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Abstract
Vibration signal processing is a crucial task in machine fault diagnosis. Several signal processing methods in the past relied 
on more conventional approaches to diagnose bearing defects. Recent advances in artificial intelligence have sparked the 
development of deep learning-based signal processing methods for bearing fault diagnosis. Many of the proposed methods 
do not apply to signals heavily polluted with noise. In this paper, a new method for bearing fault diagnosis is presented, 
which combines variational mode decomposition and wavelet thresholding to denoise vibration signal, time–frequency con-
tinuous wavelet transform to generate scalogram images, and deep learning structure to classify and diagnose bearing fault. 
The proposed method incorporates signal denoising, time–frequency transform, and deep learning to process and diagnose 
machine faults in the presence of background noise. Data collected from a bearing test rig are used to validate the accuracy 
of the proposed method, effectiveness, and robustness. The results show that the proposed method can extract “clean” vibra-
tion signals from noisy signals and accurately diagnose the fault.

Keywords  Bearing fault diagnosis · Vibration analysis · Signal processing · Deep learning · Vibration analysis · Signal 
denoising

1  Introduction

Rolling element bearing (REB) is an important mechanical 
component widely used in various engineering components 
across many fields. Its health condition and proper function-
ing significantly impact the safety and stability of engineer-
ing equipment [1, 2] as well as the smooth functioning of 
many systems. The failure of REBs introduces dangerous 
and sometimes costly consequences [3, 4] to the process or 
system in which they are installed. The complex vibration 
transmission path of REBs makes it difficult to accurately 

diagnose REB faults [5]. As a result, advanced rolling bear-
ing fault diagnosis methods are highly sought after to accu-
rately diagnose and prevent catastrophic machinery failures 
[6].

Signal processing is a crucial task involved in machine 
fault diagnosis. Since the dawn of preventive maintenance 
and machine health monitoring, many vibration signal pro-
cessing techniques have been developed to address the prob-
lem of bearing fault diagnosis. In general, signal processing 
techniques for machinery fault diagnosis can be classified 
into three broad categories: vibration analysis based on 
the direct manipulation of time series data, machine learn-
ing (ML) based, and deep learning (DL) based. Vibration 
analysis-based signal processing techniques can be fur-
ther classified into time-domain, frequency-domain, and 
time–frequency domain analysis [7]. Traditional ML-based 
methods include artificial neural networks (ANN), principal 
component analysis (PCA), support vector machines (SVM), 
etc. Traditional DL-based algorithms for bearing fault diag-
nosis include a convolutional neural network (CNN), autoen-
coder, deep belief network (DBN), recurrent neural network 
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(RNN), generative adversarial network (GAN), and deep 
learning-based transfer learning methods.

Time-domain analysis can be directly applied to vibra-
tion data since they are collected as time series data. Time-
domain analysis is based on the use of statistical condition 
indicators such as mean, peak, peak-to-peak interval, and 
standard deviation, besides other higher order condition 
indicators such as probability density, kurtosis, crest fac-
tor, skewness and shape factor calculated from time-series 
signals to detect bearing faults [8, 9]. Time-domain vibra-
tion analysis is not limited to statistical condition indica-
tors. Frequency-domain analysis is the most widely used 
technique for bearing fault diagnosis [10]. The advantages 
of frequency-domain analysis methods far surpass those 
of time-domain analysis because of their ability to easily 
isolate and identify important frequency components of a 
vibration signal as features. At the top of the list is fast Fou-
rier transform (FFT), which can efficiently isolate narrow-
band spectra. Vibration data from REBs contain valuable 
high and low ranges of frequency spectra components. 
Since REBs produce short-duration pulses during genera-
tion, these pulses generate high energy in specific ranges 
of the frequency band of the power spectrum in the fre-
quency domain. The FFT technique has been applied to 
generate a power spectrum commonly used to extract bear-
ing fault features and identify bearing faults [11–13]. Other 
efficient frequency-domain tools for bearing fault detection 
commonly used include envelope spectrum analysis [14], 
frequency filter sideband analysis, higher order spectra 
[15], and cepstrum analysis [16]. Time–frequency domain 
analysis is considered superior to time-domain analysis 
and frequency-domain analysis. It extends the capability 
of frequency-domain analysis on nonstationary waveform 
signals, such as waveforms obtained under variable speed 
conditions. Time–frequency analysis methods commonly 
used for machine fault diagnosis include short-term Fourier 
transfer (STFT) [17, 18], Wigner-Ville distribution (WVD) 
[19, 20], reduced interference distribution (RID), wavelet 
analysis such as wavelet transform methods (continuous 
wavelet transform, CWT, and discrete wavelet transform, 
DWT) and wavelet packet transform (WPT). These methods 
can process nonstationary signals for machine fault diag-
nosis. However, they present some shortcomings which 
limit their application in bearing fault diagnoses, such as 
the fixed temporal resolution of STFT controlled by choice 
of SFT window and limited by the uncertainty principle, 
the cross-term interface of Wigner-Ville distribution, and 
energy leakage issue and wavelet function selection of 
wavelet transform [21, 22]. Empirical mode decomposition 
(EMD) and, later variant, empirical ensemble mode decom-
position EEMD) are powerful time–frequency analysis tools 
used to analyze vibration signals for machine fault diagnosis 
[23–25]. Also, the EMD of the Hilbert–Huang transform 

(HHT) is another powerful technique that is used to decom-
pose vibration signals without the base function and can 
be applied to both stationary and nonstationary signals [26, 
27]. Some drawbacks of EMD, EEMD, and related methods 
are centered around computational complexity, long execu-
tion time, and complicated results with changing working 
conditions. The techniques discussed so far have been used 
to successfully diagnose machine faults but heavily rely on 
manual feature extraction and, in some cases, visual inspec-
tion, which requires much human expertise and is generally 
susceptible to errors.

More advanced fault diagnosis techniques have been 
developed in recent years that combine the efficient feature 
extraction capability using time–frequency domain trans-
form techniques with DL’s learning and classification capa-
bility to automate the machine fault diagnosis process. Using 
time–frequency domain techniques, 1-D vibration or acous-
tic emission signals can be converted to 2-D representation 
(image), characteristic of the corresponding fault type. The 
power of convolutional neural networks specializing mostly 
in image classification can then be exploited to efficiently 
and accurately classify the fault. Duong et al. [28] applied to 
envelop analysis to extract envelop signals from 1-D acoustic 
signals and then applied CWT with damage frequency band 
information to generate a defect signature wavelet image 
(DSWI). DSWI describes the acoustic emission signal in 
the time–frequency domain, reduces the nonstationary effect 
in the signal, and shows discriminate pattern visualization 
for different fault types associated with the defect signa-
ture. Classification results using deep CNN (DCNN) yielded 
98.79% accuracy for the combined DSWI-DCNN approach. 
Verstraete et al. explored three time–frequency analysis tech-
niques: STFT, WT, and HHT, to generate image representa-
tions of fault signals which are then fed into a CNN network 
for fault classification. This method resulted in the accurate 
prediction of the fault types. This method also explored 
noise scenarios but relied on the transform techniques to 
“see through” the noise. This could work in many cases. 
However, in others, low- or high-frequency noise could make 
it difficult for the CNN network to accurately distinguish the 
fault features from the noisy data. By far, the most common 
method for image generation in vibration signal analysis is 
CWT. The combined use of CWT and CNN for machine 
fault diagnosis has been widely explored in prior research 
[29–34]. Xiao et al. [33] developed the improved variational 
mode decomposition (IVMD) and CNN to process station-
ary vibration signals. The minimum average Pearson coef-
ficient principle analyzes fault signals in time to determine 
the best signal decomposition mode. The signals are then 
transformed to the frequency domain using CWT for easy 
feature extraction. The extracted features are used to train 
CNN networks. IVMD-based CNN is more accurate than 
other methods, such as RNN, LSTM, and GRU. Despite the 
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impressive results obtained using existing approaches, addi-
tional preprocessing techniques could be used to improve 
the accuracy of the results for real-world data. In real-world 
applications, vibration data is often mixed with noise which 
could make it difficult to accurately identify the faults. 
Advanced signal denoising techniques can reduce the noise 
components in vibration signals resulting in a reconstructed 
fault signal for fault identification. Denoising techniques 
such as empirical mode decomposition (EMD) [35], varia-
tional mode decomposition (VMD) [36], ensemble empirical 
mode decomposition (EEMD) [37], and WT have been used 
for time-series signal denoising. It is possible to leverage 
the power of these denoising techniques to preprocess real-
world data before fault identification methods are applied. 
Even though existing DL-based fault diagnosis approaches 
have been accurately used to identify machine faults, these 
approaches still have some areas that require improvement. 
Most existing methods do not address a dedicated approach 
to dealing with very noisy vibration data often encountered 
in complex systems comprising many vibrations pruned sub-
systems. Given the fact that most existing methods use simu-
lation data or data obtained from bearing test rigs (in the 
case of bearing fault diagnosis), these datasets are acquired 
in isolation from other equipment and components and do 
not represent a real-world setup. A close correlation between 
the noise frequency and that of the “clean” vibration signal 
poses a serious challenge for the DL models to accurately 
identify the fault features from the data.

This study proposes a novel method for bearing fault 
diagnosis that combines three crucial stages of signal pro-
cessing: pre-processing, feature extraction, and fault clas-
sification. In the pre-processing stage, a VMD filtering 
method based on improved Bhattacharyya distance (VMD-
IBD) with optimal parameters using the MIGA algorithm 
is prosed, which first uses VMD to decompose the input 
noise-added signal into intrinsic mode functions (IMFs). 
Then calculates the variance of each IMF and the original 
signal. Bhattacharyya distance is then used to calculate 
the similarity between the original signal and the IMFs to 
select the best IMFs for reconstructing of the filtered signal. 
The VMD-IBD filtering method removes low- and high-
frequency noise components while l, leaving no effect on 
the intrinsic signal information. The next stage in pre-pro-
cessing uses wavelet denoising through wavelet thresholding 
to remove any remaining same frequency noise from the 
signal. The effectiveness of the proposed denoising approach 
is demonstrated through comparative analysis of filtering 
performance metrics such as signal-to-noise ratio (SNR) and 
root mean square error (RMSE) against VMD and wavelet 
denoising. Feature extraction from the reconstructed vibra-
tion signal is achieved through 2D transform in the form of 
scalogram images and CNN deep neural network and clas-
sified using softmax classification at the output of the deep 

neural network. The performance of the proposed fault diag-
nosis method is compared with other DL-based approaches.

The rest of the paper is organized as follows. In Sect. 2, 
the proposed method for bearing fault diagnosis is discussed. 
Section 3 describes the experimental setup, conditions, and 
data acquisition methods. Section 4 presents the results and 
discussion of the proposed approach using bearing fault 
vibration signals from an experimental bearing fault test rig 
and other deep learning-based methods. Finally, Sect. 5 sum-
marizes and concludes the paper with proposals for improve-
ments to be explored in future work.

2 � The proposed signal processing and fault 
diagnosis approach

This section describes the bearing fault diagnosis method. 
Figure 1 is an overview of the proposed method. The imple-
mentation of the approach is divided into several steps. The 
first involves data preprocessing and preparation. Gaussian 
white noise is added to the signal to simulate real-world 
data. The raw time series vibration signals, x(t) , are arbitrar-
ily segmented into smaller segments of appropriate length 
denoted as f (t) and denoised to remove noise VMD and 
WT. The CWT method converts the denoised signals into 
scalogram images and groups them according to the fault 
types, which will later serve as classes during classifica-
tion. The image data are appropriately sized for input to 
the CNN. The time–frequency graphs of certain defects are 
similar, so a basic wavelet transform cannot reliably detect 
the fault frequencies. A more efficient diagnosis strategy 
must be developed. Technology based on deep learning has 
shown promise for use in data analysis. The CNN structure 
can discern the broad outlines of information and the small 
distinctions unseen to the human eye. Since CNN models are 
adept at multivariable processing, a time–frequency graph 
may serve as the input for training. As a result, the third 
step involves model building, training, and fault classifica-
tion using CNN with the data generated in the second step. 
Due to CNN’s excellent multivariate processing capability, 
it can be trained using scalogram images. The final step is 
testing and validation of the trained CNN model. The trained 
model is used to identify the bearing fault types based on 
the input data.

2.1 � Sensor signal preprocessing

2.1.1 � Additive white Gaussian noise (AWGN)

The vibration signals that validate signal processing meth-
ods are obtained from bearing test rigs. Bearing test rigs 
are designed for experimental investigation, often isolated 
from other larger systems. In real-world applications, the 
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bearing subsystem is often part of a larger system that 
vibrates alongside the system under investigation. These 

“external” vibrations introduce noise to the bearing sub-
system, which can often lead to data processing errors 

Fig. 1   An overview of the 
proposed methodology
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if not carefully dealt with. To simulate a bearing test rig 
observed as part of a larger vibrating system, noise is 
added to the vibration data from a bearing test rig in the 
form of an AWGN to mimic the process of many random 
processes occurring in the whole system, a technique typi-
cally used to simulate such scenarios of data acquisition. 
The noise is additive because it is added to any noise that 
might be intrinsic to the bearing subsystem. WGN has the 
same probability density function as a normal or Gaussian 
distribution, and its values are identically distributed and 
statistically independent at any two points in time. The 
noisy data with the AWGN demonstrates the quality and 
accuracy of the denoising technique to retrieve the original 
vibration signal generating the image data used for fault 
identification.

An AWGN discrete vibration data Xi is the sum of input 
signal Fi and noise Zi which is identically distributed and 
drawn from a nonzero normal distribution with variance 
N = var

(
Fi

)
 . The noise Zi has a uniform power spectral 

density across the system’s frequency band.

2.1.2 � Time‑series signal standardization

The measuring units for various variables are frequently 
varied in real-world situations. Before analysis, data are 
frequently standardized to remove the dimensional effect 
of variables and guarantee that each variable has the same 
expressive capacity. Equation (3) demonstrates how stand-
ardizing measured vibration signals rescales the signal dis-
tribution so that the mean observable value is closer to 0 
and the standard deviation is closer to 1, reducing errors in 
signal acquisition while lowering computational complex-
ity and calculation time. For a given sensor signal x(k) , the 
standardized signal ỹ(k) is defined by

(1)Xi = Fi + Zi

(2)Zi ∼ N(0,N)

where the mean x̂𝜇(k) and standard deviation �(x(k)) of the 
original signal are defined as follows

2.1.3 � Time‑series signal segmentation

To integrate the time–frequency wavelet transform into 
convolutional neural networks to process vibration signals 
and establish a bearing fault detection scheme, selecting an 
appropriate segment length to include at least one revolution 
of the shaft is crucial. The datasets collected from healthy 
and faulty bearings are segmented into smaller samples 
such that the vibration characteristics of each sample can 
be correctly and uniquely identified. Another advantage of 
segmenting the data is that the dataset can be zoomed in 
to capture hidden features buried deep within the wavelet 
transforms. An overlapping sliding window segmentation 
technique was applied to segment the data samples, as dem-
onstrated in Fig. 2. The MATLAB implementation of the 
algorithm is presented in “Appendix A”. Arbitrary segment 
lengths were used in this study. The segment lengths of the 
sliding window used in this study were chosen based on 
an adaptation of the Nyquist-Shannon sampling theorem 
[38]. In the context of vibration data analysis, this theorem 
suggests that the segment length should be long enough to 
capture at least two cycles of the highest frequency com-
ponent related to the fault. Define the ball-pass frequency 
of outer-race (BPFO) as fBPFO and the ball-pass frequency 
of inner-race (BPFI) as fBPFI . According to the modified 
Nyquist-Shannon sampling theorem, the segment length LW 
should satisfy the conditions: LW ≥ 2fBPFO and LW ≥ 2fBPFI.

(3)ỹ(k) =
x(k) − x̂𝜇(k)

𝜎(x(k))

(4)

x̂𝜇(k) =
1

N

N∑
i=1

xi(k)

𝜎(x(k)) =

√√√√ 1

N − 1

N∑
i=1

(
xi(k) − x̂𝜇(k)

)2

Fig. 2   Schematic illustration of the overlapping sliding window segmentation algorithm
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Deep neural networks generally require a large dataset 
for training. The larger the dataset, the more accurately the 
model can be trained for its intended purpose. The segmen-
tation technique adopted here serves the crucial purpose of 
data augmentation.

2.1.4 � Time‑series signal denoising using variable mode 
decomposition (VMD) and wavelet thresholding (WT)

Bearing vibration signal captured using encoders carries 
useful information about the signal and any faults present. 
During operation, the signal is not steady but includes high- 
and low-frequency noise components. Vibration data used 
in this study were obtained in a variable speed environment 
which makes traditional signal analysis methods such as 
Fourier transform and other spectral analysis methods insuf-
ficient to denoise and detect the faults. In this research, we 
used VMD, which filters out the low- and high-frequency 
noise signals from the original vibration signal. WT is then 
carried out to filter the same frequency noise data.

2.1.4.1  VMD decomposition  A noisy time series vibra-
tion signal xn(t) can be decomposed into a finite number of 
intrinsic mode functions (IMFs) using VMD. The narrow-
band IMFs obtained using VMD is defined by

where uk is an amplitude and frequency modulation signal 
defined as uk(t) =

∑K

k=1
Ak(t)cos

�
φk(t)

�
 with K-orders, φk(t) 

is the phase of positive modes, and Ak(t) is a slowly vary-
ing envelope signal for which each mode has an instantane-
ous slowly varying non-decreasing frequency, concentrated 
around a central value fk . The process of VMD simultane-
ously calculates all the mode waveforms and their central 
frequencies and consists of determining a set ⟨uk(t), fk(t)⟩ 
that minimizes the constrained variation problem. The vari-
ational constraint problem can be defined as [36]

where 
{
uk
}
∶=

{
u1, u2,… , uK

}
 is the set of all modes, {

fk
}
∶=

{
f1, f2,… , fK

}
 is the set of all center frequencies, 

and �(t) is a unit pulse function. The constrained problem 
in its current state is very difficult to solve. To calculate the 
waveform modes and central frequencies, the constrained 
problem is transformed into an unconstrained problem by 

(5)x(t) =

K∑
k=1

uk(t) =

K∑
k=1

Ak(t) cos
(
�k(t)

)

(6)

⎧⎪⎪⎨⎪⎪⎩

min
{uk},{fk}

�
K∑
k=1

����
�

�t

��
�(t) +

j

�t

�
∗ uk(t)

�
e−j2�fk(t)t

����
2

2

�
,

K∑
k=1

uk(t) = x(t)

finding an optimal solution to the augmented Lagrange func-
tion defined by

where � is the penalty factor that ensures the signal 
reconstruction accuracy in the presence of Gaussian 
noise, �(t) is the Lagrange multiplier, the inner product 
⟨f (t), g(t)⟩ = ∫ ∞

−∞
f (t) ∗ g(t)dt , L2-norm ‖f (t)‖2

2
= ⟨f (t), f (t)⟩ 

and * denotes signal convolution.
The augmented Lagrange function has three parts. The 

first part of Eq. (7) is the regularization term which involves 
using the Hilbert transform to calculate the analytical signal 
associated with each mode, demodulate the analytical signal 
by multiplying with a complex exponent, and estimate the 
bandwidth of the analytical signal through L2-norm. The 
next two terms enforce the constraint x(t) −

∑K

k=1
uk(t) by 

imposing a quadratic penalty and incorporating a Lagrange 
multiplier.

The above optimization problem defined by the aug-
mented Lagrange function can be solved using the Alter-
nate Direction Method of Multipliers (ADMM) algorithm 
proposed by Boyd et al. [39]. ADMM is a popular algorithm 
due to its remarkable effectiveness in minimizing objectives 
with linearly separable structures [40]. The complete opti-
mization algorithm is shown in Table 1. A detailed develop-
ment of the algorithm can be found in [36]. Only the final 
complete optimization algorithm is presented here. The sad-
dle points of the Augmented Lagrange function are obtained 
by alternately updating un+1

k
 , f n+1

k
 , and �n+1

k
 , which are the 

optimal solutions of Eq. (7).
The next section introduces the WT technique for 

enhanced noise reduction. WT is applied to the recon-
structed signal from VMD.

2.1.4.2  Selection of  optimum parameters for  VMD using 
Multi‑objective multi‑island genetic algorithm (MIGA)  VMD 
decomposition requires that the penalty factor � , decomposi-
tion number K , updating parameter of Lagrange multiplier � , 
initialization of central frequencies f 1

k
 , relative and absolute 

tolerances �r and �a respectively, be set. The decomposition 
result depends on the values of � and K . In this research, 
f 1
k
= 0 , � = 0.01 , �r = 1 × 10−7 , �a = 1 × 10−4 [36, 41, 42]. 

The bandwidth size of the IMF components depends on the 
penalty factor setting. The penalty factor � and the bandwidth 
are directly proportional. The value of K should be carefully 
chosen since a large K leads to the generation of unnecessary 
components. Optimization is therefore a necessary tool to set 

(7)

L
(
uk(t), fk(t), �(t)

)
= �

K∑
k=1

‖‖‖‖‖
�

�t

[(
�(t) +

j

�t

)
∗ uk(t)

]
e−j2�fk(t)t

‖‖‖‖‖

2

2

+

‖‖‖‖‖‖
x(t) −

K∑
k=1

uk(t)

‖‖‖‖‖‖

2

2

+

⟨
�(t), x(t) −

K∑
k=1

uk(t)

⟩
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Table 1   Algorithm for Complete Optimization of VMD
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the values of � and K . In this research, the choice range for � 
is (25, 4500) and that for K (2, 14) . The MIGA algorithm is 
used to find the optimal values for � and K . MIGA algorithm 
I summarized in Table 2.

A key step in implementing the MIGA algorithm is select-
ing the appropriate fitness functions. The concept of envelope 
entropy Ee [43] and Renyi entropy Re [44] are used to develop 
the fitness functions. The Ee value of each IMF component of 
a VMD decomposed signal can provide information about its 
sparsity. The larger the Ee value, the smaller the sparsity hence 
the noisier the IMF component. The larger the Ee value, the 
greater the sparsity of the IMF component, which indicates 
more periodic shocks in the signal. The fitness function can 
be written as

where Ee is defined by

(11)minF1 = minEe

a(j) is the Hilbert demodulation of the original signal. A 
sample simulation signal for bearing fault can be used to 
show why Ee is a suitable parameter for the fitness function. 
The signal is expressed as

where � = 0.02, 0.04, 0.06,… , y(t) is a single pulse response, 
n(t) is a Gaussian white noise whose noise intensity is deter-
mined by the standard deviation, and c(t) is the sum of the 
time-shifted noisy impulse response. For the simulation, 
y0 = 3 , fn = 3000Hz , � = 0.09 , fs = 200 kHz , the sampling 
number Ns = 2 × 106 , and the simulation time is t = 10 s to 
emulate that of the real signal from a bearing test rig.

(12)

⎧
⎪⎪⎨⎪⎪⎩

Ee = −

N�
j=0

ejlogej; ej =
a(j)

N∑
j=1

a(j)

, j = 1, 2,… ,N

(13)

⎧
⎪⎨⎪⎩

y(t) = y0e
(−2�fn� t)sin

�
−2�fn

√
1 − �2t

�

c(t) =
∑
�

f (t − �) + n(t)

ûn+1
k

(f ) =
∞∫

−∞

un+1
k

(t)e−j2𝜋ftdt , f̂ n+1
k

(f ) =
∞∫

−∞

f n+1
k

(t)e−j2𝜋ftdt , and 𝜆̂n+1
k

(f ) =
∞∫

−∞

𝜆n+1
k

(t)e−j2𝜋ftdt

Table 1   (continued)

Table 2   Multi-objective multi-island genetic algorithm (MIGA) for optimization of VMD
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Figure 3 shows a simulated vibration waveform with 
increasing noise intensity and corresponding Ee values. It 
can be observed by visual inspection of the charts that an 
increase in noise intensity reduces the sparsity of the signal; 
hence the Ee value increases. Thus, the objective is to mini-
mize the Ee value of the signal to expose the fault impact.

Renyi entropy Re is very sensitive to signal changes and 
can be used to easily identify small changes in a signal [45]. 
A small noise in a fault signal increases the concentration 
of the man frequency as explained by better aggregation 
energy, hence a smaller Re value. Thus, the objective is to 
minimize the Re value, thereby decreasing the noise. The 
fitness function can be written as

where Re is defined by

� ≥ 0 indicates the order of the Re . The use of Re in the 
fitness function is justified by observing the frequency 
domain waveforms of the simulated signal with increasing 

(14)minF2 = minRe

(15)Re(X) =
1

1 − �
ln

[
n∑

k=1

(
P
(
X = xk

))�
]

noise intensity, shown in Fig. 4. An increased noise level 
gradually submerges the main frequency in the background 
noise. Better noise aggregation is observed when the inten-
sity is reduced hence a smaller Re value, and vice versa.

For a given vibration signal, each IMF has its unique val-
ues of Ee and Re due to the influence of the values of K and 
� . The final fitness function is taken as the average of the two 
fitness functions and used to find the most suitable values for 
the parameters K and � . Therefore,

2.1.4.3  Selection criteria for  Final IMF components 
from VMD using Improve Bhattacharyya Distance (IBD)  The 
Bhattacharyya distance (BD) is a measure of the sensitivity 
or similarity of two probability density functions developed 
by Aril Kumar Bhattacharyya in the 1930s at the Indian 
Statistical Institute [46]. According to the original formula-
tion, for any two probability distributions P and Q obtained 
through kernel density estimation defined on the same 
domain � , the BD is defined by

(16)minF =
1

2

(
minEe +minRe

)

Fig. 3   Simulated time-domain waveform showing varying noise intensity as indicated by the Gaussian Noise Variance, and the variation in 
Envelope Entropy
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where

is the Bhattacharyya Coefficient (BC) for discrete probabil-
ity distributions. IBD reformulates the BD based on variance 
rather than probability density and uses the new formulation 
to measure the distance between the two probability distribu-
tions. Since the new formulation implores variance, fewer 
number of computations are involved making the approach 
easier and computationally inexpensive.

In terms of variance, for any two discrete probability 
distributions X and Y, the variances are:

The BD for the two variances D(X) and D(Y) is defined 
by

(17)DBD(P,Q) = −ln[BC(P,Q)]

(18)BC(P,Q) =
�
x∈�

√
P(x),Q(x)

(19)
D(X) = E

(
X2

)
− [E(X)]2

D(Y) = E
(
Y2

)
− [E(Y)]2

where BC[D(X),D(Y)] is the BC of the two distributions and

The IBD approach measures the similarity between the 
IMFs obtained by VMD decomposition and the original input 
noisy vibration signal to distinguish the effective from the 
non-effective IMF components. Through the experiments and 
tests on the vibration data used in this research, the VMD-
IBD approach effectively removed low-frequency noise. The 
selected components are used to reconstruct the denoised 
through the principle of superposition. The steps involved in 
the VMD-IBD decomposition and reconstruction are sum-
marized in the algorithm in Table 3 and illustrated in Fig. 5.

(20)DBD[D(X),D(Y)] = − ln [BC[D(X),D(Y)]]

(21)BC[D(X),D(Y)] =
�

x∈X,y∈Y

√
D(X)D(Y)

Fig. 4   Simulated frequency-domain waveform showing varying noise intensity as indicated by the Gaussian Noise Variance, and the variation in 
Envelope Entropy
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2.1.5 � Time‑series signal denoising using wavelet 
thresholding

Raw vibration signals from a bearing test rig contain 
valuable information that is difficult to identify using 
time series data alone or other time-series process-
ing methods. Advanced signal processing can identify 
crucial time–frequency domain information. Suppose 
f̂ (t) =

[
f̂
(
t1
)
, f̂
(
t2
)
,… , f̂

(
tM
)]

 is a “clean” vibration sig-
nal and f (t) =

[
f
(
t1
)
, f
(
t2
)
,… , f

(
tM
)]

 is a “noisy” vibration 
signal, both of which are time-series signals, if σ is the 
noise level and zi are independent and identically distrib-
uted standard Gaussian random variables which constitute 
a Gaussian white noise denoted aszi ∼ N(0, 1) . The raw 
vibration signal can be modeled by

where ti = i∕M . Denoising the signal implies isolating f (t) 
to minimize the mean-squared error defined by

(25)f
(
ti
)
= f̂

(
ti
)
+ 𝛼zi, i = 1, 2,… ,M

subject to the fact that f̂  is at least as smooth as f  , where f̂  
is the reconstruction of f  through wavelet analysis. Wave-
let analysis can be defined using multiresolution analy-
sis (MRA) approach first formulated by Mallat [47, pp. 
674–693].

Orthogonal basis and local time–frequency analysis 
form the basis of diverse signal representations. Wave-
let denoising involves using a thresholding algorithm in 
orthogonal decompositions such as multi-resolution anal-
ysis or wavelet packet transform. Wavelet thresholding 
requires that the proper threshold be selected to generate 
a better estimate of the denoised signal. Thresholding the 
wavelet coefficients of a signal keeps the local regularity 
of the signal and can be divided into three steps [48, 49]:

(26)M−1E
‖‖‖f̂ − f

‖‖‖
2

2
= M−1

M∑
i=1

E
(
f̂
(
ti
)
− f̂

(
ti
))2

Table 3   Selection of VMD 
IMF components used for 
signal reconstruction using the 
Improve Bhattacharyya distance 
method
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(1)	 Decomposition This step involves sequentially dividing 
the data into different components at different resolu-
tions. Each decomposition results in two signals called 
approximation and details. The approximation signal 
is further decomposed into a new approximation and 
detail signal. The number of decompositions refers to 
the level, which depends on the analysis, the frequen-
cies of interest, and the selected filters or wavelet type. 
To compute the wavelet decomposition of the signal at 
a level N on an orthogonal basis, choose a wavelet type 
and level used to generate a filter bank of conjugate 
mirror filters.

(2)	 Thresholding Decomposition is followed by selecting 
of a suitable threshold using a thresholding estimator 
on the orthogonal basis, applied on all coefficients, not 
including the lowest frequency energy components. 
Decomposition maintains the signal regularity.

(3)	 Reconstruction The final step is wavelet reconstruction 
of the denoised signal using the approximation coef-
ficients of level M and the modified detail coefficients 
of levels from 1 to M.

MRA uses discrete wavelet transform (DWT) to decom-
pose a signal using a series of conjugate mirror filter 
pairs. DWT analysis is very efficient and suited for tran-
sient, time-varying signals and performs best in detecting 

discontinuities and minute changes. For a basic formulation 
of MRA for wavelet analysis, consider a time series function 
f (t) ∈ L2(ℝ) with respect to the wavelet function �(t) and 
a scaling function �(t) . A wavelet series expansion of f (t) 
results in a series of coefficients called the DWT of f (t) . The 
DWT pair is defined as

and

where M = 2j . The transform comprises of M coefficients. 
With a minimum and maximum scale of 0 and j − 1 respec-
tively. The coefficients W�

(
j0, k

)
 and W� (j, k) are the approx-

imation and detail coefficients, respectively, computed 
through DWT. The required signal f (t) is reconstructed 
through DWT synthesis or inverse DWT. The process in 
Eqs. (27)–(29) is valid only for orthonormal basis and tight 
frames [50], and Eq. (29) is called the multiresolution expan-
sion of f (t).

The MRA process consists of a sequence of successive 
approximation closed subspaces Vj  defined by 
Vj = span

k

{
�j,k(t)

}
 (where Vj can be increased by increasing 

j ), which satisfies the conditions …V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ 
V−2 … , 

⋃
j∈ℤVj = L2(ℝ) where 

⋂
j∈ℤ Vj denotes [51]. Each 

subspace Vj is the scale space. First, the signal f  is projected 
ontoVj . The space is then decomposed into a lower resolution 
space Vj+1 which satisfy Vj+1 ⟂ and Vj+1 = Vj ⊕Wj [51], 
where Wj = span

k

{
�j,k(t)

}
 . The scaling function is defined by

k determines the position of �j0,k
(t) along the time axis, j0 

determines its width, and 2j0∕ 2 controls its amplitude. The 
wavelet function is defined by

�(t) is also called the mother wavelet. Both �j0,k
(t) ∈ B and 

�j,k(j, k) ∈ B where B =
[{
�j,k(j, k)

}
,
{
�j0,k

(t)
}]

 is an orthog-
onal basis. The wavelet basis functions are obtained from a 
single mother wavelet by translation and scaling.

(27)W�

�
j0, k

�
=

1

∫
0

f (t)�j0,k
(t) dt =

1√
M

M−1�
t=0

f (t)�j0,k
(t)

(28)W� (j, k) =

1

∫
0

f (t)�j,k(t) dt =
1√
M

M−1�
t=0

f (t)�j,k(t)

(29)

f (t) =
1√
M

M−1�
k=0

W�

�
j0, k

�
�j0,k

(t) +
1√
M

∞�
j=j0

M−1�
k=0

W� (j, k)�j0,k
(t)

(30)
�j0,k

(t) = 2
j0

2 �
(
2j0 t − k

)
, ∀j0, k ∈ ℤ, �j0,k

(t) ∈ L2(ℝ)

(31)�j,k(t) = 2
j

2�
(
2jt − k

)

Fig. 5   Flowchart of VMD decomposition and Improve Bhattacharyya 
distance criteria for IMF selection and signal reconstruction
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The basic concept of MRA is to find the approximate 
features and details of the signal through scalar products 
using scaling and wavelet functions. Vibration signals used 
in this study have sharp and gentle spikes observed where 
the faults occur. These fault spikes could be of high or low 
frequency, depending on the nature of the fault and the 
system parameters and functioning. The spikes observed, 
as well as other details of the signal, can be discriminated 
from the noise through MRA decomposition into differ-
ent levels. The choice of the mother wavelet function and 
scaling function determines the final waveform shape of 
the denoised signal. Orthogonal basis wavelet is used to 
perform MRA, resulting in a unique reconstructed signal 
from the wavelet transform. MRA is optimal for extracting 
the useful signal and suppressing the noise. The method is 
characterized by high disturbance resistibility and accu-
racy. The decomposition is carried out on several levels. 

The maximum decomposition level depends on the size 
of the data, defined by the expression Lmax = log2 (N) , 
N = length of the signal. Depending on the data, the max-
imum decomposition level Lmax is rarely attained since 
“over decomposition” removes most of the useful com-
ponents of the original signal. After performing several 
experiments, the decomposition level chosen for this study 
is 3 

(
Lmax = ceil

(
log2 15000

)
= 14

)
 , for a segment length 

of 15,000.
Figure 6 shows a flowchart of the thresholding procedure 

using MRA. The wavelet decomposition is done by filtering 
the input signal f  by a pair of low- and high-pass mirror fil-
ters defined, respectively, by h[k] and g[k] = (−1)1−kh[1 − k] . 
The filters h[k] and g[k] are used as filter banks at recon-
struction. The decomposition results are approximates and 
detail coefficients evaluated using the filters h[k] = h[−k] 
and g[k] = g[−k] . The relationship between the low- and 

Fig. 6   Thresholding procedure with MRA, where the lowest-frequency approximate W3

�
(t) is kept (no processing using the thresholding func-

tion) a 3-level decomposition flowchart, b 3-level reconstruction flowchart
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high-pass filter and the scaler and wavelet functions can be 
expressed as

At the reconstruction stage,

The choice of wavelet function is not unique. However, 
it is chosen from several “already-built” wavelets based on 
the signal or image processing domain and is required to 
satisfy the multiresolution condition [50]. Many wavelet 
models have been developed over the years with different 
effects, such as Haar wavelet for rectangular-shaped signals 
and images, Daubechies wavelet for signal compression and 
solving fractal problems, Morlet wavelet for wavelet-based 
analysis, Meyer wavelet for image processing, image resto-
ration, and biomedical signal compression, Symlet wavelet 
which is an asymmetrical Daubechies wavelet suitable for 
signal denoising, etc. Signal denoising within this study's 
context will use the eighth-order symlet wavelet (sym8). A 
flowchart of the WT denoising algorithm is shown in Fig. 7.

Donoho and Johnstone [52] suggested that the sig-
nificant wavelet coefficients could be extracted by 

(32)

Wj+1
�

[
p
]
=

+∞∑
k=−∞

h
[
k − 2p

]
Wj

�
[n] = Wj

�
∗ h

[
2p

]

Wj+1
�

[
p
]
=

+∞∑
k=−∞

g
[
k − 2p

]
Wj

�
[n] = Wj

�
∗ g

[
2p

]

(33)

Wj
�

[
p
]
=

+∞∑
k=−∞

h
[
p − 2n

]
Wj+1

�
[n] +

+∞∑
k=−∞

g
[
p − 2n

]
Wj

�
[n]

= Wj+1�

�
∗ h

[
p
]
+Wj+1�

�
∗ g

[
p
]

thresholding. The thresholding shrinks the wavelet coef-
ficients towards zero if their absolute value is below a cer-
tain threshold level � ≥ 0 . The simplest form of threshold-
ing is hard thresholding which can be defined as

where �H
[
�m(j, k), �

]
 is the wavelet estimation coefficient 

after hard thresholding, �m(j, k) is the wavelet decomposi-
tion coefficient before thresholding, and � is the threshold 
level. This approach is a keep-or-kill approach that results 
in discontinuities in the amplitude of the shrunk coefficients. 
Soft thresholding approach, however prevents discontinuity 
and can be expressed as [53]

where �S
[
�m(j, k), �

]
 are the wavelet coefficients after the 

soft thresholding process and sgn(⋅) is the signum function. 
This is the shrink-or-kill approach that prevents the discon-
tinuities observed during hard thresholding. However, all 
other coefficients which represent the original signal are also 
shrunk, causing a decrease in the SNR of the denoised sig-
nal, which is highly undesirable.

Universal thresholding was chosen as the denoising 
method, which has been proven optimal for many applica-
tions, as stated in [54]. According to the universal thresh-
olding method, the risk of the estimator with j-level 
threshold given by Trj = �

√
2 ln

(
nj
)
, j = 1,… ,N  and 

N ≥ 4 is

(34)𝜂H
[
𝛼m(j, k), 𝛾

]
=

{
𝛼m(j, k),

||𝛼m(j, k)|| ≥ 𝛾

0, ||𝛼m(j, k)|| < 𝛾

(35)

𝜂S
[
𝛼m(j, k), 𝛾

]
=

{
sgn

(
𝛼m(j, k)

)(||𝛼m(j, k)|| − 𝛾
)
, ||𝛼m(j, k)|| ≥ 𝛾

0, ||𝛼m(j, k)|| < 𝛾

Fig. 7   Wavelet thresholding 
denoising algorithm flowchart
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where fB is the projection of f  on the basis B , � is the stand-
ard deviation of the noise signal, rth is the threshold risk, and 
nj is the number of j-level wavelet coefficients. In this appli-
cation, nj is kept constant at nj = N . Noise variance �2 esti-
mation is an important factor during thresholding estimation. 
The noise variance is unknown in practical applications and 
must be estimated during wavelet denoising. According to 
Mallat [55], the variance of the noise W  is estimated from 
the median Mx of absolute wavelet coefficients |||

⟨
W,�l,k

⟩||| 
by neglecting the influence of the piecewise smooth clean 
signal f :

The noise variance estimation is carried out using hard 
thresholding for the data used in this study. Due to the nature 
of the signal noise and through various experiments, a level-
dependent variance estimation was chosen. That is, the influ-
ence of Gaussian noises is spread to all the levels; thus the 
variance should be estimated level by level [56].

In summary, for this research, the Universal Threshold 
wavelet denoising was carried out through MRA with a sym-
let 8 (sym8) wavelet. Level-dependent noise estimation was 
used with hard thresholding. The number of denoising levels 
was set to L = 3 for the best results, which retains the most 
information about the original signal (signal integrity) while 
removing as much noise as possible.

2.1.6 � Performance metrics for evaluation of the denoising 
technique

For a given original vibration signal sequence f a and 
denoised vibration signal fden both of length N  , the root 
mean square error (RMSE) and signal-to-noise ratio (SNR) 
performance metrics are used to evaluate the quality of the 
denoising process. The RMSE is defined as

According to [57], for any two samples x and y , the cor-
relation coefficient between the two samples is defined by

(36)rth(f ) ≤ (2 lnN + 1)

(
�2 +

N−1∑
t=0

min
(
�2, ||fB(t)||2

))

(37)𝜎̃ =
Mx

0.6745

(38)RMSE =

√√√√ 1

N

N∑
n=1

|||forig(n) − fden(n)
|||
2

(39)�2(x, y) =
�2
x

�2
y

=
SNR

1 + SNR

The correlation coefficient between forig and fden is 
defined as

In terms of the samples of forig and fden , the correlation 
coefficient can be defined as

The correlation coefficient here represents the percentage of 
the signal in the noise-added waveform. The SNR in decibels 
(dB) can be defined in terms of � as

2.2 � Continuous wavelet transform (CWT)

Wavelet transforms have widely been used as great mathemati-
cal tools in various areas of signal processing to decompose 
and process complex signals, often in multiple dimensions [58, 
59]. CWT is a mathematical method used to decompose and 
analyze variable signals that need variable time–frequency 
localization of features throughout the signal train [60]. Fast 
Fourier transform (FFT) and inverse fast Fourier transform 
(IFFT) are widely used in signal processing to analyze vary-
ing time–frequency signals but lack the crucial capability of 
providing a time history of the signal being processed as well 
as when the frequencies occur [61]. Given that fault detection 
scenarios often require the analysis of time series vibration 
signals, the changing frequencies of the signal with time make 
FFT and IFFT viable choices for analysis. Another reasonable 
argument for using wave transforms in analyzing such signals 
is that the features of the signals are often very complex and 
hidden deep in the frequency domain, which makes sense as 
not much can be deduced by simply observing the time series 
data.

The Fourier transform F(f ) of a signal is defined by

for a time t and frequency f  . Fourier transform is suitable for 
stationary signals and is ineffective in analyzing nonstation-
ary signals [17, 62]. Consider a nonstationary time-varying 
signal x(t) . Wavelet transforms are base functions formed 

(40)�
(
forig, fden

)
=

cov
(
forig, fden

)

�
(
forig

)
⋅ �

(
fden

)

(41)

� =

1

N

N∑
n=1

�
forig(n) − f orig

��
fden(n) − f den

�

�
1

N

N∑
n=1

�
forig(n) − f orig

�2

�
1

N

N∑
n=1

�
fden(n) − f den

�2

(42)SNR = 10log10

(
�2
(
forig, fden

)

1 − �2
(
forig, fden

)
)

(43)F(f ) =

∞

∫
−∞

s(t)e−2�iftdt



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:576

1 3

576  Page 16 of 37

through the dilations and translation of a base prototype 
function �(t) . The CWT W(a, b) of a signal x(t) is defined by

The Morlet wavelet function can be used as the base 
prototype function for the construction of CWT, as defined 
by

Taking the Fourier transform of Eq. (32) gives

From Eqs. (32) and (33),

where a is the scale parameter, � is the time width 
of the undilated Morlet base prototype function and 
s(t) = exp (2i�ft) . The frequency and scale are related by 
f = f0

/
a . CWT works by translating the base prototype 

function �(f ) with modulation frequency f  centered at inte-
gral multiples of f0 to form a set of frequency domain func-
tions. For implementation, CWT expression can be written 
in discrete form using Riemann sum for an integral part, 
known as discrete wavelet transform DWT [63], as follows

where 1 ≤ k ≤ M , −∞ ≤ k ≤ ∞ , M denotes the product of 
the number of octaves and the voices in each octave, t = nTs , 
Ts is the sampling time in seconds, and fs is the sampling 
frequency in Hertz. When computed, CWT displays the 
transformed signal amplitude and phase distribution in time 
and scale.

Another useful wavelet transform technique that could be 
used is the short-time Fourier Transform (STFT) which is 
generally characterized by a fixed duration window. CWT 
uses dilation operations to carry out wavelet transform by 
dividing the time–frequency plane into resolution cells with 
variable lengths depending on the scale parameter a , which 
makes it suitable for variable frequency cases as opposed 
to STFT, where its resolution cells are of the fixed dura-
tion time window. Figure 8 shows sample wavelet trans-
forms represented in two dimensions as scalogram images. 
The scalogram images resulting from CWT are resized to 
224 × 224 × 3 to match the input of the CNN network.

(44)W(a, b) = 1
√

a

∞

∫
−∞

x(t)�
( t − b

a

)

dt, where a, b ∈ ℝ, a > 0

(45)

�(t) =
[
exp

(
−2i�f0t

)
− exp

(
−2�2f 2

0
�2
)]

exp

(
−

t2

2�2

)

(46)
�(f ) =

√

2��2
{

e
[

−2�2�2(f − f0
)2
]

− exp
(

−2�2�2f 2
)

exp
(

−2�2�2f 20
)

}

(47)W(a, b) =
√
a exp (2i�bf ) exp

�
−2�2a2�2

�
f −

f0

a

�2
�

(48)

W(k, l) =
Ts

�
√

2�2k∕M

∞
∑

n=−∞
s(n) exp

[

−
(n − 1)

21+(k∕M)f 2s �2

]

exp
[

−2i�
f0
fs
2−k∕M(n − l)

]

2.3 � Convolutional neural network (CNN)

Neural networks are a part of machine learning and are at the 
core of all deep learning algorithms. There are many classes 
of neural networks, but CNN is particularly interesting, 
which will be used in this research article [64, 65]. CNNs 
are a supervised learning method for image classification 
and computer vision tasks [66]. In comparison to other clas-
sification methods, CNNs provide a more scalable approach 
to image classification and object recognition applications 
by leveraging matrix multiplication to identify patterns in an 
image [67], with one drawback being the need for graphical 
processing units (GPUs) to handle the large complex com-
putations in an optimized and reasonable time frame [68]. 
Another noticeable advantage of CNNs over other networks 
is their ability to adopt weight replications, receptive fields, 
and subsampling, low complexity, and anti-noise capability. 
The basic structure of a CNN has an input layer, convolution 
layers, pooling layers, fully-connected (FC) layers, and an 
output layer.

2.3.1 � Convolution layer

The convolution layer distinguishes CNNs from other types 
of deep learning networks, and is where most of the com-
putations and feature extraction occurs [69]. A typical input 
to the convolution layer is an RBG image. Part of the con-
volution layer is the feature detector, also called the filter 
or kernel, which “scans” across the receptive field of the 
image, searching for the presence of features in a process 
called convolution. The kernel is a 2D array of weights that 
may vary in size and represents part of the image. Applying 
the filter to a section of the image requires a dot product 
between the input pixels in that area and the filter matrix. 
The result is fed into an output array. The filter then shifts 
by a stride, and the process is repeated over the entire image. 
The output from the convolution layer is a feature or activa-
tion map. The weights of the feature map are adjusted by 
backpropagation and gradient descent during training. The 
hyperparameters in the convolution layer set initially before 
training commence include several filters, filter size, stride, 
and zero padding. The output from the output layer is acti-
vated by passing it through a Leaky Rectified Linear Unit 
(Leaky ReLU) to introduce nonlinearities.

Significant characteristics can be extracted by convolu-
tion, which is a special type of filtering method. There are 
multiple convolutional kernels in each convolutional layer 
under normal conditions. A convolution layer is created by 
convolutional filters and learnable kernels for nonlinear 
transformations. Convolutional filters and learnable kernels 
create a convolution layer for nonlinear transformations. The 
convolution process is expressed as
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where yn
k
 is the kth feature graph of the ith convolution layer, 

φ() is the activation function, Mk is the input graph set, β is 
the function Kernel and bn

k
 is the corresponding bias.

2.3.2 � Activation operation

After the convolution layer, the activation layer nonlin-
early modifies the logit value of each convolution output 
and speeds up CNN convergence. When employing the 

(49)yn
k
= conv

(
yn−1
i

, �n
ik

)
= �

(
Mk∑
i=1

yn−1
i

∗ �n
ik
+ bn

k

) back-propagation learning approach to update the param-
eters, the weights in the shallow layer become more trainable 
due to a leaky ReLU activation layer. The formula for the 
Leaky ReLU activation function is defined as follows:

where ki is a fixed value in the interval (0, 1) inclusive and 
yn
ik

 is the kth feature graph activation value of the convolu-
tion layer output yn.

(50)an
k
= 𝜑

(
yn
k

)
=

{
kiy

n
ik
, yn

ik
≥ 0

yn
ik
, yn

ik
< 0

Fig. 8   a Flow diagram of proposed CWT wavelet transform. b 
Sample vibration signals with their corresponding CWT scalogram 
images, generated from time-series signal samples with 4500 data-

points into a 4500px by137px image resized to 780px by1080px for 
better visibility of the frequency peaks
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2.3.3 � Polling layer

Pooling layers are down-sampling layers for dimensional-
ity reduction. It reduces the number of input parameters. 
The pooling layer has a weightless filter that sweeps across 
the entire input, applying an aggression function to values 
within the receptive field. The results are used to populate 
the output matrix [69]. Max pooling sweeps a filter across 
the input and chooses pixels with a maximum value in the 
receptive field. The pooling layer reduces the input graph 
by extracting the main features while decreasing the dimen-
sional complexity of the output and sensitivity to the envi-
ronment with minimal loss of invalid information in the 
input feature graph [70]. For example, if the input feature 
size is 6 × 6, a pooling operation with the size of 2 × 2 and 
the step size of 2, down-samples the input features to an 
output of 3 × 3. The max pooling transformation process can 
be expressed as

where an
tk

 is the activation value of the tth neuron in the nth 
layer of the kth frame and W is the width of the pooling area. 
No parameters are learned in the pooling layer.

2.3.4 � Batch normalization

The batch normalization (BN) layer reduces the deep neu-
ral network's internal covariance shift, accelerates training, 
increases efficiency, and improves generalization. In the first 
step of the BN layer process, the mean value �B of the mini-
batch is subtracted from the input volume layer value and 
then divided by the standard deviation �2

B
 . However, this will 

result in the input value being constrained to a narrow range. 
As a result, once the standardization process is complete, it 
requires multiplication by a scaling amount denoted by γ and 
an offset value denoted by β. The input of the batch normali-
zation layer is denoted by yn

k
=
[
yn
1k
, yn

2k
, … , yn

ik
, … , yn

Nk

]
 . 

The max-pooling transformation is described as follows:

where �n
k
 and �n

k
 are the scaling factor and offset of the BN 

layer, respectively, zn
ik

 is the output of the BN layer, and � is 
a numerical stability constant.

2.3.5 � Fully connected layer

Image classification and object recognition are performed in 
the fully connected (FC) layer based on the features extracted 

(51)yn
k
= max

(i−1)W≤t≤iW
{
an
tk

}

(52)
ŷn
ik
=

yn
ik
− 𝜇B√
𝜎2
B
+ 𝜀

zn
ik
= 𝛾n

k
∗ ŷn

ik
+ 𝛽n

k

from previous layers. The FC is a finite number of neurons 
whose input and output are vectors [69]. It uses a softmax acti-
vation function to classify inputs accordingly. Let 

{
ai
}n

i=1
 be 

the input sample set of the data to the FC layer. If P
(
ai = k|xi) 

is the probability that the sample matches the correct label, 
then according to the softmax regression model, which con-
stitutes the softmax activation function, the output is given by

where xi is the input eigenvector of the ith sample, K the 
number of classes or sample labels, the parameters of the 
softmax classification model is � =

[
�1, �1, ..., �K

]T  , 
and R is the output. A dropout layer can be added after the 
fully connected layer to limit overfitting [70]. The key goal 
of introducing the dropout layer is to remove nodes (input 
and hidden layer) in the neural network during training, 
thereby preventing overfitting. The dropout layer tempo-
rarily removes all forward and backward connections with 
the dropout nodes. This creates a new architecture from the 
existing parent network through a dropout probability. Over-
fitting happens when some neurons change in response to 
the mistakes of other neurons. This creates a complex co-
adaptation between neurons, which in turn causes the over-
fitting problem. The dropout layer prevents co-adaptation 
between neurons, by randomly dropping out neurons thereby 
enhancing generalization.

For this study, the back-propagation (BP) algorithm and 
adaptive momentum estimation algorithm (Adam optimizer) 
[71] are used to train and optimize the training parameters of 
the CNN model. The training parameters are optimized by cal-
culating the error between the real and predicted values. The 
weight and biases (trainable parameters) are rapidly updated 
and fine-tuned to minimize the estimated error. The training 
error is measured using Categorical Cross-Entropy (CCE) loss 
function F(�) is defined as follows

where n is the number of samples and m is the number of 
categories. Since the last layer is connected to the softmax 
layer for classification, CCE is used as the loss function such 
that the framework can optimize and calculate the gradients 
together.

The update rules for the Adam optimizer are defined as

(53)R =

⎡
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P
�
ai = 1�xi; �T

1
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�

P
�
ai = 1�xi; �T

2
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�

⋮

P
�
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K
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�

⎤
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=

1
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e
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where m(t)

ij
 is the decay rate of the mean gradients, v(t)

ij
 is the 

mean square of gradients, wij , �1 , and �2 are weights, and C , 
the cost function that requires optimization. The normalized 
mean of gradients m̂(t)

ij
 and mean of square gradients v̂(t)

ij
 are 

defined as

The final update rule for each weight wij is defined as

where η is the learning rate and ε is a numerical stability 
constant. For this study, η = 0.00004, β1 = 0.9, β2 = 0.9, and 
ε = 1 × 10−8.

3 � Experimental setup, data acquisition 
and data preparation

3.1 � Experiment setup and data acquisition

The effectiveness of the proposed fault diagnosis approach 
is tested and validated using experimental vibration signal 
data. A full experimental setup of the bearing fault test used 
to simulate the various fault types in this study is shown in 
Fig. 9.

The fault simulation test rig used to simulate a variety 
of bearing fault types and acquisition of vibration and rota-
tional speed data is the Spectra Quest machinery fault simu-
lation (model MFS-PK5M) at Ottawa University lab [72]. 
ER16K bearings with 9 balls, each with a pitch diameter of 
38.52 mm and ball diameter of 7.94 mm, were used for the 
test, mounted at the ends of a central drive shaft connected 
to an electric motor whose speed is controlled by an AC 
drive unit. One end of the drive shaft had a healthy bear-
ing, while the other end had a test bearing. An ICP acceler-
ometer, model 623C01, was used to collect vibration data, 
while an EPC model 775 incremental encoder set at 1024 
CPR measures the rotational speed. Vibration signals for 
healthy bearings and four error types were recorded dur-
ing the tests for four different speed conditions at different 
rotating frequencies: increasing rotating speed, decreasing 
rotational speed, increasing then decreasing rotational speed, 
and decreasing then increasing rotational speed. The tests 
were carried out under no load conditions.

(55)

m
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3.2 � Description of the dataset and computation 
environment

Experiments were conducted with data from a bearing test 
rig to validate the proposed signal processing method. The 
bearing test rig was operated under five operating condi-
tions and varying rotational speeds. The vibration data 
for the tests were sampled at 200 kHz for 10 s per sample. 
Three trials are carried out for each operational speed set-
ting resulting in 60 samples. Each sample has two chan-
nels: Channel 1 represents the accelerometer’s vibration 
data, while Channel 2 represents the encoder’s speed data. 
The bearing fault types in the University of Ottawa dataset 
[72] can be classified into: healthy (H), inner race fault (IF), 
outer race faults (OF), ball faults (BF), and combined fault 
(CF). The 60 samples are insufficient for any deep-learning 
model. Before converting into images, each sample was first 
divided into overlapping segments using the sliding window 
algorithm whose length could be chosen arbitrarily but suf-
ficiently long enough to cover at least a complete revolution 
of the rotating shaft.

Three datasets were generated for this study: original 
dataset (data collected from the bearing test rig were not 
preprocessed before converting to images), noise added 
dataset (the data collected from the bearing test rig was 
supplemented with AWGN), and denoised dataset (data 
collected from the bearing test rig was supplemented with 
AWGN to simulate a scenario where the bearing subsys-
tem is part of a larger system with vibration noise, and then 
denoised using the proposed denoising technique in this 
study). For each of the three datasets, six separate sub-data-
sets were generated using 2500, 5000, 7500, 10,000, 12,500 
and 15,000 segment lengths that correspond to 59,940, 
26,638, 17,100, 12,600, 9960 and 8220 scalogram images. 

Fig. 9   Experimental Setup showing drive units, bearing units, and 
measuring instruments (Image source: [72])
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According to the parameters detailed in [72], the rotational 
frequency fr of the bearing shaft falls between the range 
9.8 ≤ fr ≤ 29.0 while the BPFO and BPFI falls between the 
range 35.0 ≤ fBPFO ≤ 103.5 and 53.2 ≤ fBPFI ≤ 157.5 respec-
tively; thus the chosen segment lengths satisfy the condi-
tions mentioned in Sect. 2.1.3. Each sub-dataset is grouped 
into five subsets corresponding to the respective fault types. 
Two separate sets of experiments were conducted in this 
study. The first set of experiments investigated the effects 
of denoising the vibration data instead of using unfiltered 
noisy data for signal processing. The second set of experi-
ments investigates the effect of segment length and operat-
ing speed conditions on the model's overall performance. In 
all experiments, the same CNN architecture as previously 
described was used. For each experiment and image dataset, 
70% of the randomized images were used to train, 20% to 
validate, and 10% to test the network. Each experiment was 
carried out 5 times, and the results averaged out to minimize 
the effect of randomness. This large dataset requires a large 
computation power made possible by GPU processors.

The computation was carried out with keras tensorflow 
2.12.0 on a Dell Precision 7550 laptop with a Linux Oper-
ating system (Ubuntu 22.04.2 LTS distro): Intel Core i7 
– 10875H CPU, 64 bits system from Intel corporation with 
32 GB of RAM, equipped with an NVIDIA TU104GLM 
(Quadro RTX 4000 Mobile / Max Q) GPU graphics card 
and 1T SSD hard drive.

3.3 � Description of the deep learning architecture

To evaluate the performance and accuracy of the proposed 
bearing fault diagnosis method, we apply it to vibration data 
from a bearing test rig under varying test conditions. Due 
to the complicated structure of deep learning models, it is 
difficult to choose appropriate parameters. However, based 
on prior research in the same field and experience, trial-
and-error analysis was used to determine the structure and 
parameters of the CNN architecture in this research for fault 
classification and identification, as shown in Table 4, and the 
corresponding CNN structure is shown in Fig. 10.

The CNN architecture used for image classification is 
a modified version of the well-refined AlexNet [73]. The 
neural net comprises eight weighted layers (five convolu-
tion and three fully connected layers). In this study, the last 
fully connected layer has five neurons. Its output is fed to 
a 5-way softmax layer, producing a probability distribution 
over the 5 classes representing the five faults. A maxpooling 
layer with filter size 5 × 5 and stride of 2 pixels, for which the 
number of filters corresponds to the outputs of the respective 
convolution layers (96 filters and 256 filters, respectively, 
after C1 and C2), were added after the first two convolution 
layers. The subsequent 3 successive convolution layers do 
not have a maxpooling layer. The ReLU activation function 
was applied to the output of all convolution and fully con-
nected layers.

The first convolution layer, C1 filters the 224 × 224 × 3 
input image using 96 filters of size 11 × 11 with a stride of 4 
pixels. The output has a size of 54 × 54 × 96. After passing 
through the first maxpooling layer P1, the output becomes 

Table 4   Parameters of CNN network (Based on AlexNet architecture)

Layer name Parameters Output feature size Training parameters

Input Input Data (Scalogram Images) 227 × 227 × 3 Batch size = 32
Learning rate = 0.0001
Maximum epochs = 100
Optimizer is adam
No. trainable parameters = 46,767,493

2D convolution layer (C1) 96 Filters, Size 11 × 11, Stride 4, activation “ReLU” 54 × 54 × 96
Max pooling layer (P1) 96 Filter Size 3 × 3, Stride 2 26 × 26 × 96
2D convolution layer (C2) 256 Filters, Size 5 × 5, Stride 2, padding 2, activation 

“ReLU”
26 × 26 × 256

Max pooling layer (P2) 256 Filter Size 3 × 3, Stride 2 12 × 12 × 256
2D convolution layer (C3) 384 Filters, Size 3 × 3, Padding 1, Stride 1, activation 

“ReLU”
12 × 12 × 384

2D convolution layer (C4) 384 Filters, Size 3 × 3, Padding 1, Stride 1, activation 
“ReLU”

12 × 12 × 384

2D convolution layer (C4) 256 Filters, Size 3 × 3, Stride 1, Stride 1, activation 
“ReLU”

12 × 12 × 256

Max pooling layer (P3) 256 Filter Size 3 × 3, Stride 2 5 × 5 × 256
Flatten layer (FL) 6400 Neurons 256 × 6400
Fully connected layer (D1) 4096 Neurons, Dropout rate = 0.1 6400 × 4096
Fully connected layer (D2) 4096 Neurons, Dropout rate = 0.1 4096 × 4096
Fully connected layer (D3) 5 Neurons 4096 × 5
Output layer Classification data 5 × 1
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26 × 26 × 96, fed into the second convolution layer. The sec-
ond convolution layer accepts the maxpooled output from 
C1 as input and filters it using 256 filters of size 5 × 5, stride 
of 2 pixels and padding of 2 pixels. The response from this 
layer is maxpooled using the P2 layer with an output size 
of 12 × 12 × 256. The output is then passed through three 
consecutive convolution layers without any maxpooling. 
The third convolution layer C3 has 384 filters of size 3 × 3, 
padding of 1 pixel and stride of 1 pixel with an output size 
of 12 × 12 × 384. The fourth convolution layer C4 has 384 
filters of size 3 × 3, padding of 1 pixel and stride of 1 pixel. 
The output from this layer has a size of 12 × 12 × 384. The 
fifth convolution layer C5 has 256 filters of size 3 × 3, the 
same stride and padding as C3 and C4. The output from C5 
has a size of 12 × 12 × 256 which is passed through a max-
pooling layer P3 with 256 filters of size 3 × 3 and stride of 2 
pixels with an output of 5 × 5 × 256.

The output from P3 is flattened through a flatten layer 
(FL) to a linear output of 6400 neurons before passing the 
results through three successive fully connected layers D1, 
D2 and D3. Each D1 and D2 have 4096 neurons followed 
by a dropout layer with a dropout rate of 0.1. The last FL D3 
has 5 neurons corresponding to the five fault classes with a 
softmax classification function.

To solve the problem of overfitting, a sequence of data 
augmentation steps was used. First, the input image was 
randomly rotated with a rotation factor of 0.2. The sec-
ond step involves randomly flipping the image along the 
horizontal and vertical axis. The third data augmentation 
method applied random contrast of 0.1 to all the images 
before finally rescaling the image. Every input image has 
input pixels in the range [0, 255]. The rescaling layer trans-
forms the image pixels to the range [0, 1] by multiplying by 
a scale = 1.∕255 . Also, a dropout layer with a dropout rate 
of 0.1 was applied after each of the first two FLs to reduce 
overfitting.

To train the network, an Adam optimizer with a CCE 
loss function was used with a minimum batch size of 32 at 
a learning rate of 0.0001. The maximum number of epochs 
for training was 100. The entire network has 46,767,493 
trainable parameters.

4 � Results and discussion

4.1 � Performance analysis of the proposed vibration 
data denoising method

In this study, vibration signals from an experimental bearing 
test rig were used to evaluate the performance and accuracy 
of the proposed bearing fault diagnosis method. In order to 
observe the effects of noise when the bearing subsystem is 
treated as part of a larger system, the samples of the vibra-
tion data from a real bearing test rig were supplemented 
with AWGN. The proposed denoising method in the pre-
processing stage was used to demonstrate how the added 
noise can be removed before further processing. The vari-
ance of the input noise-added signal was used as the variance 
of the AWGN. SNR and RMSE were used to evaluate the 
effectiveness of the proposed denoising technique and the 
results compared with VMD and wavelet denoising methods 
in isolation.

The first part of the denoising step implores the VMD 
denoising method, which is an effective way to decompose 
the vibration signal into IMFs. The MIGA algorithm was 
used to obtain optimal parameters for VMD decomposition. 
The optimal values for the penalty factor � and the decom-
position number K were 12 and 2500, respectively. VMD 
decomposition of a random normalized sample vibration sig-
nal with AWGN of segment length of 20,000 using the opti-
mal parameters is shown in Fig. 11. It can be observed that 
most of the signal noise is distributed in the high-frequency 

Fig. 10   CNN architecture
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IMF components of VMD as indicated by the central fre-
quencies shown in Fig. 12.

Using the IBD approach summarized in Algorithm 3 
in Table  3, the maximum slope is �max = 0.15 at index 
imax = 10 . Applying the technique depicted in Table 3 to 
select the IMFs for reconstruction, the first two IMFs 
(IMF1 and IMF2) will be eliminated, leaving IMF3 and 
IMF12 to reconstruct the VMD-IBD denoised signal. The 
reconstructed signal is further denoised using WT result-
ing in a better-quality signal. Figure 13 shows the results 
of denoising using various methods compared to the pro-
posed method. It should be noted that most of the noise 
was removed during the WT stage, which is far superior 
to the VMD-IBD method. When the noise-added vibration 
signal was first processed with the VMD-IBD denoising 
method before WT denoising, the quality of denoising was 
better than directly processing it with WT. This shows that 
the proposed denoising method improved the quality of the 
denoised signal, as evident from the close similarity between 
the raw normalized vibration signal and that using the pro-
posed method, as shown in Fig. 13.

To investigate the quality of denoising using the pro-
posed scheme, 1000 random segments of length 15,000 
for each of the five classes were used. After applying the 
proposed denoising method to these samples, the SNR 
and RMSE values were average. The results for the noise-
added data, VMD denoised data, WT denoising data, and 

VMD-IBD+WT denoised data are shown in Fig. 14. Fig-
ure 14 shows the average RMSE of the denoising effects 
using various denoising methods. The noise-added data 
had the largest RMSE for each class, while the lowest 
RMSE was observed for samples processed with the pro-
posed VMD-IBD+WT denoising method.

The smaller the RMSE, the better the performance of 
the method. For all 5 classes, WT performed better than 
the VMD approach, but both performed less than the pro-
posed method. Figure 14 shows the average SNR values of 
the denoising effect, further confirming the observations 
with RMSE. The proposed denoising method shows the 
largest SNR values compared to the other methods show-
ing the high quality of the denoised signal.

The quality of denoising is evident from the time–fre-
quency transforms (CWT) shown in Fig. 15, whereby the 
noise recorded in the noise-added data in Fig. 15 and the 
remaining noise from the VMD denoising method is com-
pletely removed, as shown in Fig. 15. The denoised signal 
using the proposed method results in a signal that is very 
close to the original normalized raw vibration signal.

4.2 � Performance analysis of the proposed bearing 
fault diagnosis method

Several experiments were conducted to evaluate the perfor-
mance of the proposed bearing fault diagnosis approach. 

Fig. 11   Sample vibration signal decomposed using VMD with optimal parameters K = 12 and � = 2500 , showing 12 IMFs
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Experiments were carried out on three separate groups of 
data generated from the same vibration dataset: original, 
noise-added, and denoised. Datasets with segments 2500, 
5000, 7500, 10,000, 12,500 and 15,000 were generated for 
each category of datasets earlier mentioned. A total of five 
separate groups of experiments were carried out to evaluate 
the effectiveness of the method. Note that the fault classifica-
tion results of each experiment were averaged over 5 runs to 
reduce the effects of randomness.

Experiments were conducted to evaluate how segment 
length affects classification results, using pre-defined lengths 
of 2500, 5000, 7500, 10,000, 12,500, and 15,000. The vibra-
tion samples were segmented, denoised, and converted into 
image data. Then, the deep learning model was used for 
fault classification. The results of the experiments are sum-
marized in Table 5. More detailed results are presented 
in Tables 6, 7 and 8. The tables present the bearing fault 
classification results for different segment lengths using 

Fig. 12   Power spectrum of VMD decomposed IMFs showing the location of the central frequencies

(a) (b)

Fig. 13   a Comparison of various stages of signal pre-processing of a random inner race vibration signal. b Comparing the final denoised signal 
to the original normalized raw vibration signal sample with the highest SNR value and lowest RMSE value
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the original, denoised, and noise-added datasets. It pro-
vides performance metrics such as precision, recall, and F1 
scores for each bearing fault class. The results demonstrate 
the impact of segment length on the accuracy of the deep 
neural network.

Analyzing the results from all three tables, it can be observed 
that longer segment lengths generally lead to higher accuracy. 
Table 6 presents the original dataset's bearing fault classifica-
tion results for different segment lengths. The validation accu-
racy for the original data increases from 99.46% for the data 
with a segment length of 2500 to 99.85% for that with a seg-
ment length of 15,000. Table 7 shows the classification results 
of bearing faults for various segment lengths using the denoised 
dataset. The results reveal that the denoised dataset achieves 
higher accuracy across various segment lengths than the noise-
added datasets. High accuracies ranging from 98.28% for data 
with a segment length of 2500 to 99.70% for a segment length 
of 15,000 were observed for the denoised data. The training 
and validation accuracy of the denoised data is comparable to 
those of the original vibration data, with a percentage training 
accuracy error of 0.49% and a percentage validation error of 
0.93%. This low error between the model performance for the 
original vibration data and the denoised vibration data shows 
that the denoising method effectively separates the vibration 
signal from the added noise. This indicates that the proposed 
denoising method effectively improves the quality of the vibra-
tion data, resulting in better fault classification performance. 
The precision, recall and F1 scores consistently indicate supe-
rior performance for all the bearing fault classes. This confirms 
the effectiveness of the proposed denoising method in removing 
noise from the vibration data, enabling the deep neural network 
to accurately classify bearing faults.

Table 8 presents the bearing fault classification results 
for different segment lengths using the noise-added dataset. 

The results in Table 8 shows that the accuracy of the model 
decreases when the raw vibration data is supplemented with 
white Gaussian noise. The precision, recall, and F1 scores 
indicate a significant decline compared to the original and 
denoised datasets. This highlights the adverse effect of noise 
on fault diagnosis accuracy, further emphasizing the impor-
tance of the denoising step in the proposed method. The pres-
ence of AWGN reduces the model’s performance to accurately 
classify the faults. The worse performance was observed for 
the 2500 segment with a 31.23% validation accuracy compared 
to 95.56% for the 15,000 segment length. So, even though the 
model performs poorly with the noise-added data, the accu-
racy improves with increased segment length since the images 
become more distinguishable at higher segment lengths.

The performance metrics are evaluated using Eqs. (53), 
(54), (55), and (56).

Another significant observation is that the computational 
time drops significantly as the segment length increases. The 
number of segments directly equal to the sum of the number 
of training and validation images, decreases as the segment 
length increases. As a result, fewer iterations are required per 

(58)Accuracy =
TP + TN

TP + FP + TN + FN

(59)Recall =
TP

TP + FN

(60)Precision =
TP

TP + FP

(61)F1_score = 2 ∗
Recall ∗ Precision

Recall + Precision

Fig. 14   Average performance metrics of the denoising effects on 1000 random samples of each fault type a RMSE, b SNR
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epoch due to the reduced sample size, hence a decrease in 
computation time observed across all three tables.

Experiments with signals under different speed condi-
tions were conducted to evaluate the robustness and adap-
tive learning and classification capability of the proposed 
method. Four shaft speed conditions were tested: increas-
ing, decreasing, increasing then decreasing, and decreas-
ing then increasing. The bearing fault classification results 

for different operating speed conditions using the denoised 
dataset are presented in Table 9. It reports the training 
and validation accuracies and the computation time for 
each speed profile. It is observed that the increasing speed 
conditions generally have a slightly higher accuracy in 
both training and validation phases. This trend is consist-
ent across different segment lengths. The higher accura-
cies achieved under increasing speed conditions indicate 

Fig. 15   Denoising results using the proposed method on ball fault bearings vibration signals. a Noisy vibration signal. b Original vibration sig-
nal without added white. c Denoised vibration signal using the proposed method
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that the deep neural network can better capture the fault 
patterns present in the vibration data when the speed 
increases. On the other hand, decreasing speed conditions 
show slightly lower accuracy than increasing speed con-
ditions. However, the difference in accuracy is relatively 
small, indicating a certain level of robustness of the model 
against variations in speed conditions. This suggests the 
trained deep neural network can generalize well and per-
form reasonably even when tested under different speed 
conditions. This could be attributed to the efficient capa-
bility of CWT to isolate the distinctive frequency features 
of each signal under variable conditions. There is also no 
effect on the computation time since it is largely affected 
by the size of the dataset. This result shows that the pro-
posed method does not depend on the speed of operation 
of the shaft and can be used in any speed condition.

The experimental training and validation progress for 
the original, denoised, and noise-added vibration data 
are, respectively, shown in Figs. 16, 17 and 20. The poor 
performance of the noise-added data can be further ascer-
tained by observing the training and validation progress 
in Fig. 20. In contrast, the original and denoised data have 
closely similar results. The confusion matrices for all con-
sidered segment lengths for the original and denoised data 
are also shown in Figs. 18 and 19, respectively. The confu-
sion matrices show that the model can effectively classify 
the test images as opposed to the poor results depicted 
in Fig. 21 for the noise-added data. The performance of 
the model for the noise-added vibration data, as observed 
in the confusion matrices, shows that the presence of the 
noise significantly affects the accuracy of the results, as 
seen by the increased number of false positives and false 
negatives due to confusion between scalogram images of 
different fault types especially at smaller segment lengths 
(Figs. 20, 21).

The adaptive learning capability, robustness, and ability 
of the deep neural network model to generalize were further 
investigated with signals under different operation conditions 
for training and testing. Given that there are four operating 
speed conditions, the model is trained with images generated 
from vibration data with one operating speed condition and 
tested with images obtained from vibration signals acquired 
under the other three for all six segment lengths. The experi-
ments were performed using the vibration data that has been 
denoised using the proposed denoising method. The bearing 
fault classification accuracies obtained under these scenarios 
and averaged over 5 runs are presented in Table 10.

The results show that the choice of training and testing 
speed conditions has a slight impact on the testing accura-
cies. Matching the speed conditions between training and 
testing generally leads to higher accuracies, indicating that 
consistency in the speed profile contributes to improved 
fault classification performance. For a segment length of Ta
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2500, the highest testing accuracy of 97.44% is achieved 
when the model is trained with an increasing speed con-
dition (Inc) and tested with a decreasing then increasing 
speed condition (DecTI). Similarly, for segment lengths 
of 5000, 7500, 10,000, 12,500, and 15,000, the highest 
testing accuracies are achieved with specific combinations 
of training and testing speed conditions. Interestingly, the 
testing accuracies are comparable across different condi-
tions for some segment lengths. For example, for a seg-
ment length of 7500, the testing accuracies range from 
99.22 to 99.88% across various training and testing speed 
conditions. This suggests that the model's performance 
is relatively robust to variations in speed conditions and 
capable of adapting and generalizing. It is important to 
note that while matching the speed conditions generally 
leads to higher accuracies, the models still exhibit reason-
able accuracy even when tested under different speed con-
ditions from that which they were trained. This indicates a 
certain level of adaptability and generalization capability 
of the deep neural network, enabling it to classify bearing 
faults effectively even in varying operational conditions.

4.3 � Comparison with other popular deep learning 
and machine learning methods

Some popular deep-learning techniques for machinery fault 
diagnosis have been reported with very good performance. 
These techniques include CWT+CNN, deep neural networks 
(DNN), 1D convolutional neural networks (1D-CNN), and 
long short-term memory (LSTM). Experiments were car-
ried out with these methods on the same dataset, and the 
results were compared with the proposed signal processing 
technique presented in this paper. Frequency spectra of the 
original raw vibration signal were used as input into the 

DNN and CNN networks, while the raw time series data 
was used as input to the LSTM network. The noise-added 
vibration data was directly converted to scalogram images 
using CWT, and the same CNN-based algorithm in the pro-
posed framework was used. The structure of the DNN in 
each experiment contained an input layer, 4 hidden layers, 
and an output layer. The hyperparameters of the DNN net-
work are shown in Table 11. Each CNN contained 3 convo-
lutional-pooling layer units with ReLU activation functions. 
The convolutional kernel used in all CNNs is of dimension 
5, and the max pooling stride of 2. A learning rate of 0.001 
and a maximum epoch of 500 was set for both DNNs and 
CNNs training, while an 80–20% dataset split was used for 
training and validation datasets. The output layer of DNNs 
and CNNs has dimension 5, corresponding to the number of 
classes. Condition monitoring features such as peak value, 
crest factor, standard deviation, variance measure, kurtosis, 
skewness, shape factor, root mean square (RMS), entropy, 
impulse factor, margin factor, root mean square frequency 
(RMSF), and root variance frequency (RVF) calculated 
through spectral averaging method as described in [74, 75], 
were used for bearing fault diagnosis using support vector 
machine (SVM). The result using this manual feature extrac-
tion method is included in Table 11.

The comparison results presented in Table 11 show that the 
proposed bearing fault diagnosis method can more accurately 
identify bearing faults from noisy vibration signals than the 
DNN, 1D-CNN, LSTM, and SVM methods. This shows that 
the denoising technique makes it easier for the deep learning 
structure to accurately identify the faults since the frequency 
features of the vibration signals are not easily mixed up and 
confused with the noisy components. Compared to other sig-
nal processing methods carried out on the same dataset, the 
proposed method presented in this paper combines signal 

a) b)

Fig. 16   Results for denoised data a Training and Validation accuracy curves. b Training and validation loss
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denoising techniques with deep learning based on CNN archi-
tecture for feature extraction and fault classification. By so 
doing, the proposed method presents several advantages over 
other methods:

(1)	 It filters out low and high-frequency components and 
white noise from the data based on the optimized 
parameters, advanced denoising, and WT techniques. 
This method reduces the noise level in the acquired 

a) b)

Fig. 17   Results for original data a Training and Validation accuracy curves. b Training and validation loss

Fig. 18   Confusion matrix for bearing fault detection results for different segment lengths for the original vibration signal a 2500, b 5000, c 7500, 
d 10,000, e 12,500
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Fig. 19   Confusion matrix for bearing fault detection results for different segment lengths for the denoised vibration signal a 2500, b 5000, c 
7500, d 10,000, e 12,500

signal with little changes to the original features of the 
actual vibration signal profile of the healthy or faulty 
bearings. This significantly improves the fault diagno-
sis accuracy.

(2)	 By using deep learning, the fault diagnosis is automated 
as opposed to other unreliable manual techniques as 
they depend on visual inspection or statistical analysis.

(3)	 Due to the time-varying variable speed condition con-
sidered in this study, significant denoising and CWT 
technique decompose the input signal into a time–fre-
quency representation, making it good for time and fre-
quency localization. Combined with the power of deep 
learning, a powerful tool is developed to effectively 
identify subtle changes in the vibration signal due to 
existing faults.

(4)	 The weights obtained during deep learning represent 
changes in pixel depth in the scalogram images, which 
corresponds to time–frequency characteristics of the 
vibration signal and can be correlated to the fault 
features of the bearings. By applying denoising tech-
niques, the effects of identical noise levels that can cre-
ate confusion in distinguishing the frequency peaks in 
the time–frequency representation are limited, thereby 
improving the accuracy of the results. This makes the 

proposed method effective for bearing fault diagnosis 
and bearing health monitoring.

LSTM is also based on deep learning but has the lowest 
accuracy in diagnosing the bearing faults from the raw time-
series signals. This could be attributed to the fact that the net-
work cannot accurately identify the distinguishing features 
from the signals. Also, the classification accuracies from SVM 
with the manually extracted features through spectral average-
based method is significantly lower than that of the proposed 
method and other deep learning methods, indicating that the 
proposed framework is more efficient for bearing diagnosis 
than the regular machine learning methods such as SVM on 
manually extracted features.

5 � Conclusion

This paper presented a time-series signal processing 
method for denoising and bearing fault diagnosis using 
vibration signals. The proposed method combines sev-
eral advanced time-series signal processing and denois-
ing techniques with a deep learning structure for effective 
and efficient automatic vibration signal processing, fea-
ture extraction, and bearing fault diagnosis. The presented 
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method was divided into three crucial steps. First, the time 
series vibration signals are preprocessed and prepared. In 
this stage, the time series vibration signals are supple-
mented with AWGN to simulate the bearing subsystem as 
part of a larger industrial system whose vibration signals 

are considered the source of heavy noise. Then the noise-
added signal is standardized and split into smaller seg-
ments of arbitrary length using an overlapping sliding win-
dow approach. Next, the noised added vibration signals 
are denoised using two successive denoising techniques: 

a) b)

Fig. 20   Results for noise added data a Training and Validation accuracy curves. b Training and validation loss

Fig. 21   Confusion matrix for bearing fault detection results for different segment lengths for the noisy vibration signal a 2500, b 5000, c 7500, d 
10,000, e 12,500
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VMD-IBD with optimized parameters to remove low and 
high-frequency noise signals and then wavelet denoising to 
remove the same frequency noise signal to obtain a recon-
structed vibration signal with less noise that resembles the 
original vibration signal as closely as possible. The final 
denoised vibration signal was processed using CWT to 
generate 2D time–frequency domain scalogram images. 
Finally, the generated image dataset was used to train a 
CNN deep neural network with a softmax classification 
layer to automatically identify the bearing fault.

The proposed method was validated using the Ottawa Uni-
versity vibration dataset from a bearing test rig. The valida-
tion results showed that the proposed method could diagnose 
bearing faults using vibration signals mixed with heavy noise 
signals through unsupervised learning with high accuracy and 
robustness. The results also showed that segment length and 
operating speed conditions have little or no significant effect 
on the accuracy of the results. It was established that the 
speed conditions for training and testing do not significantly 
affect the accuracy of the method. As a result, the model can 
be trained in one-speed conditions and used to identify faults 
under other speed conditions. By denoising, the noise-added 
vibration signal, the performance of the deep neural network 
to accurately identify the fault was significantly improved.

The proposed bearing fault diagnosis method was more 
accurate than other deep learning and traditional machine 
learning methods. The proposed bearing fault diagnosis 
method had the highest accuracy over other deep learning 
and traditional machine learning methods. It was able to 
remove the added white noise and traces of noise in the 
original vibration signal from the bearing test rig. The 
time–frequency transform of the denoised signal revealed 
important aspects of the faults, making it easier for the 
CNN to accurately classify the faults. The method pro-
posed in the paper demonstrated its capability to extract 
“clean” vibration signals even in the presence of back-
ground noise and accurately classify and automatically 
diagnose the bearing faults. This method could be used to 
diagnose bearing faults in variable speed conditions and 
the presence of heavy background noise.

In future work, we will explore the effects of different 
parameter selections for the denoising stage on the accuracy 
of diagnosis. Optimizing the parameter selection process is 
key to improving the denoising process for better perfor-
mance and robustness. One crucial limitation of this work 
is that it involves three crucial computationally intensive 
stages (denoising, time–frequency transformation, and deep 
learning model training). This limitation makes it difficult to 

Table 10   Bearing fault classification results for different training and testing conditions

Inc = increasing, Dec = decreasing, IncTD = increasing then decreasing, DecTI = decreasing then increasing

Segment length Training speed condition Inc Dec IncTD DecTI

Testing speed condition Dec IncTD DecTI Inc IncTD DecTI Inc Dec DecTI Inc Dec IncTD

2500 Testing accuracy (%) 96.86 96.34 97.10 96.23 96.57 96.88 97.12 96.91 96.85 97.44 97.13 96.97
5000 Testing accuracy (%) 98.99 98.76 98.58 98.73 98.39 98.78 98.90 98.61 99.01 98.31 98.92 99.08
7500 Testing accuracy (%) 99.24 99.67 99.53 99.49 99.66 99.50 99.88 99.71 99.22 99.25 99.57 99.43
10,000 Testing accuracy (%) 99.89 99.82 99.86 99.79 99.83 99.80 99.95 99.81 99.85 99.90 99.87 99.89
12,500 Testing accuracy (%) 99.97 100 99.86 99.89 99.76 99.96 99.89 99.69 99.57 99.83 99.92 99.37
1,5000 Testing accuracy (%) 100 99.83 99.68 99.99 99.84 99.43 99.97 99.87 99.64 99.96 100 99.74

Table 11   Comparison of bearing fault classification results with other commonly used methods

Raw Noisy Signal = Original bearing fault signals with added white Gaussian noise

Segment length Number of images Proposed method Testing Accuracy (%)

CWT + CNN
(Raw Noisy 
Signal)

DNN
(Raw noisy signal)

LSTM
(Raw 
noisy 
signal)

1D-CNN
(Raw 
noisy 
signal)

SVM
(Raw 
noisy 
signal)

2500 59,940 96.09 31.23 89.76 (2500|2000|1000|500|250|5) 45.70 67.78 80.50
5000 26,638 98.55 71.13 91.87 (5000|2500|1300|700|350|5) 44.80 68.54 82.30
7500 17,100 99.24 83.37 92.89 (7500|3750|2500|1300|650|5) 46.38 69.57 84.61
10,000 12,600 99.25 87.35 93.22 (10,000|5000|2500|1250|500|5) 47.50 68.82 86.10
12,500 9960 99.35 94.47 94.23 (12,500|6250|3125|1500|750|5) 45.89 68.33 88.20
15,000 8220 99.70 95.63 94.71 (1500|7500|3750|2500|1500|5) 46.30 68.98 88.40
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use the proposed method for on-the-fly bearing fault diagno-
sis in real-time applications. Despite these limitations, the 

proposed method has proven its effectiveness, accuracy, and 
robustness in many applicable scenarios.

Appendix A
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