 10

After further manipulations, Eq. (3) can be rewritten 
as follows:

Boundary conditions of the current researching pipping 
system can be written as follows:

For simplicity, some dimensionless parameters are defined 
as follows:

By substituting Eq. (6) into Eq. (4), one will obtain

where 

m(�) = mp{H(�) − H(� − 1)−
(

1 − �2
)[

H
(

� − �1
)

− H
(

� − �2
)]}

Similarly, Eq. (5) can be expressed in dimensionless form 
as follows:

For simplicity, dimensionless parameters are the default 
preferences in the next study.

3  Deduction by DTM‑Galerkin

According to Galerkin’s discretization rule, solution of Eq. (7) 
can be expressed by

(4)
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where N represents the number of superimposed items, �n(�) 
is the nth shape function and qn(�) is the nth generalized 
coordinate.

With the introduction of Eq. (9), Eq. (7) will become

By mul t ip ly ing  each  shape  func t ions  �m 
(m = 1, 2, 3, … , N) with Eq. (10), and then integrating 
the result with respect to ξ from 0 to 1, the result can be 
finally written as follows:
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Eq. (11) can be rewritten in matrix form as follows:

Solution of Eq. (12) can be written as follows:
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With the introduction of Eq. (13), Eq. (12) will become

To obtain non-trivial solution of q0, determinant of its 
coefficient matrix should be equal to zero, i.e.,

By solving Eq. (15), the eigen values ωj (j = 1, 2, 3, ⋯) 
with complex form will be obtained, where the real part 
(denoted by Re(ω)) is the dimensionless natural frequency, 
while the imaginary part (denoted by Im(ω)) is related to 
damping [21].
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4  Numerical results and discussion

4.1  Physical parameters and preparations 
for calculation

A real piping system is considered in this section, where 
both pipes and the joint are all made of ordinary carbon 
steel, and pure water flows inside. Some specific physical 
parameters are listed in Table 1.

With the combination of Eq. (6), the calculation result 
of mass ratio is � = 0.14.

As Ref. [36] shows, DTM-Galerkin is an efficient tool in 
studying dynamics of a fluid-conveying pipe; therefore, it is 
used directly in the current problem, where the shape func-
tions are written as follows [39]:

where �̃�n represents the nth natural frequency, and N0 
denotes the iterations in DTM. In order to give considera-
tion to calculation accuracy and efficiency simultaneously, 

(16)

𝜑n(𝜉) =

N0�
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�̃�
2i
n
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n
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i=0

�̃�2i
n

(4i+1)!

N0�

i=0
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2i
n

(4i + 3)!
𝜉
(4i+3)

Table 1  Physical parameters of 
the current piping system

Ep/GPa L/m di/mm do/mm Do/mm L2 − L1/mm ρp/kg  m−3 ρf/kg  m−3

206 5 30 40 50 50 7800 1000

Fig. 2  First four natural frequencies as functions of flow velocity under given parameters
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Fig. 3  Argand diagrams under different regulatory factors
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referring to Ref. [36], N0 is taken as 60, while N is equal to 
8 in the following.

4.2  Calculations of natural frequencies 
following flow velocity

Variations of the first four natural frequencies following flow 
velocity are calculated and shown in Fig. 2, where regula-
tory factor α, length of left pipe ξ1 and rotatory inertia of the 
joint γ are given beforehand, and for comparison, the case 
‘uniform pipe without joint’ is also calculated.

Comparing Fig. 2a with Fig. 2b, it can be found that add-
ing the joint slows down the speed the 1st mode decrease 
to zero, i.e., from u0 ≃ 6.5 to u0 ≃ 7.2 . Combining Fig. 2b 
and Fig. 2c, it is obvious with the decrease in regulatory 
factor, the interval that the 1st mode is equal to zero short-
ens. The influence of rotatory inertia on natural frequency 
is very great as Fig. 2d shows, specifically, the 1st mode 
abnormally increases continuously with the increase in flow 
velocity compared with other three subgraphs, while the 2nd 
mode decreases to zero finally following the increase in flow 
velocity.

Fig. 4  Argand diagrams under different lengths of the left pipe
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4.3  Researches on the stability of the piping system

As mentioned in Ref. [21], the criteria for determining the 
stability of a piping system from the view of numerical 
calculation are as follows: If Re(�) ≠ 0 and Im(�) = 0 , 
the pipe will flutter, while if Re(�) = 0 and Im(�) = 0 , 
the divergence will appear. Based on the above principle, 
influences of some important parameters including regu-
latory factor, length of the left pipe and rotatory inertia 
of the joint on the piping system’s stability are studied in 
this subsection.

4.3.1  Regulatory factor, i.e., α

If �1 = 0.4 and � = 0 , then variations of Re(ω) and Im(ω) 
versus flow velocity can be worked out by the current 
method; thereafter, the Argand diagrams under different 

regulatory factors can be obtained as Fig. 3 shows, where 
the values adjacent to the critical flow velocities are 
marked by black dots combined with specific values; in 
addition, all flow velocity ranges are u ∈[0, 10] hereafter 
in this paper.

Combining all subgraphs of Fig. 3, it can be found that 
with the increase in regulatory factor, the critical velocities 
for flutter increase, meaning that if the connection stiffness 
of the threaded joint gets closer and closer to the pure pipe, 
the system will be more and more stable.

4.3.2  Length of the left pipe, i.e., ξ1

If � = 0.9 and � = 0 , then variations of Re(ω) and Im(ω) ver-
sus flow velocity can be worked out by the current method; 
thereafter, the Argand diagrams under different lengths of 
the left pipe can be obtained as Fig. 4 shows.

Fig. 5  Argand diagrams under different rotatory inertias of the joint
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As Fig. 4 shows, variation of the length of the left pipe 
may lead to the critical velocities increase or decrease; there-
fore, location of the joint is worthy of being paid special 
attention in engineering practice.

4.3.3  Rotatory inertia of the joint, i.e., γ

It is noteworthy that rotatory inertia of the joint is not a fixed 
value for the radius of gyration varies with the motion of the 
pipe. If � = 0.9 and �1 = 0.4 , then variations of Re(ω) and 
Im(ω) versus flow velocity can be worked out by the cur-
rent method; thereafter, the Argand diagrams under different 
rotatory inertias of the joint can be obtained as Fig. 5 shows.

As Fig. 5 shows, with the increase in rotatory inertia of 
the joint, all four natural frequencies decrease, but the criti-
cal velocities for flutter increase, showing that in the low-fre-
quency range, the flow velocity can be larger, and the system 
can still maintain stability, which is of great significance to 
improve the fluid-conveying speed in the low-frequency state 
in engineering practice.

5  Conclusions

The dynamics of a cantilevered fluid-conveying piping sys-
tem composed of two straight pipes and a short threaded 
joint implemented intermediately is investigated, and some 
important conclusions based on calculations can be drawn 
as follows:

 i. Increase in regulatory factor will promote the increase 
in critical velocities.

 ii. Variation of the length of the left pipe may lead to the 
critical velocities increase or decrease.

 iii. Increase in rotatory inertia of the joint will promote 
the decrease in natural frequencies, but increase in 
critical velocities.

The above conclusions have reference meaning on the 
experimental research about the impact of threaded joint on 
pipe dynamics, and the investigation can be radiated to study 
other connection forms in piping system.

The paper deals with the linear problems existing in fluid-
conveying piping system; however, some fluid properties, 
such as viscosity, flow velocity, pressure, etc., may arise 
some nonlinearities, which will be our researching content 
in the future.
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