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Abstract
The motion axis of a computer numerical control (CNC) machine tool is mainly composed of a permanent-magnet syn-
chronous motor (PMSM), ball screw, and moving table so that the motion axis can be practically modeled as a two-mass 
mechanical system. However, the proportional (P)–proportional integral (PI) (P–PI) control design, which is extensively used 
in commercial PMSM drivers, generally considers the motion axis as a single-mass mechanical system, thereby limiting the 
cornering motion performance of the CNC machine tool. In this study, the motion axis is modeled as a two-mass mechani-
cal system, and the P–PI control parameters are designed and adjusted to reduce cornering errors during linear cornering 
motions. The two-mass equivalent system is first derived from the motion axis model, and the pole assignment method is 
used to design the proportional and integral control parameters such that the PMSM velocity responses have short rise times 
and small overshoots. Thereafter, particle swarm optimization is applied to adjust the proportional control parameter to 
further reduce the cornering errors using an objective function with weighted errors. The results of experiments performed 
with a CNC lathe show that the cornering errors of the test path could be reduced by 30%, thus validating the feasibility and 
performance of the P–PI control parameter design and adjustment method developed herein.

Keywords Proportional (P)–proportional integral (PI) control · Control parameter design · Control parameter adjustment · 
Cornering accuracy · Linear motion · CNC machine tool

1 Introduction

Computer numerical control (CNC) machine tools are 
mainly used to upgrade machining quality and shorten 
machining time. In particular, CNC machine tools are 
often used to achieve high-speed and high-accuracy cor-
ner machining in workpieces. Workpiece corner machining 
refers to the fact that the motion axes of the CNC machine 
tool change their movement directions to perform cornering 
motions. Although high-speed machining typically shortens 
the cornering time, it also decreases cornering accuracy in 

practice. Therefore, cornering control design is an important 
consideration in the motion control of a CNC machine tool.

The motion axis of a CNC machine tool is mainly com-
posed of a permanent-magnet synchronous motor (PMSM), 
ball screw, and moving table. Therefore, the driving control 
of the PMSM has a significant influence on the cornering 
motions of the CNC machine tool. Unlike the existing cor-
nering motion control methods, the present study considers 
the following actuation and motion properties of the motion 
axis:

• A moving table is typically installed with a heavy work-
piece (in milling machines) or is equipped with a heavy-
duty turret (in lathes), and the motion axis should there-
fore be modeled as a two-mass mechanical system in 
practice.

• The inherent hardware structures of commercial PMSM 
drivers typically limit their computational performances 
as well as the number of registers used to store data dur-
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ing computations, so the control design should be simple 
and easy to implement in practical applications.

• Since the proportional (P)–proportional integral (PI) (P–
PI) control structure is extensively used in commercial 
PMSM drivers, control parameter design and adjust-
ment based on the P–PI control structure can be applied 
directly to these drivers.

 Therefore, the motion axis is modeled as a two-mass 
mechanical system in this study, and based on the P–PI 
control structure, the control parameters are designed and 
adjusted to improve the cornering accuracy of the CNC 
machine tool.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some relevant research related to this study. 
Section 3 presents details of the preliminary work, such as 
the motion axis modeling, P–PI control structure, corner-
ing error definition, and particle swarm optimization (PSO). 
Section 4 discusses the approaches developed in this study 
for the design and adjustment of the P–PI control param-
eters, such as derivation of a two-mass equivalent system, 
design of the velocity control parameters, and adjustment 
of the position control parameter. Section 5 describes the 
results of the experiments performed on a CNC lathe for 
validating the developed approaches. Section 6 presents the 
conclusions of this study.

2  Related research

Given the importance of cornering motions in CNC machine 
tools, many cornering control methods have been proposed 
in recent years, such as blending curve path design, motion 
trajectory filter design, and cornering motion control design. 
Blending curve path design has been extensively studied and 
is mainly used for corner path planning and spline blending 
to smooth the cornering motions and provide stable cor-
ner machining. For instance, many transition schemes have 
been developed with specific curves to address the prob-
lem of corner path discontinuity; however, the smoothness 
of the transition curves still affects the corner machining 
qualities of CNC machine tools. Therefore, considering the 
mixed-path C3-continuity, smoothing error, and transition 
curve shape control, a C3-continuous non-uniform rational 
B-spline transition scheme was developed to smooth the 
transition curve of a corner path by determining the con-
trol point weights using an oscillating circle method [1]. 
An improved G3-continuous path smoothing method with 
kinematic constraints as well as confined transition and 
chord errors has been developed to reduce cornering errors 
and improve the corner machining efficiency and quality 
of a CNC machine tool through embedded Bezier transi-
tion splines at the corners and optimized maximum feed 

rates along the splines [2]. Because the cornering motions 
of CNC machine tools are influenced by the transient splines 
and corner speeds, a PSO with axial kinematic constraints 
was applied to determine a smooth corner path combined 
with the optimal Bézier transient spline and optimal corner 
speed [3].

Motion trajectory filter design mainly uses trajectory 
generation, interpolation, and filtering methods to improve 
cornering motions and avoid tool vibrations. For instance, 
to improve the accuracy and efficiency of CNC machining 
through trajectory generation and interpolation, a double-fil-
ter-design-based corner smoothing method was developed to 
smooth cornering motions with confined acceleration, jerk, 
and cornering errors by determining the appropriate filter 
order and corner speed [4]. A finite impulse response (FIR)-
filter-based trajectory generation and interpolation algo-
rithm that constrains the maximum feed rate of the linear 
tool motion was developed to avoid tool vibrations at sharp 
corners and to constrain the cornering errors within a given 
tolerance value. This was achieved by changing the overlap 
time of the filtered rectangular velocity-pulse signals [5]. To 
mitigate the problem of tool vibration and feed rate fluctua-
tion induced by discontinuities in the linear tool path, an 
input-shaping-based corner rounding algorithm comprising 
position deviation regulation and distortion compensation 
modules was developed to smooth cornering motions with 
minimal position deviations and distortions [6]. Blending 
curve path and motion trajectory filter designs mainly use 
path blending and filtering methods to improve the corner-
ing motions in CNC machine tools. Specifically, due to the 
rigidity of the machine tool structure, blending curve path 
and motion trajectory filter designs have been extensively 
applied to five-axis CNC machine tools [7, 8].

Similar to the blending curve path and motion trajectory 
filter designs, other designs have been proposed to smooth 
cornering motions. For instance, smoothed interpolation 
points around the corners can be obtained by transform-
ing the original interpolation points on the linear paths to 
smooth cornering motions in the absence of specific require-
ments [9]. A corner smoothing method with low harmonic 
trajectory generation has been developed to avoid vibrations 
induced by the high harmonic components in transition 
curves [10]. An optimization method combined with a back-
propagation neural network and genetic algorithm has also 
been reported to optimize the interpolation parameters while 
avoiding corner vibrations [11]. A reinforcement learning 
neural network was proposed to generate servo commands 
in real time so that the trajectory smoothing method can 
be used to smooth cornering trajectories and improve cut-
ting efficiencies [12]. A corner smoothing method with an 
asymmetric transition profile and near time-optimal tran-
sition parameters was developed to reduce cornering time 
and improve cornering accuracy [13]. The cornering motion 



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:325 

1 3

Page 3 of 15 325

parameters can be systematically adjusted to balance corner-
ing errors and cornering velocities through the analysis of 
the power spectral densities of accelerometer signals meas-
ured during cornering motions [14]. An S-curve velocity 
planning algorithm with PSO was developed to generate 
smooth and fast cornering motions for contouring tool paths 
composed of line segments in a CNC machine tool [15]. A 
kinematic corner smoothing technique that accurately cal-
culates the cornering speed and duration was developed to 
achieve continuous feed motions in the sharp corners of a 
tool path [16]. The aforementioned designs can smooth cor-
nering motions and improve cornering performances in CNC 
machine tools; however, because the motion axis dynamics 
still affect the cornering motions significantly, these exist-
ing methods do not address the problem of cornering errors 
induced by the motion axis dynamics. Therefore, methods 
related to cornering motion control design have also been 
proposed in recent decades.

Cross-coupled control designs had been initially pro-
posed to deal with the cornering error problems consid-
ering the coupling dynamic characteristics of a biaxial 
motion control system from the contouring control point 
of view [17, 18]. Subsequently, Chen and Tsutsumi [19] 
applied the inverse compensation principle and developed 
an inverse compensation technique to reduce the corner-
tracking errors in a machining center without precisely 
modeling its feed drive systems. Yamazaki et  al. [20] 
developed a multi-axis control system that integrates a 
feedforward compensator with a P-control-based feedback 
compensator to improve the cornering motions of a CNC 
machine tool using the model matching method. Bearee 
et al. [21] analyzed the influence of servo parameters and 
axial dynamics on the contouring accuracy of a biaxial 
machine tool and derived an analytical contouring error 
formula for corner crossing motions. Nevertheless, motion 
control designs to further improve the cornering motion 
performance by considering motion axis dynamics have 
been proposed. For instance, considering the acceleration 
and deceleration of cornering motions, a torque genera-
tion and compensation method was developed to address 
the vibrations induced by changes in high-speed cornering 
motion directions [22]. By compensating the referenced 
trajectory and smoothing velocity transitions, an iterative 
learning contour control combined with contouring error 
compensation and Bézier repositioning trajectory was 
developed to reduce the cornering errors [23]. Because 
trajectory discontinuities and external disturbances sig-
nificantly influence the contouring results of motion axes, 
an iterative learning contour control composed of pro-
portional–derivative control and a disturbance observer 
was designed to improve both the tracking and corner-
ing motion performances [24]. By studying the corner-
tracking performance and comparing techniques such as 

cross-coupled control, zero-phase error tracking control, 
and real-time frequency-modulated interpolation, a com-
bined control system that can be easily actuated at high 
frequencies was developed to improve cornering motions 
[25].

Given that the motion axis of a CNC machine tool should 
be modeled as a PMSM-driven two-mass mechanical system 
using the P–PI control structure [26], the available motion 
control methods can provide good cornering results for 
PMSM motions but cannot ensure good cornering results 
of the moving table, thus limiting the cornering accuracy. 
Moreover, because the motion axis is generally driven by the 
PMSM with the P–PI control structure, the motion control 
design must comply with the P–PI control structure in practi-
cal applications of CNC machine tools. Further, P–PI control 
design and adjustment must consider the cornering motions 
and dynamic characteristics of two-mass mechanical sys-
tems for improved cornering accuracies of CNC machine 
tools. However, few reports discuss such practical issues 
(i.e., the motion axis of the CNC machine tool should be 
modeled as a PMSM-driven two-mass mechanical system 
with P–PI control) with respect to cornering motion control 
design in CNC machine tools. Therefore, this study focuses 
on the design and adjustment of P–PI control parameters by 
considering the cornering motions and dynamic character-
istics of the motion axis to improve the cornering accuracy 
of the CNC machine tool.

In this study, the machine tool motion axis is modeled 
as a two-mass mechanical system, and the transfer func-
tion of the motion axis is derived for further analysis and 
design. The P–PI control structure used in the PMSM 
driver has inner and outer loops for velocity and posi-
tion controls, respectively. Therefore, a system equiva-
lent to the P–PI-controlled two-mass mechanical system 
is developed, and the proportional and integral control 
parameters of the inner loop are designed for velocity 
control based on the equivalent system, thereby enabling 
PMSM velocity responses with short rise times and small 
overshoots. Among the optimization algorithms, PSO uses 
a metaheuristic method to iteratively optimize an objec-
tive function but does not require its gradient. Thus, PSO 
exhibits features, such as being derivative-free, having few 
algorithm parameters, scale-insensitivity to variables, and 
efficient global search. Therefore, PSO is simple and pow-
erful and is typically used to search for optimal param-
eters in complex systems. In this study, with regard to 
the cornering error definition and motion axis model, the 
PSO is used to adjust the proportional control parameter 
of the outer loop for position control, thereby enabling an 
improved cornering accuracy of the moving table. The 
motion axis of a CNC lathe is used to demonstrate the 
proposed P–PI control parameter design and adjustment 
method and to perform experiments. The experimental 
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results indicate that the average and maximum cornering 
errors of the moving table on the test path are reduced by 
31.11 and 33.76%, respectively, thus demonstrating the 
feasibility of the developed method.

3  Preliminary works

3.1  Motion axis modeling

The motion axis of a CNC machine tool uses a PMSM to 
drive the moving table by actuating a ball screw. Because a 
moving table is practically heavy, referring to the dynam-
ics of the motion axis, the two-mass model was used for 
modeling the motion axis, as shown in Fig. 1, with the var-
iables presented in Table 1. Here, for building a two-mass 
model of the motion axis, the motion axis was assumed to 
be influenced by viscous friction and not by nonlinear fric-
tions and external disturbances. Referring to the motion 
axis model shown in Fig. 1, the dynamic equations of the 
motion axis can be derived using Newton’s law of motion 
as shown in (1).

By taking Laplace transform of (1), the matrix Eq. (2) 
can be obtained by rearranging the transformed equation; 
furthermore, the Laplace functions, �m(s) and xt(s) , can be 
obtained by solving (3). Here, �m(s) , xt(s) , and Tm(s) denote 
the Laplace functions of the motor rotating angle �m , load 
moving distance xt , and motor driving torque Tm , respec-
tively. Figure 2 shows a block diagram of the two-mass-
modeled motion axis.
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�
l

2𝜋
�̇�m − ẋt
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Fig. 1  Motion axis model of a CNC machine tool

Table 1  Variables used in the motion axis model

Motor-equivalent inertia denotes the combined inertia of the motor and ball screw
Motor-equivalent viscous coefficient denotes the compound viscous coefficient at the motor, bearings, and interface between the ball screw and 
nut
Load-equivalent mass denotes the combined mass of the load and nut
Load-equivalent viscous coefficient denotes the viscous coefficient at the interface between the load and linear guides

Variable Definition Unit Variable Definition Unit

�m Motor rotating angle rad Ka Axial stiffness N/m
Tm Motor driving torque Nm Bi Axial viscous coefficient N s/m
Jm Motor-equivalent inertia kg  m2 xt Load moving distance m
Bm Motor-equivalent viscous coefficient Nm s/rad Mt Load-equivalent mass kg
l Ball screw lead m BL Load-equivalent viscous coefficient N s/m

Fig. 2  Block diagram of the two-mass-modeled motion axis
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Because of the Laplace functions of the motor rotat-
ing velocity �̇�m(s) = s ⋅ 𝜃m(s) and load moving velocity 
ẋt(s) = s ⋅ xt(s) , the transfer function Hm(s) of the motor driv-
ing torque Tm(s) and motor rotating velocity �̇�m(s) and trans-
fer function HL(s) of Tm(s) and load moving velocity ẋt(s) 
can be derived from (3), as shown in Eqs. (4), (5), and (6).

3.2  P–PI control structure

The P–PI control structure shown in Fig. 3 is often used in 
the driving control of commercial PMSMs. In Fig. 3, Kvp and 
Ki represent the proportional and integral control parameters 
of the velocity control, respectively, and Kpp represents the 
proportional control parameter of the position control. When 
the PMSM is used to actuate the machine tool motion axis, 
as shown in Fig. 1, the P–PI control parameters ( Kvp , Ki , 
and Kpp ) should be designed and adjusted to enable rapid 
and precise motion results of the motion axis. Because the 
P–PI control structure has inner and outer loops for velocity 
and position controls, respectively, a design and adjustment 
method is proposed herein to mitigate the complexity of the 
P–PI control parameter design, including the derivation of 
a two-mass equivalent system that features velocity control 
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parameter design and position control parameter adjustment. 
To ensure that the PMSM velocity responses have short rise 
times and small overshoots, a two-mass equivalent system is 
used to design the velocity control parameters ( Kvp and Ki ) 
while the PSO is used to adjust the position control param-
eter ( Kpp ), thereby ensuring that the cornering motions of 
the moving table of the CNC machine tool have reduced 
cornering errors.

3.3  Definition of cornering error

In this study, the cornering error is defined as shown in 
Fig. 4, where P is the corner position on the command path, 
R and v⃗ denote the actual position and tangent vector of the 
moving table during the cornering motions, respectively, and 
�c is the corner angle. Figure 4a shows that when R and v⃗ 
of the moving table are known, the line L passing through 
R , which is parallel to v⃗ , can be obtained. Thereafter, the 
shortest distance d can be calculated using P and L . In the 
cornering motions, although P is fixed, R and v⃗ change with 
the motion of the moving table. This means that d changes 
with R and that d is a function of R (i.e., d(R) ). Therefore, the 
cornering error dc in this study is defined as the maximum 
value of d when R changes along the actual path, as shown 
in Fig. 4b and (7).

3.4  Description of PSO algorithm

PSO is an optimization algorithm developed by observing 
the foraging behaviors of birds [27], and several extended 
designs based on the PSO have been proposed in the litera-
ture. Given that PSO with a linear decreasing inertial weight 
(PSO-W) [28] has superior searching ability without excess 
computational burden, PSO-W was used herein to adjust 

(7)dc = max
R∈actual path

d(R)

Fig. 3  Block diagram of the P–
PI control structure
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the position control parameter of the P–PI control structure 
in Fig. 3 to minimize the cornering error defined in Fig. 4. 
PSO-W is expressed as (8)–(10), where xid is the present 
position of particle i in dimension d , vid is the present veloc-
ity of particle i in dimension d , w is the inertial weight, c1 
and c2 are weighting factors, pid is the previous best position, 
pgd is the global previous best position, rand( ⋅ ) is a func-
tion to generate a random number between 0 and 1, wc is the 
constriction factor, and n is the index of iteration.

The objective function, which is necessary for finding the 
optimum solution of PSO, can also be the basis for judging 
the optimum solution and can change the movements of the 
particles.

4  Methods

4.1  Derivation of two‑mass equivalent system

Referring to the transfer functions expressed by (4) and (5), the 
PMSM velocity-controlled two-mass system can be obtained 
as shown in Fig. 5 using the inner loop of the P–PI control 
structure. To simplify the subsequent derivations, the transfer 
function C(s) is expressed as (11).

The transfer functions Hm(s) and HL(s) are expressed as 
(12) and (13), respectively, and have the same denominator 
polynomial, as shown in (14).

(8)
vn+1id = wn ⋅ vnid + c1 ⋅ rand( ⋅ ) ⋅

(

pnid − xnid
)

+ c2 ⋅ rand( ⋅ ) ⋅
(

pngd − xnid
)

(9)xn+1
id

= xn
id
+ vn+1

id

(10)wn+1 = wn
⋅ wc

(11)C(s) = Kvp

(
1 +

Ki

s

)
=

NC(s)

DC(s)

(12)Hm(s) =
�̇�m(s)

Tm(s)
=

Nm(s)

Dm(s)

(13)HL(s) =
ẋt(s)

Tm(s)
=

NL(s)

DL(s)

(14)Dm(s) = DL(s) = D(s)

Fig. 4  Definition of cornering error as applied in this study

Fig. 5  Block diagram of the 
PMSM velocity-controlled two-
mass system
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The transfer function M(s) between the velocity command 
�̇�r
m
 and load moving velocity ẋt is derived as shown in (15):

where the transfer function G(s) of the PMSM velocity con-
trol is expressed as (16).

The load-equivalent transfer function N(s) is expressed as 
(17).

Based on (15), the PMSM velocity-controlled two-mass 
equivalent system is obtained as shown in Fig. 6 and is applied 
to design the velocity control parameters ( Kvp and Ki).

4.2  Design of velocity control parameters

The two-mass equivalent system shown in Fig. 6 indicates that 
the load moving velocity is affected by transfer functions G(s) 
and N(s) . Because the load-equivalent transfer function N(s) 
denotes the inherent characteristics of the two-mass system, 
the velocity control parameters ( Kvp and Ki ) designed in this 
study achieve a PMSM with velocity response �̇�m along with 
a short rise time and small overshoot. Moreover, (11) and (12) 
are used to rewrite the transfer function G(s) as shown in (18).

Thereafter, the characteristic equation of the PMSM veloc-
ity control is obtained as (19).

Let s = (−� + j�) be a root of the characteristic equation, 
and

(15)

M(s) =
ẋt(s)

�̇�r
m
(s)

=
C(s)Hm(s)

1 + C(s)Hm(s)
⋅

NL(s)

Nm(s)
= G(s) ⋅ N(s),

(16)G(s) =
�̇�m(s)

�̇�r
m
(s)

=
C(s)Hm(s)

1 + C(s)Hm(s)

(17)N(s) =
ẋt(s)

�̇�m(s)
=

NL(s)

Nm(s)

(18)G(s) =

NC(s)

DC(s)

Nm(s)

Dm(s)

1 +
NC(s)

DC(s)

Nm(s)

Dm(s)

=
NC(s)Nm(s)

NC(s)Nm(s) + DC(s)Dm(s)

(19)NC(s)Nm(s) + DC(s)Dm(s) = 0

(20)NC(−� + j�) = NCre + jNCim,

Equation (19) can then be rewritten as (24)

and

Functions X , Y , and Z are defined as (26), (27), and (28), 
respectively.

Thereafter, NCre and NCim are obtained as in (29) and (30), 
respectively.

Substituting s = (−� + j�) in (11), the transfer function 
C(s) can be rewritten as (31):

where NCre and NCim are expressed as (32) and (33), 
respectively.

(21)DC(−� + j�) = DCre + jDCim,

(22)Nm(−� + j�) = Nmre + jNmim,

(23)Dm(−� + j�) = Dmre + jDmim.

(24)

(
NCre + jNCim

)(
Nmre + jNmim

)
+
(
DCre + jDCim

)(
Dmre + jDmim

)
= 0

(25)

(

NCre + jNCim
)

= −

(

DCre + jDCim
)(

Dmre + jDmim
)

(

Nmre + jNmim
)

=

[(

−DCreDmre + DCimDmim
)

− j
(

DCreDmim + DCimDmre
)]

⋅
(

Nmre − jNmim
)

(

N2
mre + N2

mim

)

(26)X = DCimDmim − DCreDmre

(27)Y = DCreDmim + DCimDmre

(28)Z = N2
mre

+ N2
mim

(29)NCre =

(
X ⋅ Nmre − Y ⋅ Nmim

)
Z

(30)NCim =
−
(
X ⋅ Nmim + Y ⋅ Nmre

)
Z

(31)

C(−� + j�) =
Kvp(−� + j�) + KvpKi

−� + j�
=

NCre + jNCim

DCre + jDCim

,

(32)NCre = −Kvp� + KvpKi

Fig. 6  Block diagram of the 
two-mass equivalent system
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Then, (32) and (33) can be used to derive the velocity 
control parameters Kvp and Ki as shown in (34) and (35), 
respectively.

Equations (29) and (30) are substituted in (34) and (35) to 
obtain the design equations for the velocity control param-
eters Kvp and Ki , which are expressed as (36) and (37), 
respectively.

Accordingly, the calculations of the velocity control 
parameters Kvp and Ki can be summarized as follows:

• Assign a root s = (−� + j�) of the characteristic Eq. (19).
• Refer to (21) and set DCre = −� and DCim = � by com-

paring the denominator polynomial of (31).
• Calculate the values of the polynomial functions 

Nm(−� + j�) and Dm(−� + j�) using (22) and (23), 
respectively, to obtain Nmre , Nmim , Dmre , and Dmim.

• Calculate the values of the functions X , Y  , and Z using 
(26), (27), and (28), respectively.

• Calculate NCre and NCim using (29) and (30), respectively.
• Calculate the velocity control parameters Kvp and Ki 

using (34) and (35), respectively.

Therefore, Kvp and Ki were designed in accordance with 
the assigned root (−�, j�) as well as (36) and (37). The 
assigned root (−�, j�) is designed with reference to the 
prototype second-order system; that is, the parameters � 
and � of the assigned root are expressed as (38) and (39), 
respectively.

where � and �n represent the damping ratio and undamped 
natural frequency, respectively, and the magnitude of � 
must be in the range of 0 < 𝜁 < 1 . To increase the velocity 
response of the PMSM and avoid large velocity overshoots, 

(33)NCim = Kvp�

(34)Kvp =
NCim

�

(35)Ki =
NCre

Kvp

+ �

(36)Kvp =
−
(
X ⋅ Nmim + Y ⋅ Nmre

)
� ⋅ Z

(37)Ki =
X ⋅ Nmre − Y ⋅ Nmim

Kvp ⋅ Z
+ �

(38)� = ��n,

(39)� = �n

√
1 − �2,

the damping ratio is generally chosen for the slightly under-
damped condition. Moreover, the design of � and �n must 
achieve the roots of the characteristic equation expressed by 
(19) with a negative real part.

The characteristic equation of the PMSM velocity-con-
trolled two-mass system is a fourth-order equation, and 
(36) and (37) are used to design a pair of complex roots; 
therefore, the other roots of the characteristic equation may 
influence the velocity response of the PMSM. To handle the 
problems caused by the other roots, the design ranges of � 
and �n are set as in (40) and (41), respectively:

where �L and �U denote the upper and lower bounds of 
� , and �L

n
 and �U

n
 denote the upper and lower bounds of 

�n , respectively. Within the specified ranges, the velocity 
control parameters can be designed with the required rise 
time and overshoot; for example, in this study, the veloc-
ity control parameters are designed to achieve the average 
velocity response of the PMSM while the damping ratio and 
undamped natural frequency are varied within their speci-
fied ranges.

4.3  Adjustment of position control parameter

Once the velocity control parameters Kvp and Ki are designed, 
the PSO is used to adjust the position control parameter Kpp 
of the P–PI control structure. The aim here is to reduce the 
cornering errors of the moving table during the cornering 
motions of a given tool path. Because the cornering motions 
comprise synchronous motions of multiple axes, the PSO 
must simultaneously adjust the position control parameters 
of multiple motion axes. Once the position control param-
eters are adjusted, they must be maintained constant when 
the multiple axes perform the cornering motions of the given 
tool path.

The particle positions in the PSO represent the position 
control parameters of the multiple motion axes. Moreover, 
the particle constraints must include the stability conditions 
of position control. The P–PI control structure in Fig. 3 and 
two-mass equivalent system in Fig. 6 indicate that the adjust-
ment of Kpp must ensure that the roots of the characteristic 
equation in (42) have negative real parts.

Furthermore, the position control parameters must be 
adjusted such that the moving table will not have significant 
overcut motions. Figure 7 shows the check rule for the overcut 
motions designed as in (43), where t⃗first and t⃗second represent 

(40)� ∈
[
�L �U

]
,

(41)�n ∈
[
�L
n
�U
n

]
,

(42)
s ⋅

(
NC(s)Nm(s) + DC(s)Dm(s)

)
+ Kpp ⋅

(
NC(s)Nm(s)

)
= 0
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the unit vectors of the first and second paths, respectively, and 
����⃗PR represents the vector from P to R.

The objective function J of the PSO is defined as (44), 
where m represents the number of corners in the test path, 
dk
c
 represents the cornering error of the k th corner, and 

wk ∈ (0, 1) represents the weight of the k th cornering 
error. Because a large corner angle usually implies a large 
cornering error, wk and the corner angle have a positive 
correlation. The cornering error weight wk is expressed 
as in (45), where �k

c
∈ (0,�) represents the corner angle of 

the k th corner. Thus, the objective function (30) can be 
expressed as the root-mean-squared value of the weighted 
cornering errors.

(43)
(⃗
tfirst × t⃗second

)
∙

(
t⃗second ×

����⃗PR
)
< 0

(44)J =

√√√√ 1

m

m∑
k=1

(
wk ⋅ d

k
c

)2

(45)wk =
�k
c

�

In this study, the two-mass-modeled motion axis 
(Sect.  3.1) integrated with the P–PI control structure 
(Sect. 3.2) was built to simulate the cornering motions 
of a CNC machine tool. The cornering errors (Sect. 3.3) 
were calculated and applied to the calculation of the 
objective function to ensure that the PSO (Sect. 3.4) could 
minimize the root-mean-squared value of the weighted 
cornering errors and adjust the position control param-
eters to reduce the cornering errors.

5  Experiments

5.1  Experimental setup

A CNC lathe is used to perform the experiments. Figure 8 
shows that the X- and Z-motion axes use a 2.0 kW PMSM and 
ball screw to actuate a moving table so as to provide the lateral 
and longitudinal motions, respectively. The FPGA-based cRIO 
control console and input–output interface modules, developed 
by National Instruments (NI), control the PMSM of the X- 
and Z-motion axes. The NI FPGA-based cRIO control console 
uses NI LabView software in the design and realization of 
the motion control system, including the operating interface, 
signal measurement and feedback control, and recording and 
displaying of experimental data. This console is integrated 
with the input–output interface modules to connect the driver 
of the PMSM, send motion control commands to the driver, 
and receive feedback signals with a sampling period of 1.0 ms. 
The motion control commands are sent to the driver through 
a 16-bit digital-to-analog converter installed on an NI 9263 
analog output module. The rotary incremental optical encoder 
is directly coupled with the output shaft of the PMSM. Moreo-
ver, the pulse signals generated by the encoder can be decoded 
using an NI 9401 bidirectional digital module to obtain the 
angle of rotation of the PMSM. Heidenhain linear encoders are 

Fig. 7  Check rule for the overcut motions Fig. 8  CNC lathe used in this study
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installed on the lathe to measure the displacements of the mov-
ing table along the X- and Z-motion axes. The NI 9401 module 
is also used to decode the positional signals from the Heiden-
hain linear encoders. A 16-bit analog-to-digital converter is 
installed on an NI 9215 analog input module to receive the 
analog detection signals provided by the driver to obtain the 
driving torque and angular velocity of the PMSM.

Referring to Fig. 8, the motion axis models are built as 
shown in Fig. 9, and the variables used in the motion axis 
models are presented in Table 2. Given that the X-motion 
axis is installed on the Z-motion axis and that the two 
motion axes are mutually independent, the derivations 
of the dynamic equations and transfer functions of the 
X- and Z-motion axes can be performed separately.

5.2  Velocity control experiment

The velocity control parameters ( Kvp and Ki ) were designed 
such that the PMSM of the motion axis exhibited a velocity 
response with a short rise time without significant maximum 

overshoot. Equations (46) and (47) are used as the designed 
ranges of � and �n , respectively.

The velocity control parameters of the X- and Z-motion 
axes are designed as shown in Table 3, and Fig. 10 shows the 
velocity responses of the PMSM along the X- and Z-motion 
axes. According to the experimental results of the X-motion 
axis, the rise time of the velocity response is 0.021 s and 
velocity overshoot is 3.252 rad/s (16.26% of the steady-state 
value). The experimental results for the Z-motion axis indi-
cate that the rise time of the velocity response is 0.019 s and 
velocity overshoot is 3.300 rad/s (16.50% of the steady-state 
value). From the experimental results, the velocity control 
parameters designed in this study can achieve the desired 
velocity response of the PMSM, thus validating the feasibil-
ity of the developed design method.

5.3  Cornering motion experiment

The test path comprising both acute and obtuse angles is 
designed as shown in Fig. 11. The tested motion speed was 
2000 mm/min. Table 4 lists the position control parameters 
before and after adjustment using the PSO for 50 particles. 
Figure 12 shows the experimental results using the position 

(46)� ∈
[
0.7 0.9

]

(47)�n ∈
[
40 50

]

Fig. 9  Motion axis models of the CNC lathe

Table 2  Variables used in the 
motion axis models

X-motion axis Z-motion axis Definition Unit

Txm Tzm Motor driving torque Nm
�xm �zm Motor rotating angle rad
xt zt Load moving distance m
Jxm = 4.448 × 10−3 Jzm = 4.221 × 10−3 Motor-equivalent inertia kg  m2

Mxt = 6.139 × 101 Mzt = 2.468 × 102 Load-equivalent mass kg
Bxm = 4.322 × 10−2 Bzm = 1.911 × 10−2 Motor-equivalent viscous coefficient Nm s/rad
BxL = 2.632 × 103 BzL = 4.583 × 103 Load-equivalent viscous coefficient N s/m
Kxa = 8.305 × 107 Kza = 1.199 × 108 Axial stiffness N/m
Bxi = 3.853 × 104 Bzi = 2.564 × 104 Axial viscous coefficient N s/m
lx = 0.010 lz = 0.012 Ball screw lead m

Table 3  Velocity control parameters of the motion axes

Motion axes Parameters

Proportional control
(Kvp)

Integral control
(Ki)

X-motion axis 0.253 34.912
Z-motion axis 0.327 32.280
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control parameters before adjustment; here, the position 
control parameters were manually adjusted using the tuning 
rule typically adopted in industrial applications of PMSM 
drivers and CNC machine tools. The tuning rule can reduce 
the axial position errors to almost zero with a short settling 
time without any oscillation when the motion axes move 
with the tested motion speed and stop; in other words, the 
tuning rule can ensure axial position responses with short 
response times without significant overshoots. Moreover, the 
position control parameters were set to the same values to 
achieve synchronous motions of multiple axes. The experi-
mental results show that the value of the objective func-
tion J is 0.163 mm and that the average cornering error is 
2.581 × 10−1 mm. Given that the cornering error and corner 
angle have a positive correlation, the maximum cornering 
error is 4.221 × 10−1 mm, which occurs at the third corner. 
Figure 13 shows the experimental results of the position con-
trol parameters after adjustment. Compared with the results 
in Fig. 12, the value of the objective function J reduces to 

0.108 mm, average cornering error reduces to 1.778 × 10−1 
mm (reduction of 31.11%), and maximum cornering error 
still occurs at the third corner. However, the maximum 
cornering error reduces to 2.796 × 10−1 mm (reduction of 
33.76%). Therefore, the experimental results confirm the 
feasibility of the P–PI control parameter design and adjust-
ment approach developed in this study. Based on the defini-
tion of the cornering error, the experimental results of the 
test path further confirm the improvement obtained using 
the proposed approach for the cornering motions in CNC 
machine tools.

6  Conclusions

Cornering control has become an important aspect in the 
motion control design of a CNC machine tool in recent years. 
Unlike the investigations on blending curve path, motion 
trajectory filter, and cornering motion control designs, the 
present study considers P–PI control that is extensively used 
in commercial PMSM drivers and CNC machine tool con-
trollers; further, the motion axis is realistically modeled as a 
two-mass system to develop a P–PI control parameter design 
and adjustment method to further improve the linear corner-
ing motions of CNC machine tools.

In this study, the motion axis of a CNC machine tool is 
modeled as a two-mass system with physical variables, such 
as the motor-equivalent inertia, load-equivalent mass, motor-
equivalent viscous coefficient, load-equivalent viscous coef-
ficient, axial stiffness, and axial viscous coefficient. Thereaf-
ter, by referring to the inner velocity control loop of the P–PI 
control structure, the PMSM velocity-controlled two-mass 
equivalent system is developed for subsequent design of the 
proportional and integral control parameters using the pole 
assignment method, thereby enabling the desired velocity 

Fig. 10  Velocity responses of 
the PMSM along the motion 
axes

Fig. 11  Test path used in the experiments

Table 4  Position control parameters of the X- and Z-motion axes

Parameters Before adjustment After adjustment

Kpp_X(X) 30.558 38.675

Kpp_Z(Z) 30.558 38.274
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Fig. 12  Cornering errors of the test path (before adjustment)
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Fig. 13  Cornering errors of the test path (after adjustment)
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response of the PMSM with a short rise time and small over-
shoot. Moreover, by referring to the cornering error defined 
in this study, the proportional control parameter of the outer 
position control loop of the P–PI control structure is adjusted 
using PSO to further reduce the cornering errors during the 
linear cornering motions of a given tool path. Given that the 
cornering error and corner angle have a positive correlation, 
the objective function is designed as the root-mean-squared 
value of the weighted cornering errors. Experiments were 
performed on a CNC lathe, and the results show that the 
cornering errors are reduced by 30%. Therefore, the experi-
mental results validate the feasibility of the P–PI control 
parameter design and adjustment approach developed in 
this study for improving the cornering accuracies of CNC 
machine tools.
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