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Abstract
In this paper, a mathematical model is established for the thermoelastic circumferential Lamb waves in functionally graded 
material nonlocal nanohollow cylinders on account of the nonlocal theory and is solved by the proposed stress-based Leg-
endre polynomials approach (SLPA). The SLPA uses stress as unknown quantities. Thus, the nonlocal stress-free boundary 
conditions can be satisfied directly. It translates the original differential equations to the linear eigenvalue problems, which 
reduces the solving difficulty. Comparisons with the available results indicate the validity of the presented SLPA. The 
nonlocal effects on dispersion and attenuation are discussed. The results show that the nonlocal effect is notable on both 
phase velocity and attenuation of Lamb-like waves, but is feeble on both phase velocity and attenuation of thermal waves. 
Meanwhile, the nonlocal effect enhances the attenuation of Lamb-like wave before its maximal value, but then suppresses 
it. The study on escape frequency reveals that it is independent of the geometric radius, boundary conditions, temperature 
and is just inverse proportion to the nonlocal parameter.
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1 Introduction

When the characteristic size of microstructure decreases 
to a certain range, its mechanical properties change sig-
nificantly, which are called scale effect [1]. Due to the 
scale effect, the nanostructures possess some peculiar 
mechanical properties and have great potential for the 
fabrication of nanomechanical systems. In addition, the 
nanostructures in engineering often bear the dynamic load 
represented by elastic waves, which lead to the change 
of temperature and the corresponding thermoelastic cou-
pling. The thermoelastic coupling is essential in the field 
of nanomechanical systems [2, 3]. Therefore, the investi-
gation of thermoelastic wave propagation in nanostruc-
tures has great significance for the design and development 
of various nanodevices.

In the current stage, many researchers have con-
cerned on the elastic wave propagation in nanoplates 
and nanohollow cylinders, which are widely used in 

the nanomechanical systems. He et al. [4] investigated 
the wave propagation in functionally graded materi-
als (FGMs) cylindrical nanoshell by the wave-based 
method. Arash et al. [5] considered the waves in nonlo-
cal graphene sheets by using the finite element method. 
Sidhardh and Ray [6] studied the dispersive behavior of 
the Rayleigh–Lamb waves in a microplate. Wu et al.[7] 
investigated the Lamb waves in a nanoplate in view of 
the surface effects. Ebrahimi and Seyfi [8] studied the 
wave propagation in multi-scale hybrid nanocomposite 
plates under the aggregation of the nanoparticles. Li and 
Han [9] analyzed the elastic waves in the nanocompos-
ite annular plates. Aydogdu [10] studied the longitudinal 
waves in multiwalled carbon nanotubes. Li and Chou [11] 
discussed the velocities of waves in single-walled carbon 
nanotubes. Zhang and Yin [12] analyzed the dispersion 
curves of the guided circumferential waves in double-
walled carbon nanotubes.

On the other hand, the investigation of the thermoe-
lastic wave propagation in nanoplates and cylindrical 
plates is still limited. Othman and Mondal [13] studied 
the effect of memory-dependent derivative and thermal 
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loading on the wave in generalized micropolar thermoelas-
ticity. Ebrahimi et al. [14] proposed an analytical approach 
to solve the waves in graphene oxide powder reinforced 
nanoplates with thermal loading. Hosseini and Zhang [15] 
carried out transient thermoelastic wave response in the 
FGM graphene platelets-reinforced nanocomposite cylin-
ders by using the modified micromechanical model. Dai 
et al. [16] analyzed the flexural wave in thermoelastic 
functionally graded hollow cylindrical structure conveying 
nanoflow. Selim [17] discussed the thermoelastic longitu-
dinal waves in a single-walled carbon nanotube. Although 
the thermoelastic waves in nanoplates and the thermoe-
lastic longitudinal waves in hollow cylindrical structures 
were investigated, the thermoelastic circumferential Lamb 
waves in nanocylindrical structures were not considered 
as far as we know.

All above researches are performed based on the non-
classical continuum theories [18–22]. Among these non-
classical continuum theories, the nonlocal theory [23] is 
simple and effective in simulating the scale effect of nano-
structures. Its theoretical hypothesis has been verified by 
phonon dispersion experiment and atomic lattice dynam-
ics simulation [24]. In the context of the nonlocal theory, 
several traditional methods have been extended to study 
wave propagation in nanostructures, such as finite ele-
ment method (FEM) [25], global matrix method (GMM) 
[26, 27], thin-layer method [28] and many other meth-
ods [29–34]. However, these methods all need to solve 
the nonlinear characteristic equation or solve the large-
scale equations. When the wave propagation in dissipative 
nanostructures, for instance, thermoelastic or viscoelastic 
structures, in which the complex eigenvalues need to be 
searched in the complex plane, these methods must con-
sume a lot of CPU time. Especially, the GMM is currently 
only applicable to flat nanoplates. The reason is that the 
general solutions of nanocylinder plates with nonlocal 
effect have not yet been obtained.

In summary, there exist two significant limitations 
on the available investigations of thermoelastic waves 
in nanoplates: (1) there is a lack of the small-scale and 
efficient calculation method; (2) the thermoelastic cir-
cumferential Lamb waves in nanocylindrical plates were 
rarely mentioned, although its study is meaningful for 
quality inspection and material property measurement 
of nanocylindrical plates. Motivated by these reasons, a 
mathematical model is established for the thermoelastic 
circumferential Lamb waves in FGM nonlocal nanohol-
low cylinders on account of the nonlocal theory and is 
solved by the proposed stress-based Legendre polynomials 
approach (SLPA). The conventional Legendre polynomials 
approach (LPA) has been widely used to solve many kinds 

of guided wave propagation problems, such as elasticity 
[35], viscoelasticity [36], piezoelectric elasticity [37], 
thermoelasticity [38], reflection and transmission [39] and 
microstructure with modified couple-stress theory [40]. 
The existing LPA uses displacement as unknown quan-
tities and satisfies stress-free boundary condition by the 
rectangular window function. Then the stress is substituted 
by the displacement through introducing the constitutive 
relation into the governing equation. However, the exist-
ing LPA could not analyze the Lamb wave propagation in 
nanostructures with nonlocal effect due to the existence of 
second derivative of stress.

In this article, the proposed SLPA uses stress as unknown 
quantities. Thus, the nonlocal stress-free boundary conditions 
can be satisfied directly. Then the displacement is substituted 
by the stress through introducing the governing equation into 
the constitutive relation. Finally, the SLPA translates the origi-
nal wave problems to the linear eigenvalue problems, which 
brings about much smaller computational difficulty. Compari-
son with the available results indicates the validity of the pre-
sented SLPA. The study on escape frequency implies that it is 
independent of the geometric radius and is inverse proportion 
to the nonlocal parameter. Furthermore, the nonlocal effects on 
dispersion and attenuation are discussed, and some meaningful 
results are discovered.

2  Mathematical model and solving process

2.1  Mathematical model

The FGM nanocylindrical plates composed of orthotropic 
materials are studied in this paper, as shown in Fig. 1. Its inner 

Fig. 1  The section of an FGM nanocylindrical plate
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and outer radii are a and b, respectively. The radius thickness 
ratio ζ = b/(b − a). Guided waves propagate in the θ-direction. 
The governing equations of motion and the heat conduction 
equation can be written in the following forms [41]:

where [42]

Here, �ij , �ij and ui denote the stresses, strains and displace-
ments, respectively; Cij, Ki, βi, Ce and ρ are the elastic coef-
ficients, material constant characteristics, volume expanding 
coefficients, specific heat at constant strain and material 
density, respectively; T0 = 296K ; T is the relative tempera-
ture, which represents the change relative to T0. t and t0 indi-
cate the time and the relaxation time, respectively. 
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2.2  Solving process

For the handy analysis, the following nondimensional vari-
ables and notations are defined

where vr =
√

C11∕� means the velocity of compressional 
waves. kr = K1∕�Ce indicates the thermal diffusivity in the 
r direction. � expresses the thermoelastic coupling constant. 
K1,�1,�, Ce,C11 are K1, �1, �, Ce, C11 of the corresponding 
designated material properties, respectively.

Substituting Eqs.(3,5) in Eqs.(2a), and overwriting ∙̂ as 
∙ , it is easy to have
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Similarly, for Eq. (1b) and Eqs. (2b, 2c), it is
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As the wave propagates in the θ direction, the stress and 
temperature variables can be expressed as:

k and ω are the magnitude of the wave vector in the propaga-
tion direction and angular frequency, respectively.

Similar to Ref.[36], the material properties could be the 
following forms

Introducing Eqs. (11–12) to Eq. (10), it leads to
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The symbols ∙� and ∙�� denote the first and second 
derivatives.

To resolve Eq. (13), we expand U(r), V(r), W(r) and X(r) 
to Legendre polynomial series for the traction-free and iso-
thermal boundary conditions according to Eq. (4),
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here

Pn is the nth Legendre polynomial and p(i)
n

 are the cor-
responding expansion coefficients.

In fact, with the increase in expansion order n, the influ-
ence of higher order on the overall calculation becomes 
weaker and weaker. Thus, the summation over Eq. (14) 
could be ended at some value N. Substituting Eq. (14) in 
Eq. (13) and implementing the orthogonal projection on a 
linear space composed of a series of Legendre polynomi-
als, we have
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Qn(r), V(r) = (r − a)(r − b)

∞
∑

n=0

p(2)
n
Qn(r)

W(r) = (r − a)(r − b)
∞
∑

n=0

p(3)
n
Qn(r), X(r) = (r − a)(r − b)

∞
∑

n=0

p(4)
n
Qn(r)

(15)Qn(r) =

√

2m + 1

b − a
Pn

(

2r − (b + a)

b − a

)

(16)k2�� + k�� + �� = 0

� =

⎡

⎢

⎢

⎢

⎣

�11 0 0 0

0 �22 0 0

�31 0 �33 0

�41 0 0 �44

⎤

⎥

⎥

⎥

⎦

, � =

⎡

⎢

⎢

⎢

⎣

0 �12 0 0

�21 0 �23 0

0 �32 0 0

0 �42 0 0

⎤

⎥

⎥

⎥

⎦

,

� =

⎡

⎢

⎢

⎢

⎣

�11 0 �13 �14

0 �22 0 0

�31 0 �33 �34

�41 0 �43 �44

⎤

⎥

⎥

⎥

⎦

, � =
�

�(1)
m
, �(2)

m
, �(3)

m
, �(4)

m

�T
.

The detailed expressions of Eq.  (16) are shown in 
Appendix. A new vector q is introduced,

Coupling Eqs. (16) and (17) can obtain,

I is Identity matrix. Thus, the origin nonlinear eigen-
value problems are transformed to the linear eigenvalue 
problems.

(17)� = k�

(18)
[

� �

−� −�

][

�

�

]

= k

[

� �

� �

][

�

�

]
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1

2

Ω

C
p

Results from Ref.[44]

Our results

Fig. 3  Comparison with available ones [44] for a nonlocal nanostruc-
tures, λ = 0.1/0.34

Table 1  Wavenumber k with 
different N, Ω = 2, λ = 0.03, 
M = 1

N 1st mode 2nd mode 3rd mode Thermal mode

2 5.94 + i*5.39E−5 3.10 + i*1.62E−4 2.36 + i*5.60E−4 0.15 + i*2.53
4 5.86 + i*4.40E−5 3.32 + i*3.03E−4 2.57 + i*4.83E−4 0.15 + i*2.54
6 5.87 + i*4.67E−5 3.33 + i*3.17E−4 2.58 + i*4.74E−4 0.15 + i*2.54
8 5.87 + i*4.78E−5 3.33 + i*3.16E−4 2.57 + i*4.80E−4 0.15 + i*2.54
10 5.87 + i*4.84E−5 3.33 + i*3.13E−4 2.57 + i*4.80E−4 0.15 + i*2.54
12 5.87 + i*4.84E−5 3.33 + i*3.13E−4 2.57 + i*4.80E−4 0.15 + i*2.54
14 5.87 + i*4.84E−5 3.33 + i*3.13E−4 2.57 + i*4.80E−4 0.15 + i*2.54

Table 2  The properties of the 
two materials [45, 46]

Units: Cij(109N∙m−2), Ce(J∙kg∙deg∙m−1), ρ(103 kg∙m−3), βi(106N∙deg−1∙m−2), Ki(W/m∙K)

C11 C13 C33 C55 ρ Ce β1 β3 K1 K3

Si3N4 574 127 433 108 3.2 670 3.22 2.71 55.4 43.5
Al 106.2 52.3 106.2 26.95 2.7 897 4.98 4.98 203.5 203.5
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3  Numerical examples

Based on the above formulations, the program for the 
SLPA is written. The properties of FGM can be expressed 
as:

where Pi(r) denotes the corresponding property of the ith 
material. Ω is used to express frequency thickness product. 
Without explanation, a = 4 and b = 5.

3.1  Validity of the SLPA

Due to the lack of available data, the SLPA is validated 
by wave solutions in the FGM and nonlocal uniform 

(19)P(r) =
P1(r)

2

[

1 −
(

r − a

b − a

)M
]

+
P2(r)

2

(

r − a

b − a

)M

Fig. 4  Phase velocity of the 
Lamb-like waves with different 
λ. a 1st mode and b 2nd mode
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Fig.5  Attenuation coefficient 
of the Lamb-like waves with 
different λ. a 1st mode and b 
2nd mode
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structures without considering the temperature. Firstly, the 
results for an FGM cylindrical plate with a large radius 
thickness ratio ζ (ζ = 100) are obtained from the SLPA 
(N = 20) and are shown with the results for an infinite 
FGM plate from the power series technique in Fig. 2. The 
material properties can be found in Ref. [29]. In Ref. [29], 
the phase velocity dispersion curves for pure ceramics, 
pure Cr and FGM composed of ceramics and Cr are given. 
For this comparison, only the case of FGM is given. It is 
evident that our results agree well with the open results, 

which indicates that the SLPA is valid for the FGM cylin-
drical plates.

Then a comparison for the nonlocal nanostructures is 
given. The results from a uniform cylindrical plate with 
ζ = 100, and those from a nonlocal graphene plate in Ref 
[44]. are exhibited in Fig. 3. The phase velocity is

Obviously, the results by using the SLPA are consistent 
with the available ones [44], which are proved in Fig. 3. 
This comparison demonstrates that the SLPA is available 
for the nonlocal cylindrical plates.

3.2  Convergence of the SLPA

In this section, the convergence of the SLPA is discussed 
in Table 1. The material constants are listed in Table 2 

(20)Cp =
�

Re(k)
=

2�f

Re(k)

Fig. 7  Phase velocity and 
attenuation of the thermal wave 
with different λ. a Phase veloc-
ity and b attenuation
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Table 3  Escape frequencies for the first five modes, M = 1

1st mode 2nd mode 3rd mode 4th mode 5th mode

λ = 0.02 12.2 12.74 15.19 16.10 17.00
λ = 0.03 8.13 8.97 10.12 10.73 11.90
λ = 0.04 6.10 6.37 7.59 8.05 8.50
λ = 0.05 4.88 5.38 6.07 6.44 7.14

Fig. 8  Phase velocity and 
attenuation curves of the first 
two Lamb-like waves, λ = 0.03. 
a Phase velocity curves and b 
attenuation curves

(a)

0 1 2 3 4
0

0.5

1

1.5

2

Ω

C
p

ζ=2

ζ=5

ζ=10

(b)

0 1 2 3 4
0

1

2

3

4
x 10

-4

Ω

Im
(k

)

ζ=2

ζ=5

ζ=10



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:370 

1 3

Page 9 of 13 370

[45, 46]. The thermoelastic coupling constant η = 0.00249. 
M = 1, Ω = 2 and λ = 0.03. The outer radius b = 5, and the 
radius thickness ratio ζ = 5. For the first three Lamb-like 
wave modes, the real parts of the wavenumbers are conver-
gent when N = 8, and the imaginary ones are convergent 
when N = 10. This indicates that the wavenumbers are con-
vergent order by order, but their real parts converge faster 
than imaginary parts. For thermal wave mode, the real and 
imaginary parts of the wavenumbers are convergent when 
N = 4. This example implies that the SLPA is convergent 
for both Lamb-like and thermal waves, but has different 
convergence rates. The convergence of thermal waves is 
much faster than that of Lamb-like waves.

3.3  Scale effect on phase velocity and attenuation

Figures 4, 5 give the phase velocity and attenuation curves 
of the first two Lamb-like waves with λ = 0.01, 0.03, 0.05. 
At low frequencies, the nonlocal effect is weak on both dis-
persion and attenuation. But at high frequencies, the phase 
velocities decrease clearly with the increase in the nonlocal 

parameter λ. From Fig. 5, the nonlocal effect is remarkable 
on attenuation. A bigger nonlocal parameter λ moves the 
peak value of attenuation to a lower frequency. The attenu-
ations are enhanced by the nonlocal effect before the peak 
value and are suppressed after the peak value. It is noted that 
the attenuation of 1st mode with λ = 0.05 (red line, Fig. 5a) 
in the red box is discordant. The reason is that the attenu-
ation is oscillation near the escape frequencies, which is 
shown in Fig. 6.

Figure  7 exhibits the phase velocity and attenuation 
curves of the thermal waves and implies that their phase 
velocities and attenuations are almost not affected by λ. The 
reason can be found in the government equation. λ is only in 
Eq. (5a–c), not in the heat conduction coupling Eq. (5d). Due 
to the small thermoelastic coupling constant (η = 0.00249), 
the variation of thermal wave mode with different λ should 
be tiny.

It is noted that the waves in nanostructures only prop-
agate between their cutoff frequencies and escape fre-
quencies [27]. At the escape frequency, the phase veloc-
ity is zero. And above the escape frequency, the wave 

Fig. 9  Nonlocal effect on 
phase velocity with different 
ζ, λ = 0.03. a 1st mode; b 2nd 
mode
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Fig. 10  Nonlocal effect on 
attenuation with different ζ, 
λ = 0.03. a 1st mode; b 2nd 
mode
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phenomenon does not occur. As a crucial wave charac-
teristic in nanostructures, the escape frequencies attract 
many attentions [27, 28, 32, 47]. Table 3 shows the escape 
frequencies of the first 5 modes in the FGM thermoelastic 
nanocylindrical plates. From Table 3, it is clearly seen 
that the escape frequencies are almost inversely propor-
tional to λ. The reason can be found in the government 
equation. At the escape frequency, the phase velocity 
should be zero, and escape frequency �

e
 should be finite. 

Thus, the wavenumber k trends to infinity. Considering 
Eq. (11), both sides of Eq. (10) are divided by k2,

Obviously, Eq. (21d) implies that there is no escape 
frequencies in thermal waves. Meanwhile, Eq. (21c) also 
does not yield the escape frequencies. Therefore, the 
escape frequencies only can be solved by Eqs. (21a, 21b) 
and are not affected by the temperature. More meaning-
ful, the escape frequencies are inversely proportional to λ, 
but are unrelated to the geometrical radius and boundary 
conditions.

3.4  Outer radius thickness ratio

Although the radius thickness ratio ζ is unrelated to the 
escape frequency, it affects the phase velocity and attenu-
ation significantly. The linear FGM nanocylindrical plates 
with ζ = 2, 5, 10 are considered here. λ = 0.03. Figure 8 
shows the phase velocity and attenuation curves of the first 
two Lamb-like modes with different ζ. It is obvious that 
the phase velocities increase with decreasing ζ for the two 
Lamb-like modes in Fig. 8a, which is similar to the case in 
classical theory. In addition, a larger ζ indicates a more con-
siderable attenuation before the minimal attenuation.

(21a)�2
e

�

�
�2U −

C11

C11

U = 0

(21b)�2
e

�

�
�2V −

C55

C11

V = 0

(21c)�2
e

�

�
�2W −

C13

C11

U = 0

(21d)i�
e

K1

K1

�

�
X + �

�1

�1

U = 0

The nonlocal effect on phase velocity and attenuation 
with different ζ is further analyzed in Figs.9 and 10. The 
ratio is calculated as

ϕ is the Cp or im(k) in Figs. 9 and 10, respectively. Before 
Ω = 2, Fig. 9 indicates that the strength of the nonlocal 
effects is close for different radius thickness ratios. However, 
after Ω = 2, the strength is different clearly. Specifically, a 
larger ζ means a more substantial nonlocal effect for the  1st 
mode, but implies a weaker nonlocal effect for the  2nd mode. 
For the attenuations in Fig. 10, the nonlocal effect is also 
close at low frequencies. Simultaneously, the max nonlocal 
effect moves to a lower frequency with a larger ζ. Besides, 
the nonlocal effect is weaker before its maximal value with 
a larger ζ, but is stronger after the max nonlocal effect. From 
Figs. 9 and 10, the nonlocal effect on attenuations is stronger 
than that on phase velocities at high frequencies.

4  Conclusions

In this article, a low cost and efficient SLPA is proposed to 
investigate the nonlocal effect on dispersion characteristics 
of the thermoelastic circumferential Lamb waves in inho-
mogeneous nanocylindrical plates. The nonlocal boundary 
condition can be imposed directly on the stress variables. 
More importantly, the original problem is translated into a 
generalized linear eigenvalue problem, which reduces the 
difficulty of solution. The study is meaningful for quality 
inspection and material property measurement of nanocylin-
drical plates. In general, we have the following discoveries:

A mathematical model is established for the thermoelastic 
circumferential Lamb waves in FGM nonlocal nanohollow 
cylinders on account of the nonlocal theory and is solved 
by the proposed SLPA.
Nonlocal effect is strong on both phase velocity and attenu-
ation of Lamb-like waves, but is feeble on both phase veloc-
ity and attenuation of thermal waves.
The nonlocal effect enhances the attenuation of Lamb-like 
wave before the maximal attenuation and then suppresses it.
The escape frequency is independent of the geometric 
radius, boundary conditions and temperature. It is just 
inversely proportional to nonlocal parameter.

(22)Ratio =
|

|

|

|

|

�classical − �nonlocal

�classical

|

|

|

|

|
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Appendix

Defining

The detailed of Eq.  (10) are given here. The sum is 
applied when the symbols (j, p, l, s) occur more than once.

⎧

⎪

⎪

⎨

⎪

⎪

⎩
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b
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dj
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