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Abstract
The objective of this study is to enhance the performance of a nonlinear three-rigid-link manipulator (RLM) with a focus on 
trajectory tracking, robustness against disturbances and noises, and adaptability to joint flexibility. To achieve this, we have 
employed an optimized sliding mode controller with a proportional integral derivative (PID) sliding manifold. The tuning 
process involves selecting the critical gains of the controller that minimizes the integral time absolute error (ITAE), serving 
as the objective function (OBJF) to optimize the performance of the robot manipulator. To identify the optimal gains of 
the controller, we have utilized a new optimization algorithm known as memory enhanced linear population size reduction 
gray wolf optimization (MELGWO). The efficacy of this algorithm is compared to other existing optimization methods 
in the literature. Moreover, this research has delved into the impact of joint flexibility on the robot system’s performance. 
Encouragingly, the results demonstrate that the optimized SMC–PID with MELGWO adaptation can effectively address 
joint flexibility while maintaining acceptable performance levels.

Keywords Enhanced gray wolf optimizer · Sliding mode control · Proportional integral derivative · Trajectory tracking · 
Flexible joint manipulator · Rigid link manipulator

1 Introduction

Robotic manipulators are employed in the current industrial 
environment to enhance product quality as well as productiv-
ity, accuracy, speed, and flexibility in the workplace. Robotic 
manipulators are rapidly being used in risky, tedious, or 
repetitive industrial processes, despite the complicated and 
tough requirements of industrial applications. Material pick-
ing and placing is one of the essential uses of mechanical 
robotic manipulators. These manipulators can also be used 
for welding, assembling, manufacturing, painting, and other 
operations in the car industry, as well as for handling radio-
active and biohazardous materials during robotically assisted 

surgery. Manufacturing needs to be more effective and high-
quality, and this requirement has motivated the development 
of more robust and sophisticated robotic manipulators [1–4].

The adoption of flexible link manipulators (FLMs) and 
flexible joint manipulators (FJMs) have witnessed a notable 
surge in recent times, attributed to their extensive applicabil-
ity across domains encompassing industry, medicine, aero-
space, instrumentation, satellites, and industrial automation. 
These manipulators are progressively replacing rigid links 
characterized by larger dimensions and greater mass within 
diverse industrial sectors [5]. Furthermore, the design of 
flexible and lightweight manipulators offers advantages such 
as enhanced maneuverability and reduced power consump-
tion. Nonetheless, these systems pose challenges in terms of 
modeling, measurement, stabilization, and control, primarily 
attributed to the oscillations exhibited by flexible links [6].

The importance of mathematical modeling for multi-
DOF manipulators is necessary in any practical control 
process; the mathematical model of the manipulator is nor-
mally developed using the Lagrangian approach [7–10]. 
In general, mathematical modeling is really challenging 
and time-consuming, especially for strongly coupled 
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multi-input multi-output systems; Recent research offers 
a thorough and comprehensive critical analysis of math-
ematical modeling methods [2]. Using a numerical mod-
eling method, the powerful MATLAB Simulink and Sim-
scape toolboxes were utilized to create SimMechanics 
models of robotic manipulators from CAD assemblies [1, 
9, 10]. Simscape multibody models are favored because 
they are simple to get, and they can be simulated and 
controlled [1, 5, 11–14]. Using simulation software has 
several advantages, including understanding of how the 
multi-DOF robotic manipulator systems work in a simu-
lated environment and avoiding the complexity of math-
ematical formulations.

Sliding mode control (SMC) is a widely utilized non-
linear control strategy employed to guide state trajectories 
toward predetermined sliding surfaces through the applica-
tion of discontinuous control inputs [10, 15–19]. Neverthe-
less, the SMC law’s discontinuity can lead to the manifesta-
tion of the chattering effect, characterized by the occurrence 
of high-frequency oscillations in the controlled variable. 
This phenomenon has the potential to disrupt the stability 
of the controlled system or substantially reduce the actua-
tors’ operational lifespan [10, 15].

Numerous strategies have been proposed in the litera-
ture to address the chattering phenomenon [20]. One of the 
approaches involves approximating the SMC’s discontinu-
ous control with a continuous counterpart. Although this 
technique effectively reduces tracking error, it comes at the 
cost of compromising the overall efficiency of SMC by gen-
erating a pseudo-sliding mode instead of the desired ideal 
sliding mode [20]. An alternative solution to mitigate chat-
tering entails employing the higher-order sliding mode con-
trol approach. This method confines the discontinuity to a 
derivative of the control variable, incorporating these deriva-
tives with respect to time up to a specified order in addi-
tion to the sliding variable. Notably, this approach exhibits 
favorable suitability for application in electromagnetic or 
mechanical systems due to its continuous nature of control 
action [20].

The existing literature encompasses various studies 
exploring the sliding mode controller and its diverse appli-
cations. For instance, a comparative investigation conducted 
by prior researchers [21] evaluated the performance of the 
SMC controller in comparison to the PID controller. The 
outcomes indicated that the SMC exhibited a faster and more 
robust response, albeit with a relatively larger control signal 
than the PID controller.

Geng et al. [22] explored three distinct types of non-sin-
gular terminal sliding mode controllers implemented on a 
robotic arm subject to external disturbances. Through simu-
lation results, they demonstrated the efficacy of the proposed 
modifications in enhancing the controller’s convergence rate 
while reducing the magnitude of the control input signal.

In a study conducted by Mohammad-Reza Moghanni-
Bavil-Olyaei et al. [23], a comparative analysis was per-
formed between the sliding mode control (SMC) with 
proportional-derivative (PD) surface and the block back-
stepping control approach. The aim of this comparison was 
to evaluate the trajectory tracking performance of a single-
link flexible-link flexible-joint manipulator (SFLFJM).

An additional research endeavor focused on an integrated 
second-order SMC controller and the application of an 
algorithm for designing the control scheme for manipula-
tor robots. This study aimed to evaluate the practicability 
of the proposed controller and confirm its effectiveness in 
terms of convergence and robustness. Satisfactory results 
were obtained through experiments conducted on a real 
industrial robot, validating the algorithm’s practicality and 
effectiveness [10, 20].

Numerous studies have investigated the concept of adap-
tive sliding mode control [24–26]. Additionally, there have 
been several studies that explore the integration of fuzzy 
logic with sliding mode control (SMC) [27–29]. To enhance 
the performance of SMC control, Genetic Algorithms (GA) 
were utilized to determine optimal parameters for a con-
ventional SMC controller [30, 31]. Vijay and Jena devised 
a Particle Swarm Optimization (PSO)-based backstepping 
sliding mode controller and observer for robot manipulators 
[32]. PSO was employed to tune sliding surface parameters 
of SMC combined with an Artificial Neuro Fuzzy Inference 
System (ANFIS) and adjust the membership functions of 
Takagi Sugeno fuzzy SMC, respectively [33, 34]. A novel 
approach in [35] introduced the combination of a PSO 
algorithm with super-twisting SMC to eliminate chattering. 
Medjghou et al. introduced an optimized extended Kalman 
filter with integral type 2 fuzzy SMC using Biogeography-
based optimization (BBO) [36]. Oliveira et al. proposed 
using gray wolf optimization (GWO) with a chaotic basis to 
tune robust higher-order SMC for the position control of a 
robot manipulator [37]. To find the best control parameters 
for the fuzzy controller in APIDFSMC and control uncer-
tain systems, the GA-based adaptive PID fuzzy sliding mode 
control strategy (APIDFSMC-GA) is introduced [38]. With 
a proportional-integral-derivative-type nonsingular fast ter-
minal sliding mode control, an adaptive robust controller 
for uncertain nonlinear systems is designed to provide the 
essential attributes of rapid transient response, finite-time 
convergence, negligible steady-state error, and chattering 
cancellation [39]. Different optimization techniques, such 
as the Antlion Optimization Algorithm (ALO), Sine Cosine 
Algorithm (SCA), gray wolf optimizer (GWO), and Whale 
Optimizer Algorithm (WOA), are used to control the non-
linear 2-DOF system in a sliding mode controller (SMC) 
with PID surface [15].

In the context of scientific research and technical appli-
cations, the use of evolutionary algorithms (EAs), a type of 
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efficient and effective optimization approach, has recently 
grown in popularity. Modern practical optimization issues 
are usually non-convex, discontinuous, or even non-differ-
entiable, which makes it difficult for traditional optimization 
techniques, like gradient-based approaches, to handle these 
types of problems [40–42].

Natural processes are used by swarm-based optimization 
algorithms (SOAs) to drive a search toward the optimal solu-
tion. Instead of using just one solution for each iteration, 
SOAs use a population of solutions, in contrast to simple 
optimization algorithms like stochastic process and hill 
climbing. The difference between SOAs and these algo-
rithms in this regard is substantial. A population of solutions 
is processed at each iteration, and a population of solutions 
is also created each iteration [41, 42].

The gray wolf optimizer (GWO) is a new developed 
metaheuristic algorithm inspired by nature, characterized 
by a small number of parameters for tuning [40]. However, 
the original GWO and its variants may encounter challenges 
such as lack of population diversity, premature convergence, 
and difficulty in achieving a balance between exploration 
and exploitation. To address these limitations, a new variant 
called Memory Enhanced Linear Population Size Reduction 
GWO (MELGWO) is proposed [41]. This variant incorpo-
rates memory to retain better solutions, evolutionary opera-
tors to enhance exploration, and a stochastic local search 
technique. Additionally, a linear population size reduction 
strategy is employed to maintain a diverse population and 
prevent premature convergence. As iterations progress, 
the swarm size is gradually reduced to minimize redun-
dant exploration. The local search component significantly 
improves the exploitation capability of GWO, resulting in 
the generation of more wolves near the best solutions in the 
memory swarm [41]. Through the integration of these fea-
tures, the MELGWO algorithm demonstrates superior per-
formance compared to the original GWO algorithm, effec-
tively addressing the limitations and achieving enhanced 
optimization results.

This study encompasses the utilization of the Lagrangian 
method and the Simscape Multibody toolbox within MAT-
LAB to construct a comprehensive model of a 3-DOF RLM. 
To validate the fidelity of this model, the investigation com-
mences with an analysis of open-loop system responses for 
both the mathematical and Simscape representations, eluci-
dated in Sect. 2. In Sect. 3, the formulation of a Sliding Mode 
Controller (SMC) with a PID sliding surface is elaborated. 
Section  4 expounds on the employment of the memory 
enhanced linear population size reduction gray wolf optimizer 
(MELGWO) metaheuristic optimization technique, designed 
to confer overall robustness, stability, and exceptional tracking 
performance to the closed-loop three-link maneuver system. A 
meticulous examination of the proposed controller’s efficacy 
in mitigating disturbances and noise, along with its resilience 

against variations in payload mass, is undertaken in Sect. 5. 
Furthermore, the adaptability of the controller to the maneu-
ver’s joint flexibility is discussed. Finally, Sect. 6 encapsulates 
the study’s key findings and concluding remarks.

In the entire study, all vectors are written with bold lower-
case letters and all matrices are written with uppercase letters.

2  Modeling the three DOF rigid‑link robotic 
manipulator

The model of the 3-DOF rigid-link manipulator derived from 
the Lagrangian method depends on the kinetic and potential 
energies of the links. The more complex the problem, the more 
variables, assumptions, and iterations we might need to make, 
and this takes long derivation time. On the other side, the pow-
erful tool Simscape Multibody that is fully integrated with 
MATLAB and Simulink, enables rapid modeling, simulation, 
and analysis of systems.

The Simscape modeling and validation of the Lagrange’s 
model with Simscape model are included in the following 
subsections.

2.1  Lagrange mathematical modeling

By considering the kinetic and potential properties of the 
mechanical system, the Lagrange’s equations of motion can be 
obtained. Figure 1 illustrates a system comprising three link-
ages and three joints, denoted as J1 , J2 , and J3 . The lengths of 
the links are represented as l1 , l2 , and l3 , while their masses are 
indicated by  m1,  m2, and  m3, respectively. A comprehensive 
listing of these properties is provided in Table 1.

In the context of the manipulator, the dynamic model can 
be expressed as follows:

where �(t), �̇(t), �̈(t) denote the vectors of joints angles, 
joints velocities and joints accelerations, B(�) is the iner-
tia matrix, �

(
�, �̇

)
 is the vector of centrifugal and Coriolis 

forces, g (�) is the gravitational force vector, �  is the vector 
of input torques and D is the vector of external disturbances 
which is assumed to be bounded with ‖D‖ ≤ d , where d is 
a positive constant.

Using the information given in Table 1, the entries of the 
inertia matrix are as follows:
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where mL is the payload mass.
The elements of the centrifugal and Coriolis force vector 

are defined by:

(4)
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The components of the gravity force vector are as follows:

where g is acceleration of gravity.

2.2  MATLAB Simscape multibody model

The use of Simscape add-on products grants access to 
more sophisticated parts and analysis tools, which aid in 
the design and analysis of control systems. The created 
model can be parameterized using MATLAB variables and 
expressions, while Simulink is employed to develop control 
schemes for our physical system. The process of developing 
the Simscape model encompasses several sequential stages, 
as outlined below:
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Fig. 1  Representation of the 
three-link robotic model

Table 1  The physical parameters of the three-link robotic manipula-
tor

Parameters Symbol Description Value

All links mi Mass ( kg) 1.0
li Length ( m) 0.2
wi Width ( m) 0.02
ti Thickness ( m) 0.02
Ii Moment of Inertia ( kgm2) 0.0033
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 I. System Solver In this phase, the comprehensive con-
figuration of mechanical and simulation parameters 
for the entire system is undertaken. Factors such as 
acceleration, the gravity vector, linearization delta, 
and the global frame are defined. Furthermore, the 
specification of the solver configuration, utilizing the 
Runge–Kutta method, is executed.

 II. Link Creation Within the framework of the Simscape 
toolbox, the "Brick Solid" block is employed. This 
block functions as a representation of a solid struc-
ture, integrating geometry, inertia, mass, graphics 
elements, and associated frames. Notably, it serves 
as the fundamental unit for constructing rigid bod-
ies. During this stage, the intrinsic attributes of the 
links, encompassing geometric dimensions and mass 
properties, are meticulously defined.

 III. Creation of Joints Within the Simscape toolbox, the 
"Revolute Joint" block is utilized to establish a revo-
lute joint connecting two frames. This specific joint 
configuration enables rotational motion along a sin-
gular degree of freedom.

 IV. Frame Transformations The integration of rigid trans-
formations assumes a pivotal role in defining fixed 
3D transformations between frames. These transfor-
mations encompass both translational and rotational 
components, thereby accommodating diverse combi-
nations of translational shifts and rotational adjust-
ments.

The MATLAB Simscape model, which represents the 
entire rigid link manipulator (RLM) system is shown in 
Fig. 2.

To validate the accuracy of the mathematical model, 
a comparative analysis is conducted between the open-
loop behaviors of the mathematical model and the MAT-
LAB Simscape model. This evaluation is performed under 
varying input torque conditions of 0.5Nm , 1Nm , and 
1.5Nm for each joint, as depicted in Fig. 3. The responses 
of the Lagrange model are compared with those of the 

Simscape model in Fig. 4. Evidently, a significant congru-
ence between the two responses is observed, substantiat-
ing the suitability of the Simscape model for subsequent 
investigations.

3  Sliding mode controller with linear PID 
sliding surface

Selecting the sliding surface function is a necessary step before 
designing a sliding mode controller. Then, an equivalent con-
troller and switching mode controller should be constructed 
depending on the states of the dynamical system. The basic 
principle behind this kind of control is to place, regardless of 
the initial conditions, the representative point of the system’s 
evolution on a hypersurface of the phase space, representing 
a set of static relationships between the state variables. There 
are two components in the sliding mode control as described 
in Eq. (14).

where �����(t) is the continuous part of the controller (called 
the equivalent controller) and ��������(t) is the discontinuous 
part (called the switching mode controller).

The PID sliding surface for the existing SMC can be speci-
fied with Eq. (15).

where Kp,KiandKd are positive definite diagonal matrices. 
Furthermore, e(t) = �d(t) − �m(t) is the tracking error vector 
with �d(t) , �m(t) denote the desired and the measured angular 
position vectors.

To find the continuous equivalent controller �����(t), it is 
necessary that �̇(t) = 0 . Applying this, we arrive at the fol-
lowing equation:

(14)�(t) = �����(t) + ��������(t)

(15)�(t) = Kpe(t) + Ki∫
t

0

e(t)dt + Kd ė(t)

Fig. 2  MATLAB Simscape model of the robotic manipulator
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Fig. 3  System configuration during validation of the Lagrange’s model and the Simscape model of the 3-link robot manipulator

Fig. 4  Validation results a The measured angles of both modeling techniques and b The measured angular velocities of both modeling tech-
niques
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where we have used Eqs. (1) and (15).
The switching mode control law ��������(t) is chosen to be 

of the following form [43–45]

where � is a positive definite diagonal matrix and ����(∙) is 
the signum vector function.

To find the minimum values of the controller gains that 
ensures the system stability we consider the following posi-
tive definite Lyapunov function candidate:

Using Eqs. (1), (15), (16) and (17), the time derivative of 
V  is upper bounded as follows

where �min{∙} is the minimum eigen value of the matrix {∙}.
The structure of Eq. (19) proves that the system is glob-

ally exponentially stable, and the system reaches the sliding 
surface in a finite time provided that 𝜌min

{
KdB(�)𝜆

}
− d > 0.

Since the signum function causes chattering in practice, it 
will be replaced here with the saturated vector function 
����(�(t)∕�) , where � is a very small positive constant. This 
replacement changes the state of the system stability, and the 
system becomes globally ultimately bounded stable. The 
later causes the system states converge to the sphere defined 
by‖�‖ ≤ � . Since the sliding surface is a stable system, the 
ultimate bound of the tracking error will be ‖e‖ ≤ �

�min{Kp}
 . 

Due to the later and to improve the system performance, the 
elements of the diagonal matriceskpii,kIii,kdii , �ii and the value 
of � are to be optimized with the metaheuristic optimization 
algorithms.

4  The MELGWO algorithm

The gray wolf optimizer (GWO) algorithm [40] suffers 
from slow convergence and being trapped in local optima 
when applied to multi-modal optimization problems. To 
address these limitations, a modified version of GWO called 
MELGWO was proposed [41]. The modifications include a 
memory swarm to store the best solutions found during itera-
tions, evolutionary operators to enhance search efficiency, 
stochastic local search, and Linear population size reduction 
technique (LPSR) into the basic GWO algorithm to improve 
its capabilities for both exploitation and exploration, and to 
maintain a better balance between the two. The following 

(16)
�����(t) = B(�)

[
�̈d(t) + K−1

d

(
Kpė(t) + Kie(t)

)]
+ f

(
�, �̇

)
+ �(�)

(17)��������(t) = B(�)� ���� (�(t))

(18)V = 0.5�TB(�)�

(19)V̇ ≤ −
�
𝜌min

�
KdB(�)𝜆

�
− d

�
‖�‖

subsections describe the procedures of exploration and 
exploitation of the proposed algorithm, also the pseudocode 
is described in Algorithm ( 1).

4.1  Initialization and fitness evaluation

Initially, the algorithm identifies the three wolves with the 
lowest cost function values in the population, denoted as 
X� , X� and X� , corresponding to the alpha, beta, and delta 
wolves, respectively. During each iteration, these three 
wolves are regarded as the leaders and are assumed to con-
tain the optimal solution. All wolves randomly move toward 
these leaders to explore the region for the optimum. The 
position of each wolf (i.e., i = 1, 2, ...,NP ) is updated in every 
iteration using Eqs. ( 20)–(23 ) [40, 41], where NP represents 
the population size.

where j represents the index for the dimensions of the prob-
lem and ranges from 1 to D . � denotes a coefficient that grad-
ually decreases from 2 to 0 as the iterations progress. The 
term rand represents a random number generated from a uni-
form distribution between 0 and 1 . The calculated positions 
of the ith wolf, X1 , X2 , and X3 , correspond to the directions 
toward the alpha, beta, and delta leaders, respectively, during 
the random movement. Since the ith wolf can only occupy 
one position, its position after the iteration is determined 
by taking the average of X1 , X2 , and X3 [40, 41] as follows.

The value of Xi,j , representing the position of the ith wolf 
in the jth dimension, is compared with the lower and upper 
bounds of the jth variable. If Xi,j is outside the range defined 
by these bounds, it is set to the corresponding limit.

4.2  Memory swarm modification

The memory swarm of wolves is designed to store the pre-
sent position and corresponding cost function value of the 
explorer swarm wolves, including the initial best solutions 

(20)X1j = X�,j − [2 × � × rand − �]
|||2 × rand × X�,J − Xi,j

|||

(21)X2j = X�,j − [2 × � × rand − �]
|||2 × rand × X�,J − Xi,j

|||

(22)X3j = X�,j − [2 × � × rand − �]
|||2 × rand × X�,J − Xi,j

|||

(23)� = 2

(
1 −

It

Itmax

)

(24)Xi,j =
X1j + X2j + X3j

3



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:546

1 3

546 Page 8 of 17

(alpha, beta, and delta). The memory swarm is updated with 
better wolves from the explorer swarm after performing evo-
lutionary operations.

4.3  Evolutionary operators

The incorporation of evolutionary operators into the gray 
wolf optimizer (GWO) algorithm’s explorer swarm can 
improve its search efficiency. Among the evolution-based 
algorithms, Differential Evolution (DE) has simple princi-
ples, few parameters, and is widely used. DE consists of 
three primary processes: mutation, crossover, and selection. 
After selecting an individual (target vector, Xj ), two weight 
variances are applied to the population to provide variation. 
The mutation operator is defined as listed in Eq. ( 25 ) [41]

where Xalpha and Xj represent the position of the best wolf 
and a random wolf. To ensure that wolves can evolve in a 
way that benefits their development, an optimal variation 
factor must be created. A dynamic scaling factor listed in Eq. 
( 26 ) [41] is developed to increase the algorithm’s explora-
tion ability during the initial search process, allowing it to 
escape local optima and strengthen the local search in later 
iterations.

where fmax , fmin , Itmax and It represents the maximum and 
minimum values of F , maximum number of iterations and 
current iteration number, respectively.

The target vector, Xj , is then crossed over with the cor-
responding variation vector V (t+1)

j
 to generate a test individ-

ual, U(t+1)

j
 as listed in Eq. ( 27 ) [41] where a stochastic tech-

nique is employed to ensure that at least one bit of U(t+1)

j
 is 

different from the variation vector, V (t+1)

j
.

where Vj , Uj and Xj represent the variation, trial, and target 
vectors and Pc is the probability of crossover. The process 
of selecting between trial and target vectors involves the 
implementation of a greedy strategy. Once mutation and 
crossover have been performed, the resulting trial vector, 
U

(t+1)

j
 , is compared with the target vector, Xt

j
 . The superior 

vector is then chosen as the new solution, as illustrated in 
Eq. ( 28 ) [41].

(25)V
(t+1)

j
= Xj + F ×

(
Xalpha − Xj

)

(26)F = fmin +
(
fmax − fmin

)
×
Itmax − (It − 1)

Itmax

(27)

U
(t+1)

j
=

{
V
(t+1)

j
if rand (j) ≤ Pc

Xj otherwise

}
forj = 1, 2,……D

4.4  Stochastic local search

The implementation of stochastic local search is executed 
in proximity to half of the wolves that have been randomly 
selected. For the ith wolf within the memory swarm, the 
local search process entails several steps. Initially, the 
nearest neighboring wolf is identified among all the wolves 
within the memory swarm, based on the Euclidean dis-
tance between their respective positions within the search 
space. The corresponding position of the nearest neighbor 
is denoted byXn,j , where j = 1, 2, ...,D.

During step 2 of the process, a local or temporary wolf 
(referred to asXt,j , where j = 1, 2, ...,D ) is stochastically 
generated based on the cost function of the nearest neigh-
bor. If the cost function of the nearest neighbor is less than 
or equal to that of the current ith wolf, the temporary wolf 
is generated using Eq. ( 29 ) [41], which generates a new 
neighbor that lies between the ith wolf and its neighbor. 
Conversely, if the cost function of the nearest neighbor is 
higher than that of the ith wolf, the temporary wolf is gen-
erated using Eq. ( 30 ) [41], which generates a new neighbor 
that is situated away from the nearest neighbor.

In this study, the acceleration coefficient, denoted as c1 , 
has a fixed value of 2 . The position of the particle, Xt,j , is 
assessed for satisfaction of the specified bounds. If any of 
the bounds are violated, the corresponding value of Xt,j is 
adjusted to the violated bound.

4.5  Linear population size reduction technique

LPSR involves removing members of the wolf population 
by utilizing a linear equation. At iteration 1 , the wolf popu-
lation size is Pint , while the final wolf population size is 
represented as Pmin . The wolf population size for the suc-
ceeding generation, NG+1 , is calculated using Eq. ( 31 ) [41].

In this study, Pmin is defined as the minimum number of 
wolves, which is determined by the algorithm’s parameters 
or can be specified by the user. For this research, Pmin is 

(28)X
(t+1)

j
=

⎧
⎪
⎨
⎪
⎩

U
(t+1)

j
if U

(t+1)

j
lt;f

�
Xt
j

�

X
(t+1)

j
= Xt

j
otherwise

⎫
⎪
⎬
⎪
⎭

for j = 1, 2,……D

(29)Xt,j = Xi,j + c1 × r and ×
(
Xn,j − Xi,j

)

(30)Xt,j = Xi,j + c1 × r and ×
(
Xi,j − Xn,j

)

(31)NG+1 = round

[
Pmin − Pint

MaxNFEs

]
× NFE + Pint
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set to 10 . The current number of function evaluations is 
represented by NFE , while the maximum number of func-
tion evaluations is denoted as MaxNFEs.

5  Enhancing the controller performance 
through optimization

All of the simulations provided in this study have been run 
in MATLAB/SIMULINK with the ODE45 solver,listed 
in Eq and the simulation time is taken to be 5 s. Equa-
tions (32), (33) and (34), list the desired trajectories of 
the links. The integral time absolute error (ITAE) is listed 
in Eq. (35) served as the objective function of the tuning 
process. A representation of the SMC–PID optimization 

process is shown in Fig. 5. Table 2 lists the various param-
eters of the MELGWO and the other algorithms in lit-
erature have been utilized to optimize controller gains. 

The curves of objective function values versus iteration 
for MELGWO and other optimization techniques from 
literature study such as Particle Swarm Optimization 
(PSO), Golden Jackal Optimizer (GJO), Enhanced Artifi-
cial Bee Colony with Multi-elite Guidance (MELGWO), 
Genetic Algorithm (GA), Artificial Bee Colony (ABC), 
Sine Cosine Algorithm (SCA), Jellyfish Search Optimizer 
(JSO), Arithmetic Optimization Algorithm (AOA), Whale 
Optimizer Algorithm (WOA), Differential Evolution (DE), 
and gray wolf optimizer (GWO) are depicted in Fig. 6.
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(32)�d1 = sin(2t) − 0.1

(33)�d2 = cos(2t) − 0.1

(34)�d3 = cos(2t) − 0.1

Table 3 displays the parameters of the robotic system 
model’s upper and lower search spaces, together with the 
MELGWO optimized values. The lower bound values for 

(35)ITAE = ∫
t

0

t|e(t)|dt

Fig. 5  Schematic representation 
of the optimization process

Table 2  The design parameters 
of MELGWO and the 
algorithms in literature

Design parameter Value

All Algorithm Population size (N) 14
Max iteration ( Itrmax) 50
Independent run number 10
Lower bound ( LB) [5 0.1 0.1 50 0.3]
Upper bound ( UB) [50 10 1 300 5]

PSO Social & cognitive coefficients 1.49, 1.49
Inertia weight 0.5

GJO Constant ( �) 1.5
Constant ( s

1
) 1.5

GA Crossover times 4
Mutation times 5

WOA Fluctuation range Decreases from 2 to 0
Coeff. of the logarithmic spiral shape 1

AOA Control parameter ( �) 0.5
Math optimizer prob. ( MOP) [0.2 1]
Sensitivity parameter ( �) 5

MGABC Modification rate ( MR) 0.5
Elite group ( Ge) 3

DE Crossover probability 0.8
Scaling factor 0.85

MELGWO Pmin 10
� Decreases from 2 to 0
c
1

2
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the sliding surface and switching mode gains in the con-
troller have been specifically chosen to ensure the system 
stability. The process of selecting these values incorpo-
rated several factors, including the physical properties of 
the system such as inertia and weight of each link, as well 
as the system dynamics, desired performance, and stability 
criteria. These considerations were crucial in determining 
the lower bounds that would guarantee the stability of the 
system and ensure its proper functioning.

On the other hand, the upper bound values were selected 
in a more approximate manner. While these values have 
not been derived through a rigorous optimization process, 
they were carefully chosen to establish a reasonable range 
for the parameters without violating any operational con-
straints. The intent behind this selection was to encompass 
a broad range of feasible values that could be explored for 
experimentation and analysis purposes.

Fig. 6  Convergence history of 
the optimization process versus 
iteration

Table 3  The search space and 
best parameters of the controller 
using MELGWO algorithm

Controller 
Parameter

Search space Best parameters

Lower bound Upper bound

Link (1) Link (2) Link (3) Link (1) Link (2) Link (3) Link (1) Link (2) Link (3)

kp 5.00 5.00 5.00 50.00 50.00 50.00 50.00 50.00 50.00
ki 0.10 0.10 0.10 10.00 10.00 10.00 9.9985 9.8419 0.1826
kd 0.10 0.10 0.10 1.00 1.00 1.00 0.2553 0.1309 0.5168
� 50.00 50.00 50.00 300.00 300.00 300.00 300.00 300.00 300.00
� 0.30 0.30 0.30 5.00 5.00 5.00 0.3002 0.3197 0.3607
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Table 4 presents the best, average, and worst objective 
function values obtained by the MELGWO optimizer in 
comparison to other meta-heuristic algorithms in the liter-
ature where ten separate runs of each algorithm have been 
performed. It is notable that the MELGWO algorithm has 
produced the minimum results overall runs with the low-
est standard deviation with the lowest objective function 
values. The later finding illustrates how the MELGWO 
method outperforms other algorithms in the literature in 
terms of result superiority and robustness. Figure 7a, b, 
c demonstrates the trajectory tracking of each link and 
Fig. 7d shows the X–Y plot of end-effector. As it can be 
seen, the desired and actual trajectories are nearly identi-
cal. The controller exhibits superior tracking performance, 
as evidenced by the objective function values of links 1, 
2, and 3. Which are 0.002709, 0.005522 and 0.000042, 
respectively.

6  Comprehensive performance assessment

A robust controller must eliminate measured and unmeas-
ured noise and disturbance and be adaptable to any uncer-
tainties in the system [3]. Therefore, disturbance and noise 
rejection and adaptability to mass uncertainty in the pay-
load have been investigated and provided in this section. 
Furthermore, the effect of the joint’s flexibility is also 
investigated.

6.1  Disturbance and noise rejection

The dynamic disturbance signal and noise, listed in Eqs. (36) 
and (37), are injected at the output of each controller and 
sensor of joint at the same time as shown in Fig. 8.

where i=1:3 and �i , �i correspond to the applied torques and 
measured angles, respectively.

The systems performance is checked for varying percent-
age (per) values from 1% to severe conditions of 5% percent-
age of disturbance and noise. The corresponding objective 
function values of the optimized controller with MELGWO 
to the variation in percentage of disturbance and noise are 
listed in Table 5.

The controller has been designed to minimize the 
error-based OBJF, and its effectiveness is evident from 
the observed percentage of increase in OBJF values. This 
increase ranges from 0.829% under conditions of low dis-
turbance and noise to 43.108% under conditions of severe 
disturbance and noise.

6.2  Adaptability to the variation in mass of payload

The primary objective of a maneuvering system is to per-
form the task of gripping and manipulating objects with 
diverse masses using its end-effector. When there is a change 
in the mass of the end-effector, it introduces a new con-
figuration to the system, necessitating the need for a robust 
controller. The robust controller is essential to mitigate the 
impact of variations in the end-effector mass and ensure sta-
ble and reliable performance [3]. The mass of the payload 
has been incrementally increased by 0.1 kg, ranging from 
0.1 to 0.5 kg, in order to evaluate the robustness of the con-
trollers. Table provides a comprehensive list of the obtained 

(36)Di = per × �i

(37)Ni = per × (�mi)

Table 4  Objective function 
of MELGWO Algorithm 
compared with other algorithms

Bold indicates the specific values that denote the results achieved through the application of the present 
algorithm

Algorithm Best Worst Avg Std. dev

GJO 0.024354005 0.078534552 0.039024230 0.018407953
PSO 0.023293143 0.277158312 0.146981389 0.100421388
ABC 0.062191106 0.181809045 0.128324291 0.033917559
MGABC 0.035312476 0.193653595 0.116437332 0.057308906
SCA 0.034151176 0.111192778 0.066880495 0.024870223
JSO 0.049140147 0.234923876 0.129393002 0.046604170
GA 0.199794175 1.519026201 0.672425637 0.367326386
AOA 0.020566611 0.034220247 0.024705097 0.006562954
WOA 0.030343802 0.339648676 0.241490241 0.116835134
DE 0.020581955 0.191182825 0.039040350 0.053479170
GWO 0.021832690 0.225627685 0.071245150 0.060885039
MELGWO 0.018083906 0.026065052 0.019314763 0.002444666
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Fig. 7  Tracking trajectory curves for a link 1, b link 2, c link 3 and d X − Y plot of the end-effector
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OBJF values corresponding to the increasing payload mass 
(Table 6).

The optimized controller utilizing the MELGWO algo-
rithm demonstrates resilience in the face of payload mass 
variations. Through analysis, it is observed that the OBJF 

values exhibit an inflation ranging from 1.903% under low 
uncertainty conditions to 27.7028% under severe uncertainty 
conditions. This indicates that the controller maintains its 
performance and robustness even in challenging situations 
with significant uncertainties.

6.3  Effect of joint flexibility

In this section, we will examine the effectiveness of the opti-
mized controller approach in dealing with the impact of joint 
flexibility. To simulate the system, we utilize the Simscape 
Multibody toolbox, which allows us to model the three joints 
as flexible elements. These joints exhibit internal mechanics 
characterized as listed in Table 7. This configuration enables 
us to analyze how the controller responds when joint flex-
ibility is present and assess its ability to adapt to such condi-
tions. Figure 9a, b, c shows the error in the trajectories of 
link 1,2 and 3, respectively, and Fig. 9d shows the X–Y plot 
of end-effector. It can be observed that the proposed con-
troller demonstrates exceptional tracking performance with 
0.0068, 0.0192 and 0.2162 objective function value for each 
link, respectively. This indicates the controller’s capability to 
effectively handle flexible joint manipulator (FJM), ensuring 
precise and smooth trajectory tracking.

7  Conclusion

The optimization of a sliding mode controller with a 
proportional integral derivative (PID) surface has been 
achieved by employing an enhanced gray wolf optimizer 
algorithm (MELGWO). The selection of the optimal 
parameters of the sliding surface poses a challenge due 

Fig. 8  The optimized manipulator subjected to disturbance at controller output and noise at sensors

Table 5  OBJF variation against the percentage of disturbance and 
noise

Percentage of disturbance and noise OBJF value

1.00% 0.017933867
2.00% 0.019923741
3.00% 0.022728715
4.00% 0.025879578
5.00% 0.029699529

Table 6  OBJF variation against 
increasing the mass of payload

Mass of payload 
(kg)

OBJF value

0.1 0.018428072
0.2 0.019246539
0.3 0.020422679
0.4 0.021730710
0.5 0.023093656

Table 7  The internal mechanical properties of the FJM configuration

Parameter Joint (1) Joint (2) Joint (3)

Spring stiffness ( Nm∕rad) 2.5 2.5 2.5
Viscous damping ( Nms∕rad) 0.01 0.01 0.01
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Fig. 9  The trajectory tracking curves of the FJM system: a Link 1, b Link 2, c Link 3, and d the X − Y plot of the end-effector
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to the vast search space, leading many existing optimiza-
tion algorithms to become trapped in local optima and 
fail to identify the optimal parameters for the sliding sur-
face and switching mode controller gain. The MELGWO 
algorithm is chosen for its exceptional exploratory and 
exploitative techniques, enabling it to find the best solu-
tion. The convergence analysis conducted in this study 
provides evidence of the MELGWO algorithm’s excep-
tional capability to overcome local minima through its 
proficient exploration and exploitation techniques. This 
algorithm demonstrates superiority over other algorithms 
mentioned in the existing literature in terms of its abil-
ity to navigate and escape from local minima solutions. 
The investigation focuses on disturbance and noise rejec-
tion, as well as robustness against uncertainty in payload 
mass. The proposed controller demonstrates the ability to 
mitigate the effects of disturbances and noises, maintain-
ing the objective function (OBJF) at a minimum even in 
highly noisy and disturbed systems. The controller effec-
tively minimizes the OBJF, with the percentage increase 
in OBJF values ranging from 0.829% under conditions of 
low disturbance and noise to 43.108% under conditions 
of severe disturbance and noise. Additionally, the opti-
mized controller exhibits resilience to variations in pay-
load mass analysis, with the percentage increase in OBJF 
values ranging from 1.903% under low uncertainty condi-
tions to 27.7028% under severe uncertainty conditions. 
Furthermore, the adaptability of the controller to joint 
flexibility is evaluated, demonstrating superior tracking 
performance with minimal vibration in the movement of 
the end effector.
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