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Abstract

The incorporation of carbon nanotubes (CNTs) into cementitious matrices, and more specifically to concrete, has enhanced
their strength and durability. With this perspective, this manuscript aims to review the main engineering properties of concrete
with carbon nanotubes (CNT-concrete). To this end, ProKnow-C methodology was used to find the most relevant papers
published in the last five years, and 19 articles were selected for a complete analysis. The data collected were the CNT type,
content, and dispersion technique, as well as CNT-concrete type and properties, namely the compressive, tensile, and flexural
strength, elastic modulus, water absorption, porosity and permeability, electrical conductivity and resistivity, carbonation
and chloride penetration resistance, and fracture energy and toughness. This systematic review of the literature revealed that
CNT addition generally enhances concrete strength, but its influence on other engineering properties, such as carbonation

and chloride penetration resistance, creep and shrinkage, still requires further investigation.

Keywords Cement-based materials - Carbon nanotubes - Mechanical properties - Durability

1 Introduction

Concrete is the most consumed construction material in
the world and also the most polluting, whose production is
responsible for about 7% of global CO, emissions [1]. Due
to its several ways of use, millions of reinforced concrete
(RC) structures face daily adverse weather conditions, pol-
lution, and other chemical attacks that penetrate it and dam-
age their reinforcement steel bars. Repairing these damages,
however, may have high costs, as those presented by the
American society of civil engineers (ASCE) yearbooks [2].
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In this sense, several RC structures constantly present a
series of durability problems associated mainly with cor-
rosion, moisture, chloride ions’ attack, sulfates, and alkali-
aggregate reaction, among others [3]. Besides, one of the
characteristics of concrete is its brittle fracture and low ten-
sile strength [4].

According to Khitab et al. [5], conventional concrete
may no longer bear the different loads and service demands
to which it is subjected. Khalid et al. [6] complement that
concrete production with exceptional mechanical properties
and with less cement is highly desired to achieve structures
that are not only economical but also more environmentally
appropriate, from the reduction of carbon dioxide (CO,)
emissions in the atmosphere.

With this perspective, Khitab et al. [7] state that using
nanotechnology to modify properties at the nanoscale is not
new in construction materials. Several studies in the litera-
ture have proven that cementitious composites properties
can be extensively modified by working not only the nano
but also the micro-scale of these materials’ matrices [8—10].

In this context, a product that has attracted the sci-
entific community is carbon nanotubes (CNTs). These
allotropes of the chemical element carbon have been
studied for multiple applications in various areas of
knowledge and different materials. It also happens with
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the cement-based matrices and a composite that can
benefit from this is concrete, becoming more resistant,
less porous, and more durable [2]. According to Sanchez
and Sobolev [11], advances in the characterization of
the nanometric structure of cement-based materials and
computing have provided scientists and engineers with
new and promising tools to better understand the concrete
structure and improve its mechanical performance and
durability. This is evidenced by the increasing number of
research related to concrete with carbon nanotube addi-
tions (CNT-concrete), as shown in Fig. 1.

However, there are many issues to be solved, such as
the CNT dispersion in the cement matrix and its large-
scale manufacture and distribution to the market. These
are relevant aspects that should be considered when
implementing CNTs at the industrial scale. Hence, this
manuscript discusses the effects of adding carbon nano-
tubes to concrete, covering topics such as CNT types,
dispersion techniques, and CNT content in the matrix.
More specifically, this work presents a systemic analysis
of the CNT-concrete’s engineering properties and answers
the following questions: (1) What is the CNT-concrete
type whose properties are most studied by the literature?
(2) What type of CNT is most recommended for addition
in cementitious matrices? (3) What is the most employed
dispersion technique for CNTs in powder and aqueous
suspension form? (4) What is the maximum CNT content
to be used in concrete recommended for future research?
(5) How does CNT incorporation influence the mechani-
cal properties of concrete? (6) How does CNT addition
influence the durability and mechanical properties of
concrete? For this, it was performed a systematic review
of the literature aimed to discuss future directions and
consolidated findings concerning the CNT-concrete.

2 Materials and methods

A systematic review of the literature was performed using
the bibliography selected through the ProKnow-C (Knowl-
edge Development Process—Constructivist) methodology
[12], whose main steps are described in Fig. 2.

Figure 2 shows that the keywords specified in the first
step (“concrete” and “carbon nanotube”) were used in the
search for recent papers, published in the last five years in
four bases consolidated in the scientific community. It is
noteworthy that this work focused only on CNT-concrete,
not including, therefore, studies related to pastes and mor-
tars. Considering the 728 articles initially selected, 19 were
completely aligned with the topic of CNT-concrete’s engi-
neering and durability properties in the last step.

Once the bibliography was selected, a bibliometric analy-
sis was performed considering: (1) the journals’ relevance
within the selected portfolio, i.e., how many articles were
published in each one of them, and also their scientific rel-
evance, through the Journal Citation Reports (JCR) impact
factor, according to the Web of Science basis; (2) the papers’
scientific recognition, through the number of citations in
Scholar Google [n.d.] on October 31, 2022; and (3) the most
frequent keywords, through cluster analysis.

Finally, after the selected articles were fully read, a
so-called “lensing” approach was used. In this work, the
research lenses were the type of CNT-concrete, whether
there was a modification in the concrete (other additions
and/or substitutions), the CNT type, content, and dispersion
technique used. The engineering properties studied were
also noted for further discussion, and the main conclusions
about them as well. In the selected portfolio the following
properties were studied: compressive strength, elastic modu-
lus, tensile strength, flexural strength, bond strength, fracture
energy, fracture toughness, microstructure, pore distribution,
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Fig.2 Stages of a systematic review of the literature using ProKnow-C

water absorption, electrical resistivity and conductivity, and
carbonation and chloride penetration resistance.

3 Results and discussion
3.1 Selected bibliography

Table 1 lists the articles that make up the bibliographic
portfolio selected through the ProKnow-C methodology
and their main information: authorship, title, journal, JCR
impact factor, publication year, and the number of citations.
References are listed in descending order of total citations.

3.1.1 Bibliometric analysis

The first analysis aimed to determine how many manuscripts
of the selected bibliography were published by each journal.
As reported in Table 1, the 19 articles were published in
14 different journals, among which the Construction and
Building Materials journal stands out, with six papers. This
same journal has the third-highest JCR impact factor in
the portfolio (7.693). All other journals had one publica-
tion each, highlighting Cement and Concrete Research and
Composites Part A: Applied Science and Manufacturing,
which have the highest impact factors among the journals
in the portfolio, 11.968 and 9.463, in that order. In general,
a higher impact factor represents greater scientific relevance
of the journal. It is noteworthy that many journals do not
even have an impact factor indexed by the Web of Science,
which happened with only one manuscript in the portfolio.
Thus, it is understood that the filter applied in Step 5 of the

49 articles N
i Selection of articles |
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i that represent 80% of |
| the total number of |
| citations in the Scholar |
! Google on October 31, |

scientific

| papers fully available i

34 articles Vo
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| the research topic after |
\_careful reading ‘

19 articles
Complete reading and
systemic analysis of
papers fully aligned to
_the topic

ProKnow-C methodology was sufficient to select not only
the most cited articles but relevant journals.

Next, the scientific recognition of all manuscripts was
analyzed according to their citations from the publication
date until October 31, 2022, according to Scholar Google
[s.d.]. Table 1 shows that papers published longer ago tend
to have more citations, which is expected, but such recogni-
tion is also influenced by the relevance of the journal. This is
evidenced by verifying, for example, that the paper by Jung
et al. [14] was not the oldest (published in 2020) and yet is
the most cited (128 citations) or that the paper by Shao et al.
[29] is one of the most recent (published in 2022) and has
already been cited seven times.

Finally, it was checked the keywords with the highest fre-
quency in the selected portfolio, because they are essential
search parameters in scientific paper databases and system-
atic literature reviews. 93 different keywords were identi-
fied in the 19 manuscripts, among which it should be high-
lighted: carbon nanotube and carbon nanotubes, with 6 and
4 occurrences, respectively; compressive strength, with four;
concrete and mechanical properties, with three each; and
durability, with two. Figure 3 shows the cloud of the most
relevant keywords in the portfolio, in which one can identify
other terms commonly used in studies about the mechanical
and durability properties of CNT-concrete.

3.2 Systematic analysis

Table 2 presents the CNT-concrete types of the selected bib-
liography, which differ by type of modification, which can
occur by addition to the matrix, partial or total replacement
of natural aggregates (NA), partial replacement of cement,
or even addition and substitution at the same time. Table 3
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lists the engineering properties—mechanical properties,

g
% durability and other mechanisms or factors—studied in the
& = “ B - selected bibliography, indicating the main findings of each
o | o (\l o o reference.
S [\ (] (] (]
SE RS & & &
X = S &
B2 2 N = 3.2.1 Concrete types and CNT aspects
Lo}
In this portfolio, conventional concrete (CC) was employed
& . . . .
% in ten studies (52%), one of them modified by CNF addi-
§ tion, one by the BF addition and partial replacement of NA
2 s by WGP, and one by partial replacement of NA by RTR.
§ § The second most frequent was ultra-high-performance con-
g B crete (UHPC), used five times (26%), all of them modified
2 S by some addition (e.g., silica fume) to the cement matrix
% i and one also incorporating SF. Studies with lightweight
.~ -2 - concrete (LWC) (10%), with NA replacement, geopolymer
N § g concrete (GC), with NC addition and partial cement replace-
v . . .
§ g = S ment, reactive powder concrete (RPC), with partial cement
E IS % 3 3 substitution, and high-strength concrete (HSC), modified
21 ~
E é S § N by CNF addition, were also less frequent. Considering the
- “ = = main cement-based materials, it is important to mention
@ E~E ) . . . . .
2 _ ° E= % that the difficulty of dispersing CNTs in the matrix makes
= < 8 = .
2 § 2B 8 E} g .2 them mostly employed in pastes and mortars, because the
= b5} . .
SE 2 ZE¢€ &< presence of coarse aggregates in concrete occupies large
2= 83 Sg8582 L'§ . . .
<2 = %‘D %3 = ok space in the mixture and favors the agglomeration [20] and
= = = o) < .
) £ & T B8B5E g. also because these nanomaterials are not yet produced on
= o 8 2 = . . .
= g 2 _“g’ = § 8 E 3 £ an industrial scale and therefore are expensive compared
) 2 .% E] = .. .
gé’ S S8 § g 5 g § to other addition types [33]. However, as concrete is the
Yy = .=
85 ¢S E ;5) & 3 § s Z § most consumed material in the world after water [4] and
7= = Q e~ =2 . . .
E 28 é 22 £829 g = whose production emits large amounts of CO, into the
2] o . .
é ‘é g S5 S 25 %% _::g § atmosphere, studies on CNT-concrete must be carried out
—;5 2 g g k4 - T3 g Py - § <z in further research, especially modifying it by replacing NA
ESEZSSwESSE 285 with recycled aggregates (RA), such as civil construction
o|EE€g 355 5222 EEZ -
E S S8 é g2 é’ 5 E 8 2 S g demolition waste (CDW) or even rubber waste. As reported
by Reis et al. [34], the use of CDW in CNT-concrete con-
5 2 tributes to the buildings’ sustainability, and CNTs addition,
=z 5 v in this case, can contribute to the RC structure reaching the
— %‘ - E required mechanical strength.
:)» 7 § M Considering the two types of CNTs, single-walled (SWC-
§ :D A~ E f NTs) and multi-walled (MWCNTS), in the selected bibli-
T E f o v ography the latter was employed in 16 references (84%),
M g E 23 o only one used SWCNTSs (5%), and two manuscripts did not
;:ov M § é =3 provide this information. According to Rashad [35], this pre-
N - i ! dominance of MWCNTSs occurs because they are easier to
i = » ™ f process through advanced chemical vapor deposition (CVD)
w2 < .
& S oo g ~ 3 methods, allowing them to be produced on a larger scale
e < . .o .
S|E| =2 ‘:;’ T = p than SWCNTs and, consequently, have a lower price. Other
Q |7 1%} 0 > )
E g _§ &) § < %" E authors add that MWCNTSs’ use leads to a more homogene-
g . ? - - ous mixture because they have less tendency to agglomerate
= § compared to SWCNTSs [36]. Six references (32%) experi-
% g _ _ _ _ mented with functionalized CNTs in dispersion, but the
(o] — .
RN ) @ jac ) results were controversial.
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Regarding the CNT form, powder or aqueous, they were
used in powder form in nine studies (47%), in aqueous sus-
pension in six (32%), and six did not explicit this informa-
tion. The CNT form is relevant because it directly influences
dispersion techniques. Theoretically, for aqueous suspen-
sions, the process is simpler because the CNTs are already
pre-dispersed. In the selected literature, considering the five
studies that used this supply type, two (10%) only sonicated
the CNTs, two (10%) did magnetic stirring with surfactant
followed by sonication, and one (5%) did only dispersion
in distilled water. Regarding the ten that used the powder
form, one (5%) employed only sonication, while the others
associated sonication with some other additive (surfactant
or superplasticizer) or process (manual mixing, mechanical
agitation, or magnetic stirring). It is noteworthy that some
papers did not specify either the CNT form or the dispersion
technique. In summary, 13 papers (68%) used superplasti-
cizer to reduce the water/cement (w/c) ratio and increase
the fluidity of the mixture, 17 employed at least sonication
(19%) and 9 used surfactant as well (47%). Liew et al. [37]
point out that using some dispersants during the sonication
process helps in the dispersion effectiveness because they
prevent agglomeration and ensure the stability of the mix-
ture, while sonication promotes a temporary dispersion.

Finally, considering the tendency of CNTs to agglomer-
ate due to Van der Waals forces, their adequate dispersion
is also conditioned to their content in the mixture. In the
selected articles, contents between 0.01 and 2.00% by weight
of cement were employed, being the dosage of 0.10% used
in 10 manuscripts (52%), while 0.05 and 0.50% were used in
seven manuscripts each (37%). Also considering this bibli-
ography, 16 papers (84%) investigated at least two different

@ Springer
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accelerated;d&i:ponation

CNT contents, and generally, very high concentrations were
more difficult to disperse and in some cases generated pores
in the cement matrix, worsening the mechanical properties.
This fact and also considering the still expensive price of
CNTs suggests that further investigations concerning CNT-
concrete focus on contents up to 0.10% by weight of cement,
which is consistent with the literature [34].

3.2.2 Mechanical strength

Compressive strength was studied in 17 references (89%) of
the total selected, the CNT-concrete property best known.
Tensile strength was the next one, measured in nine (47%),
followed by flexural strength and elastic modulus, investi-
gated in eight each (42%). The adherence of steel bars in
CNT-concrete, although not a mechanical property, is an
essential mechanism for the performance of RC structures,
and was studied in two papers in the portfolio (10%).

From Table 3, it is safe to conclude that, regardless of
the concrete type, strength is generally enhanced with the
CNT addition to the cement matrix. This enhancement may
be related to pore-filling, bridging effect, and formation of
a denser C—S—H structure with higher stiffness, as reported
by Jung et al. [14], However, it will certainly depend on the
CNT characteristics, such as type, treatment, aspect ratio
(length/diameter), and especially the content and disper-
sion techniques, because such nanomaterials may agglom-
erate due to the presence of Van der Waals forces if they are
poorly or insufficiently dispersed [38].

Regarding steel-concrete bonding, Hawreen and Bogas
[25] indicated that for 12-mm steel bars, CNT addition to
concrete in contents between 0.05 and 0.10% by weight of
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Table 3 Properties studied and main findings of the selected bibliography

References Property

Main findings

(14]

[15]

[16]

(17]

(18]

[19]

Compressive strength, elastic modulus, electrical conductivity,
porosity

Compressive strength, carbonation resistance, chloride resist-
ance, water absorption

Compressive strength, elastic modulus, tensile strength, creep
and
shrinkage

Compressive strength, elastic modulus, tensile strength

Compressive strength, flexural strength, fracture energy

Compressive strength, tensile strength, flexural strength, water
absorption

o CNT addition improved the mechanical properties of UHPC
by the pore-filling, bridging effect, and formation of a denser
C-S-H structure with higher stiffness

o CNT addition enhanced the electrical conductivity of UHPC up
to the percolation threshold

o CNT addition enhanced the concrete’s mechanical and durabil-
ity properties regardless of the CNT type and w/c ratio

© 0.1% of CNTSS led to the best improvement in the mechanical
properties, followed by 0.05% of CNTPL

o The reduction of water absorption by immersion in concretes
with CNT was up to 12%

e The carbonation resistance of concrete with CNT improved by
up to 16% compared to non-structural concrete and was little
affected by the CNT type

e CNT addition little influenced the penetration of chlorides into
the concrete, regardless of the CNT type

o CNT addition improved the compressive strength by up to 21%

e The best mechanical performance was found in concrete with
0.1% CNT

e Concrete with functionalized CNT showed similar behavior to
pure CNT with equal proportions

o Improvements up to 8% were found for the elastic modulus of
concrete with CNT

e CNT addition reduced the short-term and long-term shrinkage
by 54 and 15%, respectively, CNTOH and CNTSL being the
only ones ineffective in reducing this property. It also reduced
the long-term creep, being 17-18% lower than the reference,
regardless of the CNT type

e Smaller CNT contents tended to be more effective in reducing
shrinkage

e The compressive strength and elastic modulus of UHPC were
significantly improved by incorporating 2% SF

o The initial cracking and ultimate tensile strengths of UHPC
were both improved by adding SF

o The highest gauge factor under tensile load was obtained for the
plain UHPC with CNT

o The four CNT types showed an enhanced effect on the flexural
strength of RPC with water curing, the corresponding increase
rates are 25.8, 27.2, 16.5, and 20.2%, respectively

e The fracture energy of RPC with water curing can be improved
by 41.7% when 0.25% CNT functionalized with carboxyl
groups is added

e The compressive strength showed the best results using 0.25 or
0.50% CNT functionalized with hydroxyl groups

o The mix designs containing BF or CNT alone showed higher
flexural strength compared to the one with only WGP

e The incorporation of BF together with CNT in mix design led
to the highest flexural strength

o CNT and BF addition to concrete provided the highest splitting
tensile strength

® 20% cement replacement with WGP associated with CNT or
BF addition led to a splitting tensile strength greater than the
reference’s one, being a useful option in eco-friendly buildings

@ Springer
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Table 3 (continued)

References

Property

Main findings

(20]

[21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

Compressive strength, elastic modulus, tensile strength, flexural

strength, fracture toughness

Elastic modulus

Flexural strength, ductility, permeability

Compressive strength, electrical resistivity

Compressive strength, water absorption

Compressive strength, bond strength

Compressive strength, elastic modulus, tensile strength, bond
strength

Compressive strength, flexural strength, chloride resistance,
water penetration

Compressive strength, flexural strength, tensile strength

o Compressive strength was 20% increased, flexural strength
18%, tensile strength 27%, and elastic modulus 15%

o The efficiency of concretes with CNT generally was higher at
early ages and decreased with increasing w/c ratio and with the
CNT content from 0.05 to 0.5%

o Increases of up to 42% in fracture energy were obtained in
concretes with CNT, confirming the great capacity of CNT to
improve the micro-cracking resistance of concrete

o The elastic modulus of CC and HSC can be improved by
adding low contents of CNT and CNF and without employing
supplementary cementitious materials and/or The increase in
Young’s modulus is not associated with increased compressive
strength

o The higher CNT contents increased the flexural strength of
concrete by more than 100%

e CNT addition increased the concrete’s ductility by about 150%,
and the concrete permeability, being the permeability coeffi-
cient reduced by at least 45%

o CNT addition resulted in a denser composite and delivered
higher flexural strengths and deformation capacity and lower
permeability when compared to the reference concrete

e CNT addition to concrete reduced its electrical resistivity
and enhanced its compressive strength as the CNT content
increased, being 0.1% CNT as the optimum value

e By increasing the w/c ratio from 0.45 to 0.60, the concrete’s
compressive strength and electrical resistance increased

o CNT addition improved by up to 41% the compressive strength
of the aerogel-added LWC for CNT content of 0.6%

o CNT-concrete decreased its water absorption rate by an
increase in the CNT content

o The compressive strength was increased up to 21% with CNT
addition, being the results affected by CNT type, content, and
dispersion technique

o The best results of compressive strength were found in concrete
with higher amounts of CNT of a lower aspect ratio

e The best improvement in the bond strength was up to 14% in
CNT-concrete

© 0.01% CNT increased the compressive strength, tensile
strength, and elastic modulus by 22.8, 19.2, and 15.4%, respec-
tively

o CNT addition increased the maximum bond strength between
rebars and UHPC because of their high reactivity

e CNT contents greater than 0.02% decreased the bond strength
of CFRP rebars due to the agglomeration, which increased the
porosity

o The best improvements in the compressive strength of GC were
obtained with the addition of 0.01% CNT blended with 2.5%
NC

e The addition of hybrid nanoparticles (CNT and NC) signifi-
cantly enhanced the engineering properties of the geopolymer
concrete

o CNT addition led to betterments by up to 150% in water pen-
etration resistance comparted to the control mix

o Improvements up to 25% in the compressive, tensile, and flex-
ural strength were obtained with the lower CNT content

e Well-dispersed CNTs improved the microstructure and
mechanical properties of concrete

@ Springer
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Table 3 (continued)

References Property

Main findings

[29] Compressive strength, elastic modulus, tensile strength, flexural

strength

o The compressive strength increased by 19.73, 5.91, and 6.45%,
respectively, using CNT contents of 0.2, 0.1, and 0.05%, cor-
responding to RTR content of 5, 10, and 15%

© 0.1% CNT enhanced the flexural strength by 7.89, 8.32, and
10.14%, respectively, in concrete with 5, 10, and 15% RTR

o The minimum CNT content corresponded to the best improve-
ments in splitting tensile strength

e The elastic modulus increased by 29.4, 34.89, and 35.75%,
respectively, using CNT contents of 0.2, 0.1, and 0.05%, cor-
responding to RTR content of 5, 10, and 15%

[30] Compressive strength, tensile strength, flexural strength, water e CNT content of 0.02% enhanced the compressive, tensile, and
absorption flexural strength of LWC up to 29, 44, and 26%, respectively
o CNT addition reduced the water absorption of LWC by 28.3%
e Greater CNT contents did not significantly improve the
mechanical properties
[31] Compressive strength, elastic modulus, electrical resistivity, o The electrical resistivity was decreased as a consequence of

porosity, shrinkage

[32] Compressive strength, tensile strength, electrical conductivity

the stable dispersion of CNT.0.5% CNT addition reduced the
shrinkage up to 30%

o All of the engineering properties were improved with the addi-
tion of CNT in contents up to 0.5%

o UHPC showed enhanced compressive strength as the mixing
container of the CNT increased

o The comparison between the tensile strengths of the CNT and
milled fibers specimens revealed similar behavior, which con-
firmed that millimeter-sized carbon fibers also can significantly
influence the tensile strength of UHPC

BF—basalt fiber; CC—conventional concrete; CNF—carbon nanofiber; GC—geopolymer concrete; HSC—high-strength concrete; LWC—Iight-

weight concrete; NC—nanoclay; RPC—reactive powder concrete; RTR—recycled tire rubber; SF

ultra-high-performance concrete; WGP—waste glass powder

cement can increase bond strength by up to 14% compared
to concrete without CNTs. Qasem [26], in turn, reported that
the maximum bond strength between steel bars and UHPC
was about 35 and 48% higher than between carbon fiber-
reinforced polymer (CFRP) bars and UHPC, for 12 mm and
16 mm bars, respectively, and CNT contents between 0.01
and 0.10% by weight of cement. These references suggested
the role of CNTs as crack propagation controllers, which
contributed to the mechanical portion of the adhesion, but
further research is necessary to better understand the influ-
ence of CNT addition in the bonding of reinforcement bars
in concrete. This is because adherence depends on factors
such as bar diameter, bar surface, and anchorage length,
among others [34]. This topic can be considered for future
studies.

3.2.3 Water absorption, porosity and permeability

Water absorption was studied in five manuscripts (26%),
porosity in two (10%), and permeability in only one (5%).
Carrigo et al. [15] reported a reduction of water absorption
by immersion in concretes with dispersed MWCNTSs of up
to 12%, considering contents of 0.05 and 0.10% by weight
of cement. Adhikary et al. [22] indicated that all the LWC

steel fiber; SP—superplasticizer; UHPC—

nanocomposite specimens decreased their water absorption
rate by an increase in the CNT content, from 0.04 to 0.60%
by weight of cement, while Mosallam et al. [30] indicated
that CNT addition in content up 0.30% by weight of cement
reduced the water absorption of LWC by 28.3%. Mohsen
et al. [23], in turn, indicated that the addition of MWCNTs
to the cementitious matrix of concrete resulted in a denser
composite compared to concrete without the nanomaterials,
reporting that the permeability coefficient was reduced by at
least 45%. Considering the aforementioned references and
the data in Table 3, it can be concluded that CNT incorpo-
ration into cement-based materials leads to a reduction of
their water absorption, porosity, and permeability, which is
a positive factor in terms of durability. Still, research on
these properties needs to be developed, considering the
increasingly frequent use of different types of concrete by
the construction industry. This topic can be used for further
research.

3.2.4 Electrical conductivity and resistivity
Only four articles (21%) studied the electrical properties of

CNT-concrete. Jung et al. [14] reported an enhancement in
the electrical conductivity of UHPC up to the percolation

@ Springer
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threshold due to CNT incorporation, which is consistent
with the literature [39, 40]. Lim et al. [32] indicated that
although the electrical conductivity of UHPC increased as
the content of CNTs increased, its conductivity was not as
high. Jung et al. [31], in turn, registered a consistent reduc-
tion in the electrical resistivity of UHPC at contents up to
0.8% by weight of cement, which they attributed to the stable
dispersion of CNTs in aqueous suspension in the cement
matrix. Parvaneh and Khiabani [24] pointed out that the
electrical resistivity of CNT-concrete was also reduced, with
the best results being achieved with a CNT content equal to
0.1% by weight of cement.

Considering the aforementioned references, it can be
concluded that CNT addition to concrete leads to increased
electrical conductivity and/or reduced electrical resistivity.
It happens due to the low density and the high aspect ratio
of CNTs, which favors the formation of conductive networks
in the cement matrix [35].

3.2.5 Carbonation and chloride penetration resistance

Only two articles in the portfolio (10%) studied the carbona-
tion and chloride penetration resistance of CNT-concrete.
Carrigo et al. [15] added three types of CNT (CNTPL, CNT-
COOH, and CNTSS) to conventional concrete at contents of
0.05% or 0.10% by weight of cement. These authors reported
that, due to an improved concrete microstructure, the car-
bonation resistance of CNT-concrete increased up to 16%
compared to concrete without addition, and the chloride pen-
etration resistance was little influenced by CNT incorpora-
tion. In both properties, the CNT type was found to have no
influence. In the study developed by Kotop et al. [27], the
influence of CNT and NC addition on GC was investigated.
The results revealed that the hybrid use of CNT and NC
improved by up to 29% the chloride penetration resistance
of GC compared to the reference sample. These authors indi-
cated that the GC became highly compacted and denser with
the addition of the nanomaterials, which prevented crack
formation and propagation and, as a consequence, increased
the chloride penetration resistance.

Considering the low frequency of manuscripts on these
properties in the selected bibliography and given their great
importance in the durability of concrete against the diffu-
sion of corrosive agents inside [41], experimental studies
must be conducted with different types of CNT-concrete to
investigate whether the addition of CNTs is beneficial to
carbonation and chloride penetration resistance. This topic
can be used for future research.

3.2.6 Fracture energy and toughness

Two references (10%) studied fracture energy and toughness
of CNT-concrete. Ruan et al. [18] added four different types

@ Springer

of MWCTN (see Table 2) to RPC in contents equal to 0.25
or 0.50% by weight of cement and investigated the fracture
energy. These authors concluded that the fracture energy of
RPC with water curing can be improved by approximately
42% using the optimum dosage of 0.25% by weight of
cement of CNT functionalized with carboxyl groups. Haw-
reen et al. [20], on the other hand, tried five types of MWC-
NTs (see Table 2) in conventional concrete at contents equal
to 0.05 or 0.10% by weight of cement and studied fracture
toughness. They observed that in the concrete’s pre-peak
behavior the CNTs were able to contain crack propagation
and, as a consequence, reported gains of up to 42% in the
fracture energy of the CNT-concrete.

It is understood that further studies are necessary to reach
assertive conclusions regarding the fracture energy and
toughness in CNT-concrete, especially in concretes modi-
fied by the replacement of NA by RA, which changes the
aggregate phase of the mixture. This topic can be considered
for further research.

4 Conclusions

A systematic review of the literature on the engineering
properties of CNT-concrete was hereby developed. The fol-
lowing conclusions were reached:

1. The bibliometric analysis confirmed that the articles
selected through the ProKnow-C methodology are
relevant, both for the quality of the journals in which
they were published and for the number of citations
obtained to date.

2. The most frequent CNT-concretes in the selected lit-
erature were CC (52%) and UHPC (26%), to the detri-
ment of LWC, GC, RPC, and HSC. Considering the
high consumption of concrete in the world and its high
rates of CO, emission to the atmosphere, studies on
CNT-concrete must be carried out in further research,
for example modifying it by replacing NA with RA, a
more sustainable trend in the construction industry.

3. MWCNTs were used in 84% of the references. Com-
pared to SWCNTs, they are easier to process through
advanced CVD methods, so they are produced on a
larger scale and therefore have a lower price. In addi-
tion, MWCNTSs’ use leads to a more homogeneous
mixture because they have less tendency to agglomer-
ate compared to SWCNTs.

4. CNTs in powder form were used in 47% of the selected
literature. All of these papers associated sonication
with some other additive (surfactant or superplasti-
cizer) or process (manual mixing, mechanical agita-
tion, or magnetic stirring) to disperse the nanomateri-
als, except one, which only sonicated them. CNTSs in
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Fig.4 Number of times each
property was studied in the
selected literature

aqueous suspension, on the other hand, were employed
in 32% of the manuscripts. In these cases, two only
sonicated the CNTs, two did magnetic stirring with
surfactant followed by sonication, and one did only
dispersion in distilled water. From the works studied, it
can be concluded that sonication is the best dispersion
technique, and can be further improved when associ-
ated with the use of dispersants because they prevent
agglomeration and ensure the stability of the mixture.

5. CNT contents equal to 0.10 and 0.05% by weight of
cement were applied in 52 and 37% of the portfolio,
respectively, being the most frequent ones. Consider-
ing the difficulty to disperse CNTs, their tendency to
agglomerate due to Van der Waals forces, their expen-
sive price, and the results presented by the literature
so far, future investigations on CNT-concrete should
avoid contents higher than 0.10% by weight of cement.

6. The mechanical strength of concrete is generally
increased when CNTs are added to it, as they fill pores,
act as a bridge for stress transfer, and form a denser
C-S—-H structure with higher stiffness in the cement
matrix. These improvements, however, depend on CNT
characteristics and mainly the content and dispersion
techniques, because they may agglomerate due to the
presence of Van der Waals forces if they are poorly or
insufficiently dispersed.

7. Only two papers in the portfolio (10%) studied the
bonding of reinforcing bars in CNT-concrete. Although
they presented promising results, evidencing the role
of CNTs as crack propagation controllers, the adher-
ence depends on several factors, such as bar diameter,
bar surface, and anchorage length. Therefore, this topic
needs to be further investigated in future research.

8.  Water absorption, porosity, and permeability were
studied in 26, 10, and 5% of the selected literature,
in that order. The incorporation of CNT in concrete
reduced these properties, which is a positive factor in
terms of durability. However, considering the increas-
ingly frequent use of different concrete types by the

Compressive strength

Tensile strength

Water absorption, porosity and permeability
Flexural strength

Elastic modulus

Electrical resistivity and conductivity
Carbonation and chloride penetration resistance
Creep and shrinkage

Bond strength

Fracture energy and toughness

Ultrasonic pulse velocity

Ductility

0123 456 7 8 91011121314151617 18
Relative research number

construction industry, it is still necessary to develop
research on these properties.

9. The electrical properties of CNT-concrete were inves-
tigated in 21% of the selected bibliography. From
these papers, it is concluded that the addition of CNT
to concrete leads to increased electrical conductivity
and/or reduced electrical resistivity, which occurs as a
consequence of the low density and high aspect ratio
of CNTs, which favors the formation of conductive
networks in the cement matrix.

10. Carbonation and chloride penetration resistance of
CNT-concrete were studied in only 10% of the selected
articles. The results indicated improvement of concrete
microstructure when CNTs were incorporated into the
matrix and, consequently, improvement of these prop-
erties. However, experimental studies on this topic
should still be carried out considering different types
of CNT-concrete.

11. The fracture energy and toughness of CNT-concrete
were studied in only two references (10%). Although
gains of up to 42% were reported in these works, addi-
tional studies are needed to reach assertive conclusions
regarding the fracture energy and toughness of CNT-
concrete, especially in concretes modified by replacing
NA by RA.

These findings reveal that a majority of the studies on
CNT-concrete focused on their mechanical properties,
while those on durability had less interest from research-
ers (Fig. 4). It is emphasized that these conclusions are
limited to the study of the selected articles. In addition,
other properties were not considered in the review, such as
mass loss, ductility, ultrasonic pulse velocity, creep, and
shrinkage, among others. These can be used as topics for
further investigation.
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