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Abstract
The flutter phenomenon must be carefully evaluated, as it can lead structures to collapse. This study presents a methodol-
ogy based on computational fluid dynamics to obtain the flutter derivatives and the critical flutter velocity, through forced 
vibrations in bodies immersed in a fluid medium. Two approaches were analyzed. In the first (8COEF), torsion and flexural 
movements were imposed. In the second, simulations were carried out in torsion mode, and through linear equations (LE), 
the complete set of eight coefficients was obtained. While the first can be seen as the most robust, as all coefficients are 
obtained from computer simulations, the second is less computationally expensive. The study was applied to a 1:4.9 rectan-
gle and to the cross-section of the Great Belt East Bridge (GBEB). The simulations were submitted to turbulent flow with 
Reynolds number equal to 105 , using k–� SST and k–� SSTLM turbulence models. For the static case, simulations were 
performed to obtain the average values of the aerodynamic coefficients. OpenFOAM® was used to solve the Navier–Stokes 
equations for an incompressible fluid. The critical flutter velocity for the GBEB was estimated using the 8COEF and the LE 
approaches. It was noticed that the results estimated with the LE were effective and with a good approximation with those 
of the 8COEF but at a lower computational cost. All results were validated with numerical and experimental studies avail-
able in the literature. Finally, this research stands out in presenting an assertive and pragmatic CFD methodology to obtain 
critical flutter velocity on structures.
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1  Introduction

The mitigation of aeroelastic phenomena in structural engi-
neering has been a subject of research in numerous works. 
Slender and flexible structures, such as large-span bridges, 
tend to be more sensitive to wind action, directly influencing 
the project from its conception.

Aerodynamic and aeroelastic analyses must be care-
fully performed. For this, there is computational fluid 
dynamics (CFD), constantly evolving and increasingly 

used by researchers to obtain reliable results via numeri-
cal methods.

In this context, this study’s main objective is to use CFD 
for the aerodynamic and aeroelastic study of two profiles 
of interest to structural engineering: a rectangle with an 
aspect ratio (width/height ratio) 1:4.9 and the Great Belt 
East Bridge (GBEB), the latter in 1:7 scale.

As specific objectives, there are, first, aerodynamic 
studies with structures at rest and Reynolds number ( Re ) 
of 105 . k–� SST turbulence models, proposed by Menter 
et  al. [1], and k–� SSTLM, proposed by Menter et  al. 
[2], were employed. This study defines the simulations’ 
numerical parameters and evaluates the turbulence models’ 
performance.

Subsequently, the same geometries are evaluated under 
forced, torsional and vertical oscillation using the methodol-
ogy proposed by Le Maître et al. [3] to obtain flutter coef-
ficients or flutter derivatives. In the simulations, the k–� SST 
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and k–� SSTLM turbulence models were also used since 
the structures were submitted to the same number value of 
Re , that is 105.

Two approaches to obtaining the complete sets of flut-
ter derivatives are proposed in the literature and employed 
in this research. The first follows the original proposal of 
Le Maître et al. [3], where forced vibrations are applied in 
bending and torsion modes. The flutter derivatives are then 
correlated with the harmonic components of the lift force 
and aerodynamic moment signals. This approach is called 
8COEF, as eight aeroelastic coefficients are obtained from 
the CFD simulations for each study situation.

In the second approach, proposed by Matsumoto [4], sim-
ulations are performed in torsion mode only, and the coef-
ficients related to the flexural modes are linear combinations 
of those obtained in the simulated mode (torsion). Matsu-
moto [4] assumes a linear relationship between pressure and 
angle of attack and does not consider the contribution of vis-
cosity to aerodynamic forces. The validation of the depend-
ency relationship between the coefficients is done through 
experiments on rectangular profiles. The results obtained for 
the second approach are called LE. The purpose of LE is to 
reduce the computational cost of simulations.

Using the results obtained by 8COEF and by LE, the criti-
cal flutter velocity for the GBEB was evaluated. Finally, the 
results obtained by validating them with the literature were 
compared. It was verified that the proposed methodologies 
offer consonant results with the experimental and numerical 
data reported in the literature.

Consequently, some of the contributions of this research 
are:

•	 The evaluation of the performance of the k–� SST [1] 
and k–� SSTLM [2] turbulence models for the case stud-
ies. These are models designed to monitor adverse pres-
sure gradients in the boundary layer and the transition 
between laminar and turbulent regimes in this region. 
The evaluation of these models in the cases studied was 
not observed in the bibliographic review.

•	 When modeling flows using discrete techniques, special 
care must be taken regarding the treatment of the term 
associated with transport, which introduces nonlinear-
ity in the solution schemes. This research presents an 
extensive study, yet not observed in the literature, on 
using CFD techniques to treat the convective term for the 
GBEB example. The performances of the upwind (first-
order and bounded), quadratic upstream interpolation 
for convective kinematics—QUICK [5] (second-order, 
unbounded), linear upwind (second-order, unbounded), 
and limited linear [6] (first-/second-order, unbounded) 
techniques were investigated.

•	 The evaluation of two approaches, the 8COEF and the 
LE, to obtain the critical flutter velocity for the bridge 

profile is also a differential of this research. While the 
first can be seen as the most robust, all coefficients are 
obtained from computer simulations, the second is less 
computationally expensive. Many authors [4, 7] use the 
LE approach without, however, making a qualitative 
comparison with the complete 8COEF approach. In this 
research, a comparative analysis was performed between 
these methods, and it was observed that the LE approach, 
for the analyzed case of the GBEB, is assertive in obtain-
ing the critical flutter velocity, at a lower computational 
cost.

•	 The proposed methodology is simple and feasible since 
a two-dimensional linear self-excited aeroelastic analysis 
is performed. Furthermore, it contributes to certifying 
that the approximation LE can be effective and is a fast 
assessment of bridge flutter performance by the imposi-
tion of forced vibrations in torsion mode.

•	 Regarding treating temporal signals of torsion and/
or flexural flutter derivatives, a numerical routine was 
implemented by adjusting the dispersion of data from 
simulations via curve fitting by applying the least-square 
method (LSM). This avoids the use of decomposition 
of the signals at different frequencies and the Fourier 
transform, facilitating the interpretation of the obtained 
results.

This text is structured as follows: This section presents the 
relevance of the theme, the objectives, and the main con-
tributions of this research. Afterward, Sect. 2 is dedicated 
to a bibliographical review of several studies available in 
the literature and how their work contributed to the topic in 
question. Section 3 discusses the theory of the fundamental 
basis of fluid dynamics and turbulence models. In Sect. 4, 
we consider aspects of the solution, modeling, and method-
ology of the approaches employed in the research. Section 5 
deals with the characterization of the problem, the object of 
study, and the initial modeling conditions necessary for the 
simulations. Section 6 is dedicated to the research results 
and bringing a brief methodology about critical velocity. 
Finally, Sect. 7 highlights the conclusion and directions for 
future studies.

2 � Literature review

In recent decades, researchers have been engaged in study-
ing the aeroelastic phenomena resulting from the action of 
the wind on large structures through numerical and experi-
mental methods, seeking to guarantee the stability of these 
structures and prevent eventual accidents.

The research by Scanlan and Tomko [8] sought to associ-
ate the vibration phenomena of the Tacoma Narrows Bridge 
with the behavior of the NACA 0012 airfoil and proposed an 
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analytical method of free oscillation to measure the vibra-
tion coefficients of the bridge (flutter derivatives), similar to 
those of the airfoil. The airfoil results validated the experi-
mental method, and the study ended up being extended to 
other bridge geometries, attesting to the effectiveness of the 
proposed methodology.

Larsen [9] presented wind tunnel test results for three 
models of the GBEB structure. He studied the structure in 
geometric scale 1:80 to establish flutter performance and 
obtain mean coefficients Cd , Cl , and Cm . In the 1:200 scale 
tests, the structure was tested under laminar and turbulent 
conditions and under winds deviating from the GBEB axis 
to analyze the structure’s behavior associated with the dif-
ferent wind directions. On a scale of 1:300, the experiment 
allowed a faithful simulation of the atmospheric boundary 
layer at the bridge construction site.

Matsumoto [4], in his experimental study, analyzed the 
aerodynamic damping in rectangular sections under a lami-
nar flow regime, which still characterizes the aerodynamic 
instability of torsional flutter or coupled flutter. It also dis-
cussed the flutter derivatives obtained from the measurement 
of unstable pressure under forced oscillation. The contribu-
tion of his study was the proposal to estimate the flutter 
derivatives for bending through LE, one of the most favora-
ble contributions in current numerical studies to minimize 
the computational cost.

Scanlan et al. [10] investigated the interrelations and the 
approximate equivalences (or dependencies) among the flut-
ter derivatives of a low-velocity airfoil, which are analyti-
cally described. They obtained, experimentally, the flutter 
derivatives of three different bridge deck sections. The main 
finding of this research is that the approximate equivalences 
of flutter derivatives suggested by airfoil theory are seen to 
be contradicted mainly by experimental results, even in the 
case of a streamlined bridge deck such as Tsurumi.

The study by Larsen and Walther [11, 12] was based 
on the analysis of 2D incompressible viscous flows in five 
generic cross-sections of bridge decks, which were inves-
tigated using the meshless discrete vortex method and the 
code DVMFLOW®. “The DVMFLOW® code is a compu-
tational method designed to simulate two-dimensional, vis-
cous flows that introduce the no-slip boundary condition to 
calculate surface vorticity, which, in turn, helps determine 
the strengths of vortexes introduced into the flow field. To 
handle viscous diffusion, the code utilizes a random-walk 
algorithm.” The analysis provided average values of the 
coefficients Cd , Cl and Cm and St for fixed sections and flut-
ter derivatives for sections that were subjected to oscillatory 
crosswinds forced.

Le Maîte et al. [3] presented two methodologies, based 
on the resolution of the incompressible Navier–Stokes 
equations and a stream function-vorticity formulation, for 
calculating the aerodynamics coefficients associated with 

the motion-related force functions proposed by Scanlan and 
Tomko [8]. These are based on forced motion, employed in 
this research, and spring-mounted airfoil experiments.

Huang et  al. [13] proposed a domain decomposition 
method, based on the FLUENT® code and RNG k–� Reyn-
olds-averaged Navier–Stokes (RANS) turbulence model, to 
obtain the GBEB flutter derivatives. They discretized the 
computational domain into rigid, dynamic, and static bound-
ary layer mesh regions by controlling the height of mesh 
cells close to the object and employing the default wall func-
tion. The simulated results showed good agreement with the 
theoretical and experimental resolutions. This study proved 
the effectiveness of the computational method in obtaining 
the coefficients.

Bai et al. [14] solved the fluid–structure interaction (FSI) 
through a self-developed code, combined with CFX® and 
proposed an improved CFD method, based on interactive 
block coupling, which can be easily used for modeling 2D 
and 3D. To obtain the flutter derivatives, they performed a 
3D viscous incompressible turbulent flow simulation applied 
to the 3D analysis of the bridge deck, with a detached-eddy 
simulation (DES) turbulence model. DES is a transformation 
of a RANS model, in which the model switches into a large 
eddy simulation (LES) turbulence model in sharply refined 
regions. The flutter derivatives and the coefficients Cd , Cl 
and Cm obtained were then compared to the wind tunnel test 
results, demonstrating the prediction that the 3D simulations 
outperform the precision 2D simulations.

Jurado et  al. [15] developed analytical aeroelastic-
ity methods, which tried to solve deck movement equa-
tions, and involved classic aeroelasticity concepts that had 
already been applied to aeronautical engineering. Their 
main idea was a hybrid approach consisting of two phases: 
the first was to test a reduced deck section model in an 
aerodynamic wind tunnel, and the second was a computa-
tional stage to process the data obtained in the first phase, 
using the same linear approach from Le Maître et al. [3].

The research by authors Miranda et al. [16] numerically 
analyzed the capability of the k–� and k–� SST turbulence 
models. A RANS approach considering a 2D incompress-
ible flow was considered to verify this approach’s accuracy 
and limits of applicability. Therefore, the convergence of the 
results of the simulations carried out through the FLUENT® 
code, subjected to turbulent flow with Re 1.4 × 105 of the 
flutter derivatives in structures of elongated rectangular sec-
tions with different proportions, ranging from 1:5 to 1:20. 
The authors concluded that the k–� SST formulation proved 
to be more accurate than the k–� . Furthermore, k–� SST is 
more simplified configuration management due to its insen-
sitivity to turbulence-related input parameters than k–�.

Farsani et al. [17] presented the development of index 
functions (IFs) for the 2D cross-section of the GBEB. They 
implemented two approaches: In the time domain, the IFs 
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are determined by imposing a change of angle of attack. In 
the frequency domain, the IFs are the derivatives of the flut-
ter derivatives. To determine the aerodynamic response of 
the GBEB due to a pitching change in the angle of attack and 
to calculate the flutter derivatives of sinusoidal oscillations, 
they used the code DVMFLOW®. The authors concluded 
that the research proposal could be applied in developing 
reduced-order models (ROM) of aerodynamic loads suitable 
for investigating FSI.

Nieto et al. [7] addressed the numerical method with 2D 
URANS modeling, applying the k–� SST turbulence model 
and the LE approximation, proposed by Matsumoto [4] 
and improved by Tubino [18]. The simulation of the static 
coefficients Cd , Cl and Cm and of flutter was carried out in 
OpenFOAM®, in two geometries: the 1:4.9 rectangle and 
the GBEB cross-section. The analytical relation method was 
used to halve the number of simulations and thus reduce 
the computational cost for calculating the coefficients. The 
conclusion was that the methodology presented good results, 
with precision similar to those obtained by other authors.

Bakis et al. [19] addressed the issue of suppressing aer-
oelastic instabilities using trailing-edge and leading-edge 
controllable flaps. They combined a mathematical formula-
tion for capturing the essential aeroelastic characteristics of 
suspension bridges, using a reduced-size structural model, 
with the classical results from potential flow theory and The-
odorsen circulation function to input aerodynamic forces. 
Using feedback as well as a rational approximation of the 
circulatory term, they implemented the transformation of the 
wing-aileron-tab to the flap-deck-flap configuration.

The classic iterative process is based on a heuristic 
approach, including wind tunnel testing. The dependence of 
experimental aeroelastic studies on the cross-section of the 
bridge deck requires a high demand for resources. Therefore, 
to overcome this process, Cid Montoya et al. [20] proposed 
to apply a numerical strategy in the design of the GBEB 
deck: a surrogate model of the aerodynamic response of 
the deck and some changes from its original shape allowed 
through simulations in OpenFOAM®. With this proposal, the 
flutter derivatives were approximated through an almost sta-
tionary formulation, allowing the calculation of the critical 
velocity. These combined structural and aeroelastic optimi-
zation approaches contributed to the knowledge of improv-
ing GBEB performance.

Zamiri and Sabbagh-Yazdi [21] proposed a 2D numeri-
cal methodology that admits the variable angle of attack of 
the wind in the FSI, associated with rotations of the fixed 
cross-section of the GBEB, in the computational domain. 
In contrast, the flow approach’s gradual slope and the attack 
angle are applied to the far-field boundaries of the initial 
mesh. The coefficients Cd , Cl , Cm and flutter were obtained 
using the FLUENT® code. The accuracy of the strategy in 

obtaining the coefficients was demonstrated by comparing 
the results with data from the literature.

Costa et al. [22] compared the k–� and k–� SST, and LES 
Smagorinsky turbulence models applied in 2D numerical 
simulations with the CFX® of the GBEB model. Coefficients 
Cd , Cl , Cm , and St were studied, in addition to the flutter 
derivatives, to estimate the critical velocity. Thus, the results 
with the k–� SST were considered acceptable when com-
pared with the literature. However, the numbers obtained 
through the flutter results with the LES were more accu-
rate. The authors suggested that the rearrangement of the 
mesh after the oscillations of the board affects the simulation 
results. Therefore, it should be considered when selecting a 
turbulence model.

Since then, numerical approaches for analyzing large-
span bridge structures, such as the one proposed here, can 
provide an efficient alternative to wind tunnel tests; in this 
way, aerodynamic analyses seek a better aeroelastic and 
structural performance that can be applied. Although numer-
ical studies do not replace experimental ones, researchers 
have increasingly used this approach with the constant evo-
lution of computational tools.

One of the numerous advantages of CFD is that it allows 
aerodynamic and mathematical parameters, among others, 
to be modeled and adjusted for subsequent test execution in 
different virtual scenarios, simulating real scenarios. Thus, 
with a set of results, it is possible to verify which presents 
low performance and find the ideal scenario more easily. 
From there, prototypes are built, only of the models that 
performed well in the CFD simulations, for tests in a wind 
tunnel, for example.

3 � Theoretical basis

3.1 � Governing equations of fluid dynamics

In this research, the incompressible, viscous and Newtonian 
flow was assumed. The equations that model it are repre-
sented by the Navier–Stokes equations that express a physi-
cal–mathematical model, based on the conservation of mass 
and momentum, expressed in the Eqs. 1 and 2, respectively:

In Eqs. 1 and 2, � is the density of the fluid; p is the pres-
sure; v⃗ is the velocity field; ̄̄𝜏 = 𝜇

[(
∇v⃗ + ∇v⃗T

)]
 is the stress 

(1)∇v⃗ = 0

(2)𝜌
𝜕v⃗

𝜕t
+ 𝜌∇v⃗v⃗ = −∇p + ∇ ̄̄𝜏 + 𝜌g⃗ + F⃗
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tensor; � is viscosity; 𝜌g⃗ and F⃗ are gravitational and external 
forces, respectively.

3.2 � Turbulence models

This section briefly describes the k–� SST two-equation 
model and the k–� SSTLM four-equation model, which were 
adopted in this research.

3.2.1 � k–! SST

Menter [1] proposed this model based on the combination of 
the k–� and k–� models for modeling turbulent flows, allow-
ing the models to act at different points, but simultaneously, 
that is, in regions close to the wall use k–� and regions far 
from the wall use k–� . Therefore, it is possible to model 
turbulent regions with adverse pressure gradients, and in the 
vicinity of the boundary layer, [23, 24].

The k–� SST is composed of the transport equations (k) 
of the turbulent kinetic energy and its dissipation rate ( � ), 
described in 3 and 4.

Thus,

In the equations above, Uj represents velocity components, � 
is the molecular dynamic viscosity, Pk is a production term 
in Eq. 3, and � , �∗ , �k , and �� are empirical constants of 
the turbulence models. The term F1 is a blending function, 
defined as:

where F1 = 0 in the free flow region, the k–� model char-
acteristics are used, whereas in the viscous sub-layer, with 
F1 = 1 , properties of the k–� model are employed.

(3)
�k

�t
+ Uj

�k

�xj
= P̃k − �∗k� +

�

�xj

[(
� + �k�t

) �k
�xj

]

(4)

��
�t

+ Uj
��
�xj

=
�
�t
P̃k − ��2 + �

�xj

[

(

� + ���t
)��
�xj

]

+ 2
(

1 − F1
)

��2
1
�

�k
�xi

��
�xi

(5)

Pk = �t

�Ui

�xi

(
�Ui

�xj
+

�Uj

�xi

)
→ P̃k = min

(
Pk, 10 ⋅ �

∗k�
)

(6)

F1 = tanh

⎧⎪⎨⎪⎩

�
min

�
max

� √
k

�∗�y
,
500�

y2�

�
,
4��2k

CDk�y
2

��4⎫⎪⎬⎪⎭

Also, y is the distance from the wall to the first mesh 
point, ��2 is a constant, and CDk� is the cross-diffusion term, 
which is expressed as:

The turbulent viscosity of vortexes is defined as:

with the mean rate of flow deformation,

, and it is given by:

where I is the turbulence intensity and U∞ is the reference 
velocity.

The specific turbulent dissipation rate is given by:

where C� is a constant with a value of 0.09, and L is a refer-
ence length scale.

The term F2 is also a blending function for turbulent vis-
cosity defined as:

The values of �k , �� , � , and � are combined using:

The model constants are described in Table 1. This model 
has some updates in its formulation that can be verified in 
the research by Menter et al. [25] with more details.

3.2.2 � k–! SSTLM

Menter et al. [2] proposed that the k–� SSTLM model or �
-Re� , as it is also known, is a transition model based on cor-
relations. The model makes use of the transport equations for 
the intermittency ( � ) and moment-thickness transition of the 
Reynolds Number ( Re� ), respectively, described in 14 and 15, 
in addition to Eqs. 3 and 4 that are presented in 3.2.1.

(7)CDk� = max

(
2��2

1

�

�k

�xi

��

�xi
, 10−10

)

(8)�t =
a1k

max(a1�, SF2)

(9)S =
√

2SijSij

(10)k =
3

2

(
IU∞

)2

(11)� =
k0.5

C0.25
�

L

(12)F2 = tanh

⎡⎢⎢⎣

�
max

�
2
√
k

�∗�y
,
500�

y2�

��2⎤⎥⎥⎦

(13)� = F1�1 +
(
1 − F1

)
�2
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The production term ( P� ) and the destruction term ( E� ), 
introduced by Langtry [26], are defined in Eqs. 16 and 17, 
respectively.

In Eqs. 16 and 17, Fonset and Fturb are triggering functions 
that activate intermittency production and deactivate relami-
narization, respectively. ca1 , ca2 , ce1 , and ce2 are constants of 
the model. Ω represents the magnitude of vortexes. Flength 
and Re�c , the latter embedded in Fonset , are empirical cor-
relations expressed as functions of R̃e�t.

The production term ( P�t ) is designed to force the trans-
ported scalar R̃e�t to match the local value of Re�t calculated 
from an off-wall correlation. It is defined in Eq. 18 as follows:

where c�t is the model constant, � is a time scale, and F�t is 
a blending function that ensures that within the boundary 
layer, the production term is turned off and that the trans-
ported scalar Re�t corresponds to the value of the correlation 
Re�t = f

(
�� , Tu

)
 in the free stream, defined in Eq. 20:

with

In Eq. 10, the value of k is described. The complete formula-
tion can be verified in Menter et al. [2].

(14)
��

�t
+

�Uj�

�xj
= P� − E� +

�

�xj

[(
� +

�t

�f

)
��

�xj

]

(15)
�R̃e�t

�t
+

�UjR̃e�t

�xj
= P�t +

�

�xj

[
��t

(
� + �t

)�R̃e�t

�xj

]

(16)P� = Flengthca1S
[
�Fonset

]0.5(
1 − ce1�

)

(17)E� = ca2Ω�Fturb

(
ce2� − 1

)

(18)P�t = c�t
1

�

(
Re�t − R̃e�t

)
(1 − F�t)

(19)� =
500�

U2

(20)

Re𝜃t =

{(
1173 − 589.428Tu +

0.2196

T
u2

)
F
(
𝜆𝜃
)
, Tu ≥ 1.3%;

331.5
(
Tu − 0.5658

)−0.671
F
(
𝜆𝜃
)
, Tu > 1.3%

(21)Tu = 100

√
2∕3k

U∞

4 � Solution methods for obtaining flutter 
derivatives

4.1 � Numerical formulation

The static aerodynamic coefficients Cd , Cl and Cm depend on 
the geometric characteristics of the structure, the angle of 
attack of the wind, and also on the Re that expresses the rela-
tion between the inertial forces and the viscous forces of the 
flow described in Eq. 22.

where D is the characteristic dimension of the structure, U 
is the average velocity, � is the kinematic viscosity, � is the 
fluid density and � is the dynamic viscosity.

When a fluid flows over a structure, a resultant force and a 
moment arise about a given axis. These results, when decom-
posed in the wind direction and perpendicular to the wind, and 
in their dimensionless form, correspond to the coefficients of 
drag force Cd , lift Cl and moment Cm.

Figure 1 illustrates the force components resulting from 
the fluid–structure interaction, treated in 2D, and decom-
posed in the same direction as the fluid.

In Eqs. 23, the aerodynamic coefficients are defined.

where Fd and Fl are the drag and lift forces, M is the average 
moment, � is the fluid density, and B is the characteristic 
width of the structure.

The relationship between the vortex shedding frequency 
fv , the flow velocity U, and the characteristic height of the 
structure H defines the Strouhal number, St, expressed by 
Eq. 24.

The flutter aeroelastic phenomenon is characterized by an 
unstable oscillation guided by the flow and comprised of two 
degrees of freedom, rotation, and vertical translation [27]. 
The structure’s equation of motion can be seen in 25 and 26.

(22)Re =
DU

�
=

�DU

�

(23)Cd =
Fd

1

2
�U2B

;Cl =
Fl

1

2
�U2B

; Cm =
M

1

2
�U2B2

(24)St =
fvH

U

(25)mḧ + S𝛼𝛼̈ + chḣ + khh = L

Table 1   Constants from the k–� 
SST turbulence model

�k1 ��1 �
1

�
1

�k2 ��2 �
2

�
2

�∗ a
1

0.85 0.50 0.075 0.55 1.00 0.856 0.0828 0.44 0.09 0.31



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:641	

1 3

Page 7 of 24  641

where m is the mass per unit length, S� = ma is the inertial 
coupling between twisting motions and vertical displace-
ment, and � the distance between the elastic center of torsion 
and the center of mass, I� is the mass moment of inertia, kh , 
k� are the stiffnesses, the mechanical damping coefficients 
are ch and c� . L and M are the aeroelastic forces. In the case 
of symmetrical profiles, the center of mass lies in the vertical 
plane of the centerline, and in this case, � = 0 [27].

In Fig. 2, the modeling of the problem can be verified.
Various forms for the linear expression for L and M 

have been employed [27]. This research employs the ana-
lytical formulation proposed by Scalan and Tomko [8] and 
Le Maître [3], in which L and M are expressed in terms of 
the flutter derivatives H∗

i
 and A∗

i
 ( i = 1, .., 4).

so K is the reduced frequency defined as:

B is the deck width, � the circular frequency of oscillation, 
h is the heave displacement, � is the torsional rotation ḣ and 
𝛼̇ are the time derivatives.

The Strouhal number (St) in Eq. 24 is a dimensionless 
parameter that relates the frequency of vortex shedding or 
unsteady flow phenomena to the flow velocity and a charac-
teristic length scale. The reduced frequency K in equation 29 
helps determine the level of aeroelastic coupling between the 
aerodynamic loads and structural response.

Another significant parameter is the reduced velocity ( Ur ), 
as the flutter derivatives are often expressed as a function of 
this velocity, defined in Eq. 30.

(26)S𝛼 ḧ + I𝛼𝛼̈ + c𝛼𝛼̇ + k𝛼𝛼 = M

(27)L =
1

2
𝜌U2B

[
KH∗

1

ḣ

U
+ KH∗

2

B𝛼̇

U
+ K2H∗

3
𝛼 + K2H∗

4

h

B

]

(28)M =
1

2
𝜌U2B2

[
KA∗

1

ḣ

U
+ KA∗

2

B𝛼̇

U
+ K2A∗

3
𝛼 + K2A∗

4

h

B

]

(29)K =
B�

U

where f is the frequency (in Hz) imposed on the structure.
In this research, the flutter derivatives are obtained through 

the methodology proposed by Le Maître et al. [3]. For differ-
ent values of K, forced sinusoidal vibrations in h or alpha are 
imposed on the structure. The lift force (L) and moment (M) 
responses are decomposed, and the sinusoidal and cosine con-
tributions are associated with the respective parcels in 27 and 
28. Note that the coefficients H∗

1
 , H∗

4
 , A∗

1
 and A∗

4
 have relation-

ship with the vertical movement h, while the others compose 
the torsional vibration �.

In the solution of Eqs. 27 and 28, Eqs. 31 and 32, which 
are sinusoidal functions, are used to analyze displacements of 
flexural and torsion movements.

where h0 and �0 are the amplitudes of the oscillations.

4.2 � L and M signal processing: least‑square method 
(LSM)

We obtain the flutter derivatives by extracting the scattered 
points in the time domain Cl and Cm and adjusting them by 
the least-square method (LSM). Equation 33 represents any 
harmonic signal x(t), with its amplitude �amp (see Eq. 34), its 
oscillation frequency 𝜔̄ , and its phase angle � (see Eq. 35).

The amplitude �amp and the phase angle � are given by:

(30)Ur =
U

fB

(31)h(t) = h0 sin(𝜔t) → ḣ(t) = h0𝜔 cos(𝜔t)

(32)𝛼(t) = 𝛼0 sin(𝜔t) → 𝛼̇(t) = 𝛼0𝜔 cos(𝜔t)

(33)x(t) = 𝜌amp cos(𝜔̄t + 𝜃)

(34)�amp =
√
A2 + B2

(35)� = tan−1
(
−B

A

)

Fig. 1   Aerodynamic forces on the cross-section of the GBEB deck

Fig. 2   Modeling problem on the cross-section of the GBEB deck
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Analogously, the variable dependent on the response of the 
coefficients as a function of time is represented by x(t); the 
frequency of movement associated with each reduced veloc-
ity, per 𝜔̄ , and A and B are numerical constants. The fol-
lowing form (see Eq. 36) represents the curve fitting made 
from the coefficients responses, approximating the solution 
of Eq. 33.

where the term that minimizes the sum of squares of the 
residuals is am ; the function to be adjusted is gm(t) , and the 
constants A and B of terms �amp and � of Eq. 33 are ao and 
a1 , respectively.

4.3 � Dimensionless coefficients of flutter (8COEF) 
and linear equations (LE)

After some manipulations, the expressions 37–40 for the 
torsion movement and 41–44 for the bending movement are 
obtained for the identification of the dimensionless flutter 
derivatives.

(36)
m∑
k=0

amgm(t)

(37)H∗
2
=

a(Cl)

2KB2�0�

(38)H∗
3
=

b(Cl)

2BK2�0

(39)A∗
2
=

a(Cm)

2KB3�0�

(40)A∗
3
=

b(Cm)

2K2B2�0

(41)H∗
1
=

a(Cl)

2KBh0�

(42)H∗
4
=

b(Cl)

2K2h0

(43)A∗
1
=

a(Cm)

2KB2h0�

(44)A∗
4
=

b(Cm)

2K2Bh0

where a(Cl or Cm) are the cosine amplitude, and b(Cl or Cm) 
are the sine amplitude.

A second approach, proposed by Matsumoto [4], pro-
poses to calculate the flexural coefficients H∗

1
 , H∗

4
 , A∗

1
 and A∗

4
 , 

from the torsion coefficients H∗
2
 , H∗

3
 , A∗

2
 and A∗

3
 . The hypoth-

esis adopted by the referred author relies on the assumption 
that unsteady pressure is proportional to the magnitude of 
the relative angle of attack. Matsumoto [4] validates this 
hypothesis through experiments on rectangular sections. 
These relationships are presented in Eqs. 45–48.

4.4 � Methodology

The methodology consists of three steps: pre-processing, 
processing, and post-processing.

In the pre-processing step, the geometry, the object of 
study, is initially chosen. Next, the choice of the mesh gen-
erator program is made (Gmsh® was chosen). Then, the 
computational domain and mesh type are defined. Here, tri-
angular elements discretized in finite volume method (FVM) 
were chosen.

Next, boundary conditions (Sect. 5) and the characteristics 
of the fluid to be simulated are defined (in this case, incom-
pressible, Newtonian, and viscous fluid). These characteris-
tics are governed by the Navier–Stokes equations (Sect. 3.1), 
which will be solved during the simulation. For this purpose, 
a solver is used. In this case, PIMPLE is employed. Finally, 
the turbulence models to be used are chosen.

In the processing step, the simulation of the static case is 
performed using a simulator (OpenFOAM® was chosen), with 
the chosen turbulence models. Then, the numerical schemes to 
be used in the simulation are selected to obtain the static coef-
ficients Cd , Cl , and Cm , as well as St (Sect. 4.1). If the results 
are accurate, the simulation proceeds to the flutter analysis; 
otherwise, the process returns to the pre-processing step, 
reviewing each step.

In the processing step, for the flutter simulation, certain 
characteristics are imposed, such as forced vibration for bend-
ing and torsion motions (Sect. 4.1), the type of mesh move-
ment (ALE was chosen), and the use of the two turbulence 
models employed in the static case.

In the post-processing step, numerical treatment using the 
least-squares method (Sect. 4.2) is performed, yielding two 

(45)H∗
1
=KH∗

3

(46)H∗
4
= − KH∗

2

(47)A∗
1
=KA∗

3

(48)A∗
4
= − KA∗

2
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results: a(Cl or Cm) , which represent the cosine amplitude, and 
b(Cl or Cm) , which represent the sine amplitude. These results 
are then used in the flutter equations (Sect. 4.1) to obtain the 8 
flutter derivatives for bending and torsion motions through the 
8COEF method (Sect. 4.3) and the LE method (Sect. 4.3). If 
convergence is achieved, the critical velocity ( Uc ) is calculated 
(Sect. 6.4). Otherwise, the numerical treatment via the least-
square method is repeated.

The methodology adopted in this research is schematically 
presented in Fig. 3.

5 � Geometries and computational modeling

This research considered two different geometries as case 
studies: rectangle ( B = 4.9 and H = 1 ) and GBEB ( B = 7 
and H = 1).

For simulations, under a turbulent regime with Re 105 , 2D 
RANS was used applying the turbulence models k–� SST and 
k–� SSTLM with turbulence intensity I = 1%. The boundary 
conditions of the turbulence modeling were estimated with 
Eqs. 49 [2, 28], considering C� = 0.09 and L = 1. The angle of 
attack of the wind was � = 0 ◦ . These parameters are the same 
as adopted in the literature [7, 11, 13, 14, 16, 17, 20], which 
allows the comparison and validation of the methodology.

5.1 � Rectangle

The 2D computational domain and the boundary condi-
tions used for this problem are illustrated in Fig. 4, with 
the following definitions:

•	 inlet: is the flow inlet boundary, with:

–	 u = U is the velocity component of v⃗ in the hori-
zontal direction;

–	 v = 0 is the velocity component v⃗ in the vertical 
direction;

–	 �p

�n
= 0 is a Neumann boundary condition, which 

means that the gradient of the respective quantity 
(p) is zero in the direction perpendicular to the 
boundary.

–	 d = 0 is a variable of the mesh movement, which 
assumes a null value in this boundary.

•	 top and bottom: are the upper and lower borders, where:

–	 u = U is the velocity component of v⃗ in the hori-
zontal direction;

(49)k =
3

2
(UI)2 � =

k0.5

C0.25
�

L
Re� =

331.5

(I − 0.5658)0.671

–	 v = 0 is the velocity component of v⃗ in the vertical 
direction;

–	 d = 0 is the mesh displacement, which assumes a 
null value in this boundary.

•	 outlet: is the outflow, where

–	 𝜕v⃗

𝜕n
= 0 is a Neumann boundary condition, which 

means that the gradient of the respective quantity 
( ⃗u ) is zero in the direction perpendicular to the 
boundary.

–	 p = 0 and d = 0 are the pressure and mesh dis-
placement values in this border.

•	 the rectangle represents the geometry of the profile, 
with:

–	 u = v = 0 are the velocity components of v⃗ in the 
horizontal and vertical direction, respectively (this 
boundary condition is also known as no-slip bound-
ary condition).

–	 d = d0 sin(�t) : is the imposed vertical or torsional 
movements.

The numerical schemes adopted in the simulations 
reported here are: the discretization made in the finite vol-
ume method (FVM), where the values of the cell centers to 
the centers of the faces were made using a linear scheme, 
pressure–velocity coupling by the PIMPLE scheme, a com-
bination of the SIMPLE (Semi-implicit Method for Pres-
sure Linked Equation) [29], and PISO (Pressure Implicit 
with Splitting of Operators) [30] schemes. For the gradient 
and divergent terms, the Gauss linear and linear upwind [6] 
schemes were used, respectively.

5.2 � GBEB

The analyzed model is the GBEB cross-section, whose 
cross-sectional model is represented in the proportion 1:7. 
Although a reduced-scale model was used, Fig. 5 shows 
some actual geometric characteristics of the structure.

Therefore, the 2D computational domain modeling and 
the boundary conditions used for this problem are illustrated 
in Fig. 6. The same definitions of the nomenclature and the 
boundary conditions presented in Sect. 5.1 remain applica-
ble for this obstacle.

The discretization was also done in FVM. The gradient 
terms were discretized using the linear Gauss scheme. For 
the divergence terms, the Gauss scheme was also selected, 
adopting four schemes: upwind [32], QUICK (Quadratic 
Upstream Interpolation for Convective Kinematics) [5], 
limited linear [33] and linear upwind [6].
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6 � Results and discussion

6.1 � Mesh convergence test for the static case

6.1.1 � Rectangle

Five unstructured meshes named M1 40566/40046; M2 
57372/56734; M3 71412/70696; M4 125418/123834; and 

M5 173006/171346 with different node/element character-
istics were proposed. The simulations were performed with 
the k–� SST turbulence model, and, in addition, a compari-
son with the k–� SSTLM is shown.

Figure 7 shows the evolution of the average values 
of Cd , RMS C′

l
 , and St for the meshes analyzed together 

with the validation of the research by Nieto et al. [7]. 
These authors use CFD with k–� SST turbulence model, 

Fig. 3   CFD numerical process 
description
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Fig. 4   Computational domain 
for the 1:4.9 rectangle

Fig. 5   Project drawings—adap-
tation [31]

Fig. 6   Computational domain 
for the GBEB
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in block-structured meshes with approximately 150000 
cells, and a Gauss scheme with a linear upwind and  
limited linear interpolation scheme for the divergence 
terms.

The simulations performed with the turbulence models 
generally had a good agreement. Note that the results of 
St were very close to that of Nieto et al. [7]. Finally, the 
results were corroborated by the validation, which attested 
to the effectiveness of the simulations with the turbulence 
models.

The choice of the mesh in the flutter study was estab-
lished through the analysis of the static case, investigating 
the convergence of the aerodynamic coefficients and the 
Strouhal number. In this way, the M2 mesh was chosen to 
follow in the flutter simulations, as it is more agile than the 
others. In Fig. 8, the mesh M2 is illustrated.

6.1.2 � GBEB

Four unstructured meshes were proposed: M1 
88798/259134; M2 100100/287512; M3 118756/342212; 
and M4 130404/376406 with different node/element char-
acteristics. The meshes are in increasing order of refinement, 

with M1 being the least refined and M4 being the most 
refined.

The development of simulations aims at determining 
the average values of Cd , Cl , Cm , in addition to St together 
with divergent schemes of a turbulent flow, in fixed section, 
to establish a comparison between the schemes as well as 
defining the appropriate mesh parameters for subsequent 
simulations.

The simulations were carried out with the k–� SST and 
k–� SSTLM turbulence model with the numerical schemes: 
Gauss upwind, QUICK, linear upwind, and limited linear, 
in which an analysis of the schemes was performed. The 
complete analysis of the results referring to the k–� SST 
can be verified in Araújo et al. [34]. In addition, Figs. 9, 10, 
11 and 12 show the evolutions of Cd , Cl , Cm , in addition to 
St for the different schemes and the comparison of the two 
turbulence models.

The results were validated with CFD studies by Nieto 
et  al. [7], Larsen and Walther [11], Farsani et  al. [17], 
and Cid Montoya et al. [20]. The studies from Larsen and 
Walther [11] and Farsani et al. [17] were based on the mesh-
less discrete vortex method implemented in the DVMFLOW 
code [11, 12]. The CFD k–� SST turbulence model from 

Fig. 7   C
d
 ⧫ ; RMS C′

l
 ⋆ ; St ∙ ; 

C
d
 ◻ CFD Nieto et al. [7]; C

l
 △ 

CFD Nieto et al. [7]; St ⊲ CFD 
Nieto et al. [7]

Fig. 8   Representation of the 
M2 mesh
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Nieto et al. [7] and Cid Montoya et al. [20] employs 2D 
block-structured meshes with approximately 260000 cells 
and a Gauss scheme with a linear upwind and limited linear 
interpolation scheme for the divergence terms.

It can be seen in the graphs in Fig. 9 that the results 
obtained for the upwind scheme were satisfactory. Some 
agreed well with the validation, even with reasonable prox-
imity to the literature, emphasizing the meshes M1 and M2.

Figure  10 shows the results obtained from QUICK 
scheme. A better performance is observed than the previ-
ous one, emphasizing the meshes M1, M2, and M4 that had 

results very close to those of the literature, corroborating 
the effectiveness of the adopted scheme with the reference 
results.

Figures 11 and 12 present the results obtained with linear 
upwind and limited linear schemes, respectively. Although 
some similarities with the upwind scheme results, these 
schemes performed better since they are a higher order with 
flow limiter and were also adopted by the references [7, 20]. 
Another point to be observed is the results from meshes 
M1 and M2, which reached a good approximation with the 
results of the references.

Fig. 9   Upwind scheme—a C
d
 

▪ ; C
l
 ▴ ; C

m
 ⧫ ; C

d
 ◻ CFD Nieto 

et al. [7]; C
l
 △ CFD Nieto 

et al. [7]; C
m

 ◊ CFD Nieto et al. 
[7]—b St ▴ ; St ◻ CFD Nieto 
et al. [7]; St ◊ CFD Farsani 
et al. [17]; St ⊲ CFD Larsen e 
Walther [11]

Fig. 10   QUICK scheme—a C
d
 

▪ ; C
l
 ▴ ; C

m
 ⧫ ; C

d
 ◻ CFD Nieto 

et al. [7]; C
l
 △ CFD Nieto 

et al. [7]; C
m

 ◊ CFD Nieto et al. 
[7]—b St ▴ ; St ◻ CFD Nieto 
et al. [7]; St ◊ CFD Farsani 
et al. [17]; St ⊲ CFD Larsen e 
Walther [11]

Fig. 11   Linear upwind 
scheme—a C

d
 ▪ ; C

l
 ▴ ; C

m
 ⧫ ; 

C
d
 ◻ CFD Cid Montoya et al. 

[20]; C
l
 △ CFD Cid Montoya 

et al. [20]; C
m

 ◊ CFD Nieto 
et al. [7]—b St ▴ ; St ▿ CFD Cid 
Montoya et al. [20]; St ◊ CFD 
Farsani et al. [17]; St ⊲ CFD 
Larsen e Walther [11]
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Simulations with k–� SST, in general, and in compari-
son with k–� SSTLM, showed better agreement, although 
some results with k–� SSTLM showed promising results 
and some even close to those of the references. Based on 
the analysis of the results, the M1 mesh was chosen to 
continue in the flutter simulations, as it is more agile than 
the others and presents results that agree well with the 
references, especially with the QUICK scheme. The choice 
of the QUICK scheme is justified by the fact that it is a 
second-order accurate scheme and is designed to improve 
accuracy, especially in regions of steep gradients [5, 35]. 
In Fig. 13, mesh M1 is illustrated.

6.2 � Flutter derivatives for the rectangle

The flutter derivatives for the torsional movement were 
obtained numerically via 8COEF. Forced oscillation simu-
lations considering an initial amplitude �0 = 0.0125 rad, 
the reduced velocities Ur = 2, 4, 6, 8, 10, 12, 15, 20, 22 
and 25 using the model of turbulence k–� SST. Results 
were validated with CFD searches by Nieto et al. [7] and 
Miranda et al. [16], in addition to Matsumoto’s experimen-
tal studies (EXP) [4].

6.2.1 � Torsion coefficients

The values for the coefficients found in Fig. 14, for H∗
2
 , 

showed some divergences when compared to the reference 
values of Nieto et al. [7], despite the setting’s similarity 
and Matsumoto [4], mainly from high reduced velocities 
Ur = 20, 22 and 25. On the other hand, the results were 
close to those of Miranda et al. [16]. This last reference also 
addressed a numerical method with a k–� SST but with a 
second-order upwind scheme. This fact can, probably, justify 
the best correspondence with the presented results.

Despite the discrepancies observed for high values of 
reduced velocities, the results presented for now certify the 
methodology used in this research. In real cases of flexible 
structures, characterized by natural frequencies lower than 
1 Hz, these high values of Ur correspond to extremely high 
velocities that may not be compatible with the real scenario 
of the structure.

It is noteworthy that in Matsumoto [4] research, the rec-
tangle was excited in an amplitude �0 = 0.0349 rad, while in 
Miranda et al. [16] �0 = 0.0523 rad was used.

Still, in this analysis of Fig. 14, in the results of A∗
2
 , one 

can notice an excellent agreement between the results when 
compared with the references.

Fig. 12   Limited linear 
scheme—a C

d
 ▪ ; C

l
 ▴ ; C

m
 ⧫ ; C

d
 

◻ CFD Nieto et al. [7]; C
l
 △ 

CFD Nieto et al. [7]; C
m

 ◊ CFD 
Nieto et al. [7]—b St ▴ ; St ◻ 
CFD Nieto et al. [7]; St ◊ CFD 
Farsani et al. [17]; St ⊲ CFD 
Larsen e Walther [11]

Fig. 13   Representation of the 
M1 mesh
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In Fig. 15, the results of H∗
3
 and A∗

3
 are presented. Note 

that the results of the two coefficients are close to the 
references.

It is important to emphasize that for the highest velocities, 
the results had a slight divergence in all cases compared to 
the experimental values. In practice, this does not affect the 
quality of the results, which the baseline results corroborated 
to attest to the effectiveness of the 8COEF approach.

6.2.2 � Flexural coefficients

To identify the flutter derivatives via 8COEF and LE of 
Matsumoto [4], forced oscillation simulations were carried 
out at reduced velocities Ur = 4, 8, and 10 with a k–� SST 
turbulence model.

Initially, the results were obtained, via 8COEF, proposing 
an initial amplitude h0∕H = 0.0125, the same proposed by 
Le Maître et al. [3] in the NACA 0012 airfoil simulation. 
Then, these results were compared with those obtained via 
LE. The comparison between the two methods was validated 
with research by Nieto et al. [7], Matsumoto [4], who used 
the LE approach, and the research by Miranda et al. [16], 
which simulates the eight flutter derivatives. The results are 
shown in Figs. 16 and 17.

The results are consistent with those in the literature 
and close to the respective schemes in the literature.

The percentage differences between the 8COEF and LE 
results, taking the 8COEF results as a reference and rep-
resentative values of the responses for the two turbulence 
models, are presented in Table 2.

In the results of Table 2, it appears that the comparison 
of the percentage difference between the 8COEF and LE 
approaches decreased as Ur increased, and this proves that 
the LE approach is effective in the estimation of the flut-
ter derivatives for the case of the rectangular profile. The 
greatest difference found for Ur = 4 can be explained by 
the values of A∗

4
 closer to 0. The use of LE allows obtain-

ing coefficients dependent on vertical vibration since the 
magnitude value of the offset h0 is not required. Its effec-
tiveness was proven in this research compared with the 
results obtained by 8COEF.

6.3 � Flutter derivatives for the GBEB

To identify the flutter derivatives, simulations of forced 
oscillation were carried out, proposing an initial amplitude 
�0 = 0.0175 rad, being the same proposed by Nieto et al. [7] 
in the GBEB simulation, at reduced velocities Ur = 2, 4, 6, 
8, 10 and 12, as in Larsen and Walther [11].

Fig. 14   8COEF k–� SST ∙ ; ◊ 
CFD Nieto et al. [7]; △ CFD 
Miranda et al. [16]; ◻ EXP 
Matsumoto [4]

Fig. 15   8COEF k–� SST ∙ ; ◊ 
CFD Nieto et al. [7]; △ CFD 
Miranda et al. [16]; ◻ EXP 
Matsumoto [4]
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6.3.1 � Torsion coefficients

The results of H∗
2
 , A∗

2
 , H∗

3
 and A∗

3
 for the k–� SST and k–� 

SSTLM models are compared with studies that applied the 
CFD methodology of the 2D k–� SST from Nieto et al. [7], 
DVMFLOW from Larsen and Walther [11] and 3D CFD 
DES (detached-eddy simulation) from Bai et al. [14].

Figure 18a, b shows the values of H∗
2
 and A∗

2
 , respectively. 

For the results of H∗
2
 , there was a divergence in the simulated 

results with the k–� SST turbulence model at Ur = 8, 10, and 
12, which did not occur with k–� SSTLM.

Regarding the results of A∗
2
 , an excellent agreement 

between the results in the two turbulence models can be 
noticed.

Figure 19a, b shows the results of H∗
3
 and A∗

3
 , respec-

tively. For the results of H∗
3
 , one can see almost a coinci-

dence of the simulated results in the two turbulence mod-
els with those of the references. Concerning the results 
of A∗

3
 , one can note the consistency of the results of the 

models among themselves, showing exponential growth 
similar to that of the references, although proportionally 
lower, mainly from Ur = 6.

In the first set of GBEB results, it is possible to notice 
that the turbulence models considered in the research had 
similar performances, except for the coefficient H∗

2
 . For 

this coefficient, the k–� SSTLM model had a better per-
formance when compared to the k–� SST.

It should be noted that the coefficient H∗
2
 is the portion 

associated with the aerodynamic damping of the torsional 
degree of freedom of Eq. 27. In the classic flutter phenom-
enon, the aerodynamic damping (the part with H∗

2
 ), when 

combined with the structural damping, results in zero or 
negative damping, characterizing the divergent oscillations 
of the phenomenon.

In general, the results are very close to the results of Nieto 
et al. [7] and those of Bai et al. [14]. The proximity to the 
former is due to the good correlation between the simula-
tion parameters. Bai et al. [14] conducted three-dimensional 

Fig. 16   8COEF k–� SST ∙ ; LE 
k–� SST ▪ ; ◊ LE Nieto et al. 
[7]; △ LE Matsumoto [4]; ⊲ 
CFD Miranda et al. [16]

Fig. 17   8COEF k–� SST ∙ ; LE 
k–� SST ▪ ; ◊ LE Nieto et al. 
[7]; △ LE Matsumoto [4]; ⊲ 
CFD Miranda et al. [16]

Table 2   Comparative between flutter derivatives for rectangle

k–� SST
Ur H∗

1
 (%) H∗

4
 (%) A∗

1
 (%) A∗

4
 (%)

4 38 36 53 113
8 7 44 31 34
10 1 22 29 30
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simulations with a detached-eddy simulation (DES) turbu-
lence model. Note that the results obtained from the two-
dimensional simulations of the present research are close to 
the three-dimensional simulations by Bai et al. [14].

6.3.2 � Flexural coefficients

The flutter derivatives of the flexural movement are obtained 
by 8COEF and LE proposed by Matsumoto [4]. In Figs. 20 
and 21, the results for H∗

1
 , A∗

1
 , H∗

4
 and A∗

4
 are compared with 

CFD studies by Huang et al. [13], Larsen and Walther [11] 
and Bai et al. [14].

The values of the results for 8COEF and by LE for the 
coefficients H∗

1
 and A∗

1
 are shown in Fig. 20. In the results 

of H∗
1
 , there was an unexpected divergence in Ur = 12 for 

8COEF k–� SST, which was not repeated in the other 
results. Regarding the results of A∗

1
 , a good agreement 

between the results in both approaches and with the litera-
ture can be noted.

Fig. 18   8COEF k–� SST ∙ ; 
8COEF k–� SSTLM ⧫ ; ◻ CFD 
Nieto et al. [7]; △ CFD Larsen 
e Walther [11]; ⊲ CFD Bai et al. 
[14]

Fig. 19   8COEF k–� SST ∙ ; 
8COEF k–� SSTLM ⧫ ; ◻ CFD 
Nieto et al. [7]; △ CFD Larsen 
e Walther [11]; ⊲ CFD Bai et al. 
[14]

Fig. 20   8COEF k–� SST ∙ ; 
LE k–� SST ⋆ ; 8COEF k–� 
SSTLM ▪ ; LE k–� SSTLM ⧫ ; 
◻ CFD Huang et al. [13]; △ 
CFD Larsen e Walther [11]; ⊲ 
CFD Bai et al. [14]
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The references used for comparisons adopt the forced 
vibration approach in torsion and bending modes to obtain 
the complete set of flutter derivatives, an approach similar to 
8COEF in the present work. Briefly, the main characteristics 
of these references are

•	 Larsen and Walther [11]: a meshless discrete vortex 
method and the DVMFLOW code.

•	 Bai et al. [14]: 3D DES CFD model.
•	 Huang et al. [13]: 2D RNG k–� CFD simulations, with 

SIMPLE pressure linked equation solver, a second-order 
upwind scheme for the divergence terms, with 26300 
cells.

The values of the results for 8COEF and by LE for the coef-
ficients H∗

1
 and A∗

1
 are shown in Fig. 20. In the results of H∗

1
 , 

there was an unexpected divergence in Ur = 12 for 8COEF 
k–� SST, which was not repeated in the other results. 
Regarding the results of A∗

1
 , a good agreement between the 

results in both approaches and with the literature can be 
noted.

The results for H∗
4
 and A∗

4
 are shown in Fig. 21. The simi-

larity of behavior in the results is observed, but with more 
pronounced differences for higher values of reduced veloci-
ties as in Ur = 8, 10, and 12, mainly for the 8COEF values. 
In addition, it is observed in the graph of A∗

4
 that the solution 

by LE distances itself from the values of the 8COEF and the 
references, unlike the results presented in the graph of H∗

4
 , 

these with better agreement.
The percentage differences between the 8COEF and LE 

results, taking the 8COEF results as a reference and rep-
resentative values of the responses for the two turbulence 
models, are presented in Table 3.

About the results of Table 3, the percentage difference 
was reasonably dispersed, behaving similarly between the 
Ur . In the case of an aerodynamic structure, the results of 
the flutter derivatives for bending were also quite dispersed, 
as can be seen in 6.3.2, mainly in the results of H∗

4
 and A∗

4
.

However, it should be noted that the high values presented 
in Table 3 are related to almost zero values in the respective 
graphs of the coefficients, mainly for the coefficients H∗

4
 and 

A∗
4
 . These coefficients, as can be seen in Eqs. 27 and 28, 

are associated with the flexural stiffness portions h (elastic 
forces). In the classic flutter mechanism, characterized by 
the coupling of flexural and torsion modes, there is a loss of 
stability associated with aerodynamic damping, predominant 
torsional movement. It is understood, therefore, that these 
results do not compromise the global analysis of the struc-
ture regarding the phenomenon studied here.

Scanlan et al. [10] applied the same interrelations among 
flutter derivatives in three streamlined bridges, the Kap Shui 
Mun Bridge in Hong Kong, the Golden Gate Bridge in the 
USA, and the Tsurumi Bridge in Japan. They pointed out 
that, in almost all analyses, “none of the suggested equiva-
lences of Eqs. 45 to 48 appear to hold”, especially the rela-
tion for H∗

4
 46.

Fig. 21   8COEF k–� SST ∙ ; 
LE k–� SST ⋆ ; 8COEF k–� 
SSTLM ▪ ; LE k–� SSTLM ⧫ ; 
◻ CFD Huang et al. [13]; △ 
CFD Larsen e Walther [11]

Table 3   Comparative between flutter derivatives for GBEB

Ur H∗
1
 (%) H∗

4
 (%) A∗

1
 (%) A∗

4
 (%)

k–� SST
2 44 32 16 70
4 8 50 9 605
6 9 74 4 127
8 23 106 4 116
10 6 105 6 1
12 129 61 17 560

k–� SSTLM
2 50 315 30 72
4 47 75 2 2362
6 5 150 9 132
8 10 77 3 8
10 6 95 14 62
12 6 48 4 18
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It is also noteworthy that according to Šarkić et al. [36], 
this divergence in results may be associated with the fact 
that flutter derivatives simulated in a CFD environment are 
not resolved with good consistency for very high reduced 
velocities.

In addition to these facts, it is emphasized, again, that 
high values of Ur are associated, in flexible structures, with 
very strong winds that are not representative of their real 
scenario. For the GBEB case, for example, whose natural 
frequencies are presented in Appendix 1 [11], the value of 
Ur = 15 corresponds to a real strong wind velocity of around 
300 km/h.

6.4 � Critical flutter velocity estimate for the GBEB

Assuming that there is a solution to the flutter problem, con-
sidering that the harmonic motion is predominant during the 
critical velocity, evaluating it is simple. The flutter deriva-
tives H∗

i
 and A∗

i
 , as functions of the reduced frequency K, 

and the assembly of the harmonic motions with the equa-
tions 27 and 28 provides a system in amplitude movement 
of h and �.

The procedures for obtaining the critical flutter velocity 
are [8]: 

1.	 A value of K is chosen, and the values of H∗
i
 and A∗

i
 cor-

responding to that value are extracted from plots of H∗
i
 

and A∗
i
 as a function of the reduced velocity.

2.	 It is then assumed that h and � have solutions propor-
tional to ei�t which are inserted into Eqs. 25, 26, 27, and 
28. These substitutions generate a system of equations 
in h and �.

3.	 As a condition of stability, the determinant of the coef-
ficients of the amplitudes h and � is set equal to zero, 
which results in a complex equation at the unknown 
vibration frequency � , which must be solved [27, 37]. 
This constitutes in fact a complex quartic equation in the 
unknown flutter frequency � , requiring a solution.

4.	 The solution obtained will, in general, be on the form 
� = �1 + i�2 , with �2 ≠ 0 , and will therefore represent 
either a decaying ( 𝜔2 > 0 ) or a divergent ( 𝜔2 < 0 ) oscil-
lation.

5.	 A new value of K is then chosen, and the procedure is 
repeated until the solution is purely (or very nearly) real, 
that is, until �2 = 0 , so that � = �1 . To that solution, 
there corresponds the flutter condition at real frequency 
�1.

6.	 The intersection point’s coordinates between the imagi-
nary and real solutions are utilized for computing the 
critical flutter velocity.

7.	 Therefore, the critical velocity is calculated using 
Eq. 50: 

 where X is the critical flutter velocity frequency rate 
(Eq. 51), 

 where B is the width of the cross-section and �h is the 
natural frequency of vertical vibration.

The results of the flutter derivatives arranged in the sec-
tion  6.3 were used to calculate the critical velocity. 
Responses are validated with experimental studies, and CFD 
by Larsen [9], by Bakis et al. [19], and by Jurado et al. [15].

Table 4 describes some of the structural properties of the 
GBEB [9, 22].

The critical flutter velocity was obtained with the result 
sets of the 8COEF and LE approaches and k–� SST and k–� 
SST LM turbulence models.

Figure 22a shows the X and 1/K curves obtained with 
the flutter derivatives from k–� SST turbulence model 
simulations and 8COEF approach. Figure 22b shows the X 
and 1/K curves obtained with the flutter derivatives from 
k–� SSTLM turbulence model simulations and 8COEF 
approach. Figure 23a shows curves X and 1/K for LE results 
and k–� SST model. Figure 23b shows curves X and 1/K for 
LE results and k–� SSTLM turbulence model.

The critical flutter velocity was obtained with the result 
sets of the four cases: 

1.	 turbulence model k–� SST with LE approach.
2.	 turbulence model k–� SST with 8COEF approach.
3.	 turbulence model k–� SSTLM with LE approach
4.	 turbulence model k–� SSTLM with 8COEF approach.

The first model, k � SST with LE approach, can be seen as 
the one with the lowest computational cost since it requires 
the solution of two additional differential equations referring 
to the turbulence model and the simulations in torsion mode 
only. The last model, on the other hand, is the most robust, 
but with a longer processing time. This employs a turbulence 

(50)Uc =
BX�h

K

(51)X =
�

�h

Table 4   GBEB structural properties used in the critical velocity cal-
culation

Properties Values Units

Mass (m) 23687 kg/m
Moment of inertia (I) 2.47 × 106 kg m 2/m
Vertical natural frequency ( �h) 0.100 Hz
Torsional natural frequency ( ��) 0.278 Hz
Damping rate ( �) 0.2 %

Cross-section width (B) 31 m
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model for laminar–turbulent transition flow with four dif-
ferential equations, in addition to requiring simulations in 
torsion and bending mode.

These figures are intended to share with readers the 
intermediate steps to obtain the critical flutter velocity for 
each adopted model. Through these, it is possible to notice 
that there is little discrepancy between the values of the 
intersection point, used to calculate the critical velocities 
presented in Table 5

Table 5 presents a summary of these results, a com-
parison between the two methods used in the calculations 
of this study, and a comparison with the results in the 
literature.

In this study, the same vibration modes found in Larsen’s 
research [9] were used, and they can be seen in Appendix 1.

The list of vibration modes utilized by the authors is also 
provided in Appendix 1.

It is noted that the results of the methodology used in the 
present research, in the two approaches, 8COEF and LE, 
correlate well with the literature results. In particular, the 
comparison with the values provided by Larsen [9] from his 
experiments in a wind tunnel for sectional (2D) and com-
plete (3D) models shows that the model currently being 
investigated presents satisfactory results. Comparison with 
the analytical multi-modal formulation by Bakis et al. [19] 

and Jurado et al. [15] also shows that the values obtained in 
this research are lower and more conservative.

As for the models used in the research, it can be noted 
that the 8COEF and LE had similar results. There is a 
good approximation in estimating the critical flutter veloc-
ity for the LE approximation compared to the 8COEF full 

Fig. 22   Real part 1 ◊ ; real part 
2 ◦ ; imaginary part ◻ ; intersec-
tion ▪

Fig. 23   Real part 1 ◊ ; real part 
2 ◦ ; imaginary part ◻ ; intersec-
tion ▪

Table 5   Flutter critical velocity estimate for the GBEB

References Modeling No. of vibra-
tion modes

Uc (m/s)

Larsen [9] EXP Cross-section 2D – 70–74
Larsen [9] EXP Complete 3D – 70–75
Larsen [9] CFD Cross-section 2D 9 75
Jurado et al. [15] – 2 89.91
Jurado et al. [15] – 18 62.41
Bakis et al. [19] – 9 81
8COEF results
k–� SST Cross-section 2D 2 70.1
k–� SSTLM Cross-section 2D 2 75.4
LE results
k–� SST Cross-section 2D 2 70
k–� SSTLM Cross-section 2D 2 69.1
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simulation approach, despite the dispersed results for the 
flutter derivatives via the LE of Sect. 6.3.2. As for the com-
putational cost criterion, the LE approach and the SST tur-
bulence model have the lowest cost.

Larsen [9] highlights in his research the importance of 
developing models and methodologies, which can be used 
in the conceptual phase of the structural project to guarantee 
integrity throughout the useful life of the structure. It can be 
seen, therefore, that more conservative flutter critical veloc-
ity values are an exciting premise for the conceptual design. 
In addition, compared to the others, the model employed 
requires an effective cost of installations and computational 
costs lower than those of the other authors.

7 � Final remarks and future works

This research presented a methodology in two-dimensional 
CFD for aerodynamic and aeroelastic studies of a rectan-
gular section of proportion 1:4.9 and a cross-section of the 
GBEB in proportion 1:7. Simulations were performed for 
turbulent flow with Re 105 . To this end, to monitor the effects 
in the boundary layer, the 2D RANS k–� SST turbulence 
models by Menter et al. [25], and k–� SSTLM from Menter 
et al. [2] were employed.

The aerodynamic analyses allowed the validation of the 
numerical model and the choice of mesh for the subsequent 
aeroelastic analyses. The aeroelastic model is based on the 
work of Le Maître et al. [3] and employs the methodology of 
forced vibrations associated with a model that linearizes the 
relationships between aerodynamic forces and the structural 
model. In this aeroelastic model, the aerodynamic force por-
tions are represented by aeroelastic coefficients ( H∗

i
 and A∗

i
 ). 

Subsequently, these values were used to estimate the critical 
flutter velocity.

Obtaining the coefficients, as mentioned earlier, for dif-
ferent values of reduced velocity was one of the main objec-
tives of the research. This work highlights the evaluation of 
two approaches to obtain the complete flutter derivatives. In 
the first, 8COEF, all coefficients were obtained from com-
putational simulations, with forced and independent vibra-
tions in vertical and torsional bending modes. The second 
approach, called LE, employs linear relations to obtain the 

flexural coefficients from the coefficients obtained for the 
torsion mode.

In a comparative analysis of the coefficients, the turbu-
lence models showed good consistency with the reference 
values, attesting that both the turbulence models and the 2D 
RANS approach accurately captured these coefficients. For 
the two studied turbulence models, comparing the numeri-
cally obtained flutter derivatives with the experimental ones 
and others from the literature resulted in good results. Also, 
the proposed LSM was efficient for extracting the flutter 
derivatives.

Based on the results obtained in the calculation of the 
flutter derivatives, the estimation of the critical flutter veloc-
ity for the GBEB was carried out. Comparing the critical 
velocity, it is noted that the LE linearization was considered 
adequate, with results even close to the 8COEF method-
ology and those in the literature. Finally, to minimize the 
computational cost, applying the LE approach and the k–� 
SST model is justified.

This research brings a new vision of using CFD-based 
techniques in obtaining numerical and LE results, as it dem-
onstrates the adequacy of computational results using an effi-
cient 2D approach. Furthermore, it is also an essential step 
in applying numerical optimization techniques. Therefore, a 
fully computational approach for analyzing static and flutter 
derivatives, such as the one reported here, is necessary for 
applying numerical optimization techniques, such as reduc-
ing computational demands.

As an extension of this research, it is suggested to carry 
out the simulations, including the accessories of the GBEB 
structure (guardrail and median); employ the 3D LES (large 
eddy simulation) approach in the simulations; investigate 
the influence of Reynolds Number on aeroelastic parameters 
and structural behavior, and extend it to 3D models of other 
streamlined bridge structures. Such an approach requires 
greater computational demands.

Appendix A Vibration modes from Table 5

See Table 6.
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