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Abstract
CubeSats are the cost-effective entry to space research and applications. As mission requirements increase to carry out more 
complex tasks, the constraints on the satellite challenge how attitude estimation and control systems are designed. Limited 
energy, sensors, and computational capacity require compromises. In this paper, we propose a Kalman filter architecture 
to reduce the computational cost of attitude estimation, leveraging the conditional independence structure of its physical 
model. Our method decomposes attitude dynamics and kinematics, leading to a linear attitude quaternion and a nonlinear 
angular velocity filter. As accommodating all vector measurements would require a nonlinear filter, we propose the virtual 
sensor paradigm that transforms the nonlinear observation model into a linear one, without relying on approximations. Our 
numerical experiments showcase superior error dynamics and robustness to epistemic uncertainty compared to a nonlinear 
quaternionic filter, and we also investigate performance against star tracker measurement frequency and sensitivity to the 
angle between Sun and Earth magnetic field measurements.

Keywords Kalman filtering · Virtual sensor · Orientation estimation · Spacecraft

1 Introduction

Orientation estimation is applied from mobile robotics [1] 
to space exploration [2–7]. Most cyber-physical systems 
impose computational constraints, while striving for better 
accuracy, robustness, and energy-efficiency; thus, requiring 
compromises.

This work focuses on orientation estimation with Kalman 
Filters (KFs), motivated by aerospace applications [2–7] and 
exploits the physical model of a small satellite to improve 
sensor fusion. We will address the need for estimators with 

stationary error dynamics, which is essential to prepare 
CubeSat s for high-accuracy Earth observation missions.

We contribute to the development of efficient orientation 
estimation algorithms. Our goal is to reduce computational 
complexity while maintaining attitude stability. First, we 
use the conditional independence of the physical model to 
decompose attitude kinematics and dynamics estimation; 
thus, decreasing computational cost. Second, we introduce 
the virtual sensor paradigm to transform the nonlinear 
observation model of the attitude filter into a linear one. This 
way, a linear attitude filter can be used, further reducing the 
computational cost. We compare the proposed algorithm to 
a quaternionic filter [8] and show its robustness and superior 
error dynamics.

2  Related works

Wahba’s problem [9] describes the general attitude estima-
tion objective as

where n stands for the number of observations, wi 
express measurement confidence, bi denote vectors in the 

(1)min
A

n�
i=1

wi‖bi − Ar,bri‖2,
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measurement (body), whereas ri those in the reference 
frame. Ar,b maps the attitude from the reference to the body 
frame. Here the focus is on quaternion methods due to their 
computational efficiency, compare to, e.g., Euler angles [10].

The eigenproblem formulation of (1) offers diverse 
solutions by trading off efficiency and robustness [9, 11]. 
Among which, the Estimator of the Optimal Quaternion 
(ESOQ) [12] and Second Estimator of the Optimal Quater-
nion (ESOQ2) [13] are the most efficient [14, 15]. Moreo-
ver, ESOQ2 can be solved in closed-form for two observa-
tions [13], which we exploit in Sect. 3.2.

The KF [16] is widely used for estimating orientation—
usually the nonlinear Unscented Kalman Filter (UKF) [17], 
which is superior to the Extended Kalman Filter (EKF) [18]. 
Exploiting dynamic model structure—e.g., conditional lin-
earity or independence—reduces complexity [19] without 
approximations as in the EKF or the Multiple Quadrature 
Kalman Filter (MQKF) [20].

Whereas the Marginalized Square Root Quadrature 
Kalman Filter (MSQKF) [21] uses a linear KF to marginal-
ize out linear states; nonlinear measurements make this filter 
inapplicable for orientation estimation (cf. Sect. 3.1). As our 
goal is to reduce computational cost, we do not consider 
using KFs for Riemannian manifolds [8], although they can 
accommodate quaternions.

Since attitude kinematics is time-variant (cf. Sect. 3.1), 
independence does not hold—as required for the General-
ized Compressed Kalman Filter (GCKF) [22], so we rely on 
conditional independence (cf. Sect. 3.2). Our contributions 
are: 

1. We utilize conditional independences in the spacecraft’s 
kinematic and dynamic models to decompose the esti-
mation problem into two filters;

2. We transform the nonlinear observation model of the 
attitude filter into a linear one, reducing the computa-
tional cost of the algorithm; and

3. We provide empirical evidence based on numerical sim-
ulations to show the superiority of our method compared 
to the Quaternionic Additive Square Root Unscented 
Kalman Filter (QuAdSRUKF) [8], especially in terms of 
error dynamics and robustness to epistemic uncertainty.

3  Proposal

This section describes the physical spacecraft model, then 
introduces and analyzes a decomposed estimation method, 
exploiting the equations of angular motion. To accommodate 
nonlinear vector measurements in a linear KF, we propose 
the virtual sensor paradigm and reason about its reduced 
computational cost.

3.1  Equations of angular motion

The equations of angular motion describe attitude and angu-
lar rate evolution over time. We parametrize attitude with a 
quaternion due to its advantages (no singularity, computa-
tional efficiency) [10].

A quaternion q is an element of the quaternion group ℍ 
and is composed of a tuple q = (s,w) =

(
cos

�

2
, t sin

�

2

)
, 

where s denotes the scalar, w the vector part [10]. An equiv-
alent representation uses the half angle �∕2 and a rotation 
axis t ∈ ℝ

3 . In accordance with the literature  [10], we 
assume unit quaternions.

The four coordinates of unit quaternions are linearly 
dependent (they form a Riemannian manifold) [8]. Since 
KFs are designed for Euclidean systems, their additive 
updates will produce off-manifold samples for quaterni-
ons, since Riemannian manifolds are not closed w.r.t. addi-
tion  [8]. Interestingly, H.M.T. Menegaz has shown [8] that 
simply normalizing q after filter updates generally suffices 
in practice, which we exploit in our filter implementation to 
reduce computational cost.

Rotating a vector r by the quaternion q is nonlinear in q, 
expressed as q⊗r⊗q̄, where q̄ is the conjugate quaternion. 
We propose the virtual sensor paradigm to include vector 
measurements in the linear KF without using this nonlinear 
operation (Sect. 3.2).

The merit of our proposal is that it utilizes the linearity 
of the attitude kinematics [10]:

where � is the angular velocity, [�×] the matrix of the cross 
product.

However, the dependence on � requires modeling the atti-
tude dynamics as well, which is done with the Newton-Euler 
equation [10]

where � is the resultant torque affecting the body; J the iner-
tia matrix, while L stands for angular momentum (e.g., if 
reaction wheels are present). In practice, both equations are 
discretized with time index t.

3.2  Decomposed estimation

To prove that the discrete joint probability density estimation 
problem can be decomposed, the Markov property should 
hold [23], i.e., (for given states X  and observations Y)

(2)q̇ =
1

2

[
0 − 𝜔T

𝜔 − [𝜔×]

]
q,

(3)�̇� = J−1
[
𝜏(q) − [𝜔×](J + [𝜔×]L)

]

Xt−1 ⟂ Xt+1|Xt ∧ Yt ⟂ Xt−1|Xt.
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In this setting, X = {q,�} and Y = {q̃, �̃�}, where the accent 
◦̃ denotes measurements.

For q and � , it is not sufficient to condition only on qt or 
�t , as � indirectly relates both (3). Moreover, there is also 
direct dependence between �t and qt.

Nonetheless, additionally conditioning on qt and on �t 
solves the problem. This gives

fulfilling the Markov property for states. For observations �t 
and qt are sufficient, too.

Exploiting the Markov property, we can factorize the joint 
state distribution over time:

Thus, we can estimate q and � separately if we use the most 
recent estimates of both quantities.

3.3  The virtual sensor

The factorized distribution (4) can be estimated more effi-
ciently than the joint distribution [24]. This is independent 
of whether a linear or nonlinear filter is used—i.e., deploy-
ing a linear filter could further reduce computational costs.

To use a linear filter, the measurements need to be linear 
in the filter states � , q. However, this does not hold for all 
sensors on CubeSat s [2, 4]: gyroscope ( � ) and Star Tracker 
(ST) (q) measurements are linear, but magnetometer, and 
Sun sensor measurements are nonlinear in the states q, � 
(measuring the Earth’s magnetic field B and the Sun vector 
s, respectively). Namely, B and s need to be compared to a 
reference vector (as in (1)) to extract attitude information. 
This requires that the observed vectors are rotated into the 
reference frame, which is nonlinear in q.

The virtual sensor avoids this nonlinear operation via an 
intermediate step that extracts the attitude information from 
the vector observations B, s by solving Wahba’s problem (1). 
We use the computationally efficient ESOQ2 [13] algorithm, 
which has a closed-form solution for two vector observations 

�t−1 ⟂ �t+1| �t, qt ∧ qt−1 ⟂ qt+1| �t, qt,

(4)
p
(
�1, q1,…,�n, qn,…

)

= p
(
q1

)
p
(
�1

)∏
i=2

p
(
qi|�i−1, qi−1

)
p
(
�i|�i−1, qi−1

)
.

(i.e., B and s). However, a different algorithm could have 
been chosen based on the requirements of the estimation 
problem. We group the measurements as:

where the accent ◦̃ denotes the measured values, B the 
magnetic field vector, s the Sun vector, ESOQ2 the virtual 
sensor, and qESOQ2 = ESOQ2

(
B̃, s̃

)
 . The subscripts ST and 

ESOQ2 denote the (virtual) sensor producing the quater-
nions, whereas the KF and UKF subscripts indicate which 
filter uses the particular measurements. The above formula-
tion enables us to decompose the estimation into a nonlinear 
(for � ) and a linear (for q) filter.

The architecture is shown in Fig. 1, where the round-
headed arrow denotes the time-variant parameters of the 
matrices of the KF  (2). Input arrows (w.r.t. the boxes) 
denote measurements, while output arrows the predictions. 
It describes one filter step visually, namely: 

1. Collect measurements �̃�, q̃, s̃, B̃ from the physical sen-
sors.

2. Estimate �̂� from �̃� with the UKF;
3. Convert s̃, B̃ to qESOQ2 with the virtual sensor (e.g., 

ESOQ2); and
4. Estimate q̂ from q̃, qESOQ2, �̃�.

The proposed decomposition is independent of the applica-
tion; only the measurements and the virtual sensor needs to 
be adapted. ESOQ2 requires a reference vector database ( ri 
in (1)), which might be a bottleneck for other domains. On 
the other hand, the virtual sensor can influence robustness 
as the price for computational efficiency [14, 15]—we inves-
tigate the latter in Sect. 4 w.r.t. the angle between B and s.

3.4  Computational complexity

Computational complexity savings are achieved by: (1) 
decomposing the estimation of the (N + L)-dimensional 
state vector (N = dim�, L = dimq) into two filters; and (2) 
using the virtual sensor to make the information content 

yKF =
[
qESOQ2;qESOQ2

]
∧ yUKF = �̃�,

ω̂

q̂

ω̃

q̃

B̃

s̃ Virtual
sensor KF

UKF

Fig. 1  The filter architecture for spacecraft attitude estimation—in 
this particular case, the box Virtual sensor converts B̃, s̃ into a qua-
ternion by the ESOQ2  [13] algorithm. Note that by interchanging 

particular sensor measurements, this structure is applicable to other 
domains as well. Accents ◦̃ and ◦̂ denote measured and estimated val-
ues, respectively.
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(i.e., an attitude quaternion) of the observations B, s linear 
in q, which admits a linear KF for estimating the attitude.

Using a nonlinear UKF for jointly estimating � and q is 
of O

(
[N + L]3

)
 , since the UKF has a cubic cost in the state 

dimensionality [25]. By factorizing the joint state distribu-
tion (cf. (4)), separate nonlinear filters can be used with a 
total cost of O

(
N3 + L3

)
 . Since the dynamics of � is non-

linear (3), it needs to be estimated with an UKF. However, 
since the gyroscopes measure � directly, this UKF will have 
a linear observation model.

On the other hand, the estimation of q can be made more 
efficient with the virtual sensor: since q has linear dynamics 
(2), if the corresponding observation model can be made 
linear, the attitude estimate can rely on a linear KF. This is 
achieved with the virtual sensor, which converts s and B into 
a quaternion—which is linear in the state q, so a linear KF 
with cost O(L) can be used [25].

Together, the cost is O
(
N3 + L

)
 , since the virtual sen-

sor’s cost does not depend on the dimensionality of the 
filter’s state, adding O(1) [13]. The main advantage of the 
proposed method is that it relies on conditional independ-
ences to decompose the estimation problem into two filters; 
thus, it uses no approximations: it does not linearize the 
equations of angular motion as in the EKF [18], but solves 
Wahba’s problem with the virtual sensor to make the obser-
vation model linear.

4  Numerical experiments

This section describes the satellite model, estimation algo-
rithms, control loop, environmental models, and the initial 
parameters considered for the numerical simulations, and 
discusses the results.

4.1  Experimental setup

Our numerical experiments model a 3U Earth observation 
CubeSat on a polar, Sun-Synchronous Orbit (SSO) with 
98.2◦ inclination and 10 AM LTDN and we choose the initial 
conditions and all parameters based on a real CubeSat mis-
sion [26]. Our simulator (written in Python) constitutes the 
decomposed filter, the control loop, and the environmental 
models. The Earth’s magnetic field is described with the 
IGRF [27] model (we use the implementation in [28]), the 
gravitational field by the WGS84 [29] model, whereas satel-
lite position is calculated with SGP4 [30], using TLE data 
as implemented in [31].

We initialized the attitude quaternion q to [1, 0, 0, 0] , the 
angular velocity � to the zero vector for both the proposed 
and reference filters, the attitude target for the control loop 
with longitude 19.040236◦ and latitude 47.497913◦ (i.e., the 
coordinates for Budapest). The initial angular velocity norm 

for the detumbling experiments was set to 1.745 s−1, and 
detumbling was considered successful if ‖𝜔‖ < 0.021 s−1

—these parameters reflect a real CubeSat mission [26]. We 
use the satellite inertia matrix for a 3U CubeSat  [26] (the 
satellite mass was not required for the simulations)

The control system consists of two control laws. Detumbling 
control is used to to dissipate the rotational energy of the sat-
ellite after being ejected from the rocket and determines the 
control torque with the standard law [10] kdet

(
� × B0

)
× B0, 

where B0 is normalized to unit length and kdet = 8 ⋅ 10−3 is 
a scalar coefficient—the analysis of [32] provides a formula 
for choosing this parameter. After the angular velocity of the 
CubeSat is reduced, we use the control law of [33] for track-
ing the target attitude. The control torque �h is based on the 
error quaternion qerr = q̄ref⊗qref  ( ̄◦ denotes the conjugate 
quaternion) as:

where werr denotes the vector part of qerr , kh,q is a scalar, 
while Kh,� a diagonal matrix. We empirically selected 
Kh,� = 8.5 ⋅ 10−2 × I3 and kh,q = 3 ⋅ 10−3 and use a zero tar-
get angular velocity �ref .

4.2  Results

We compared the attitude determination error of our decom-
posed filter to the quaternionic QuAdSRUKF of [8], and 
investigated the robustness of our proposal (Table 1). We 
assessed the effect of varying the ST sampling frequency 
(as reduced incoming energy might force the human opera-
tors who control the satellite from the Earth to reduce ST 
usage), epistemic uncertainty of the dynamic model via the 
inertia matrix (which can change due to the vibration dur-
ing launch), and its sensitivity to the angle between B and 
s. We parametrize the attitude with a quaternion q, but we 
report attitude-related quantities in terms of Euler angles 
for simplicity.

First, we compare the attitude error in Fig. 2, converted to 
Euler angles �, �,� (the discontinuity in the plot is only an 
artifact of converting the quaternion into Euler angles, it is 
not present in the quaternion components—both algortihms 
had the same initial conditions). The proposed method has 
a time-invariant error dynamics, while the quaternionic fil-
ter’s error is time-variant (denoted by the ref subscript in the 
figures)—a crucial advantage for the proposed method, since 
high-resolution Earth observation missions require attitude 
stability. The error vector’s norm’s variance is slightly higher 
for the proposed method, but as the component-wise plot 

(5)
⎛
⎜⎜⎝

5.08 ⋅ 10−2 6.54 ⋅ 10−5 −1.68 ⋅ 10−3

6.54 ⋅ 10−5 5.62 ⋅ 10−2 4.16 ⋅ 10−4

−1.68 ⋅ 10−3 4.16 ⋅ 10−4 2.19 ⋅ 10−2.

⎞
⎟⎟⎠

(6)�h = −kh,qwerr −Kh,�

(
� − �ref

)
,
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shows, it has a stationary error. We hypothesize that the rea-
son for a slightly larger variance is coming from the ESOQ2 
algorithm, the sensitivity of which is analyzed below.

To model epistemic uncertainty we perturbed the satel-
lite’s inertia matrix: while ensuring positive definiteness, 
at the start of each simulation, we multiplied all diagonal 
elements with a random number uniformly drawn from 
[0.95;1.05] , for off-diagonal elements, we used samples of 
10−6 magnitude. The Monte Carlo simulations (30 experi-
ments) with perturbed inertia matrix show the superior 
performance of the proposed method. Both the error norm 
and the standard deviation were lower than the quaternionic 
filter’s values (Fig. 3).

Figure 4 shows the distribution of the attitude error dif-
ference between the proposed method and the quaternionic 
QuAdSRUKF [8] for different ST sampling times, simulat-
ing the realistic scenario when the CubeSat does not have 
enough incoming energy to use the ST frequently. When the 
ST sampling time is increased over 500 ms, the reference 

Table 1  Filter parameters

S is the square root of the state, Q the process noise, R the observation noise covariance. For the of UKF’s 
�-points, w0 is the center weight ( ∀i ≠ 0,wi = (1 − w0)∕2N , where N is the number of states), and � a scal-
ing factor for the covariance, for details, cf. [8] 
1 This filter uses P = S2 in the implementation.

Param-
eter

Proposed filter QuAdSRUKF

KF UKF

S 1 ⋅ 103×I71 1 ⋅ 106×I7 diag
(
3 ⋅ 10−1×I3, 3 ⋅ 10

1×I3
)

Q 1 ⋅ 10−4×I7 1 ⋅ 10−3×I3 diag
(
1 ⋅ 10−1×I3, 1 ⋅ 10

−2×I3
)

R diag
(

1 ⋅ 10−3×I4, 1 ⋅ 10−1×I4
)

4 ⋅ 10−3×I3 diag
(
4 ⋅ 10−1×I9, 2 ⋅ 10

−2×I3
)

w0 – 0.15 0.15
� – 1.9 [0.25, 0.25, 0.25, 2, 2, 2]

Fig. 2  The component-wise attitude error for the proposed method 
and the QuAdSRUKF of  [8] ( ref subscript), showing the stationar-
ity of the proposed filter’s error. The discontinuity is only an artifact 
of converting the quaternion into Euler angles, it is not present in the 
quaternion components

Fig. 3  Comparing the norm of the attitude error (converted to Euler 
angles) when the inertia matrix is uncertain. The proposed method is 
more robust than the QuAdSRUKF of [8] ( ref subscript), as the mean 
error is slightly less, but variance is significantly smaller for the for-
mer (a 3� interval is calculated over 30 runs)

Fig. 4  The difference between the attitude determination error of the 
QuAdSRUKF of [8] and that of the proposed method. Negative val-
ues indicate that the proposed method is more sensitive to less fre-
quent ST measurements. The orange lines stand for the median, the 
boxes spread from the lower to the upper quartile of the data, and the 
whiskers show the data range
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quaternionic filter [8] had a lower attitude error, until that 
point the proposed filter was superior. This shows a limita-
tion of the proposed method compared to the QuAdSRUKF. 
Nonetheless, even for using the ST only every 125 s , the 
median error is below 0.005 rad , which can still be consid-
ered as an acceptable error, e.g., compared to [34–36].

An (almost) parallel s and B can decrease the accuracy of 
ESOQ2. Indeed, calculating the norm and standard deviation 
of the error quaternion (‖ΔqESOQ2‖ , i.e., the error between 
the true attitude quaternion and the output of ESOQ2) yields 
0.0187 ± 0.0146 when the angle between B and s is greater 
than 10◦, whereas 0.138 ± 0.148 for smaller angles. The 
blue line in Fig. 5 shows the norm of the error quaternion. 
The periodic spikes correspond to scenarios when s and B 
become (approximately) parallel. To confirm this, we fitted 
a nonlinear curve onto the spikes (shown in orange) that 
depends on the inner product of these two vector observa-
tions—i.e., Fig. 5 shows that we can capture the extreme var-
iability (the spikes) in (‖ΔqESOQ2‖ by a nonlinear function 
of the inner product of s and B. The proposed formula is:

where, c = 40 and k = 90 are empirically determined con-
stants to ensure a low attitude error and f

(
�s,B

)
∈ [0;c] . The 

quantity f
(
�s,B

)
 is used as a penalty affecting the diagonal 

elements of the observation covariance matrix R of the lin-
ear KF for the output of the virtual sensor ( qESOQ2 ), i.e., 
R = diag

(
1 ⋅ 10−3×I4, f

(
�s,B

)
+ 1 ⋅ 10−1×I4

)
 . We note that 

this strategy is specific for ESOQ2. We experimented with 

(7)

f
�
�s,B

�
=

⎧
⎪⎨⎪⎩

0, ‖qESOQ2‖ ≥ 1

c
exp

�
k�s,B

�
−1

exp(k)−1
, otherwise; where �s,B =

�⟨s;B⟩�
‖s‖‖B‖

multiplying �s,B with (1 − ‖qESOQ2‖), since our empirical 
observations suggested that smaller ‖qESOQ2‖ increases 
the error norm, but that did not change the value of f

(
�s,B

)
 

substantially.
We also report the attitude control error, stability, and 

the required time to detumble the spacecraft (i.e., when 
‖𝜔‖ < 0.021 s−1 ) with the proposed filter in Table 2. Our 
numerical evaluation suggests competitive performance 
compared to attitude determination systems in current Cube-
Sat s [34–36]. However, since our results are simulated, they 
should be validated in a physical model.

5  Conclusion

In this work, we studied attitude estimation for small space-
crafts. We analyzed the governing equations of angular 
motions and utilized conditional independences via the 
Markov property to decompose the attitude determination 
problem into two filters: one for estimating angular velocity, 
and one for estimating the attitude quaternion. Furthermore, 
we proposed the concept of a virtual sensor, with the help 
of which we transformed the nonlinear observation model 
of the attitude filter into a linear one. These two steps were 
essential for reducing computational cost: (1) the decom-
position of the filter enabled the estimation of a factorized 
probability density; and (2) the virtual sensor made it pos-
sible to use a linear filter for attitude estimation.

Our analysis shows reduced computational cost, whereas 
our numerical experiments demonstrate a more robust fil-
ter w.r.t. epistemic uncertainty and better error dynamics 
than the nonlinear quaternionic QuAdSRUKF [8]. A pos-
sible bottleneck of our method is when ST measurements 
are less frequently available. Given these considerations, we 
believe that exploring the proposed methods in real-world 
CubeSat missions could potentially improve attitude deter-
mination in small spacecraft. Whereas the idea of the virtual 
sensor might be leveraged in other applications of attitude 
estimation.

Fig. 5  Empirical validation of (7). The blue plot shows the error 
norm of the ESOQ2 algorithm, the orange plot that the proposed pen-
alty captures the uncertainty of ESOQ2. All values are normalized for 
the figure to [0;1]

Table 2  Performance metrics of the steady state

Metric Mean SD

Attitude determination error (refer-
ence)

3.91 ⋅ 10−3 5.53 ⋅ 10−5

Attitude determination error (pro-
posed)

2.9 ⋅ 10−4 1.23 ⋅ 10−4

‖�err‖ 2.17 ⋅ 10−4s−1 9.61 ⋅ 10−5s−1

Attitude control error 2.34 ⋅ 10−2 4.67 ⋅ 10−3

Attitude stability 3.60 ⋅ 10−6s−1 1.45 ⋅ 10−4s−1

Detumbling time 26.567 s 3.253 s
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