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Abstract
This study investigated the material and geometric nonlinear buckling of simply supported columns. The column body 
material followed Ludwick’s constitutive law. Rectangular and elliptical cross sections were considered, and correspond-
ing generalized moments of inertia (GMIs) were explicitly formulated. By applying the GMIs, the governing differential 
equations and boundary conditions of post-buckling columns were derived based on the Bernoulli–Euler beam theory, and 
the buckling loads and elastica were computed using numerical methods. To derive the elastica of buckling columns, the 
differential equations were integrated using the Runge–Kutta method, and the eigenvalues of the buckling load were deter-
mined using the bisection method. In our numerical experiments, the GMI formulae were applied, and parametric studies 
were conducted to analyze post-buckling columns in terms of buckling load, equilibrium path, elastica, and nonlinear stress 
along the cross section.

Keywords Generalized moment of inertia · Material and geometric nonlinear · Ludwick constitutive law · Column · 
Buckling · Elastica

1 Introduction

Recently, nonlinear elastic materials have been used as major 
structural members to support external compressive loads 
stably [1]. Ludwick-type materials are a family of represent-
ative nonlinear materials that follow a load-strain relation-
ship of � = E�1∕n , where ( �, � ) denote the strain and stress, 
respectively, n is the material constant, and E is the modulus 
of elasticity [2]. The relationship � = E�1∕n , which is called 
the Ludwick constitutive law, can be used to calculate the 
bending moment M = EIg�

1∕n , where Ig is the generalized 
moment of inertia (GMI) and � is the curvature caused by 

M . It is important to formulate Ig in advance for buckling 
analysis, which is the main focus of this study.

Over the past few decades, calculation methods for 
GMI Ig have only been formulated by researchers for 
three cross-sectional planar areas. Lee [3] calculated Ig as 
Ig = [0.5(1+1∕n)n∕(2n + 1)]ab(2+1∕n) for a rectangular cross 
section with width a and height b . Brojan and Kosel [4] 
computed Ig for a superellipsoidal cross section using a beta 
function that is explicitly expressed in an integral form. Lee 
and Lee [5] developed a calculation method for Ig for regular 
polygonal cross sections, where Ig was explicitly formulated 
using an integral formula. Five types of regular polygonal 
cross sections, namely triangles, squares, pentagons, hexa-
gons, and circles, were considered as numerical examples. 
Kim et al. [6] formulated Ig for an elliptical cross section 
with semi-axes a and b based on the results of Brojan and 
Kosel [7], which was expressed in terms of the area A , but 
not the semi-axes a and b . Beyond the cross-sectional shapes 
mentioned above, additional formulas for Ig have not yet 
been derived.

Regarding geometric nonlinear analysis, the first study 
focusing on elastica was conducted by Euler [8], where 
thin rods of linear elastic materials were investigated. Fol-
lowing the study by Euler, both linear elastic materials and 
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nonlinear elastic materials were considered for elastica anal-
yses. Additionally, several elastica problems related to geo-
metric and material nonlinearities have been investigated. 
We now review representative studies that have analyzed the 
deformed elastica related to our study.

First, regarding geometrical nonlinear elastica problems 
for linear materials, elastica studies similar to Euler’s clas-
sical work are reviewed. Such studies include analyses of 
the large deflection of Euler beams using Bernoulli–Euler 
beam theory by Bisshopp and Drucker [9]; largely deformed 
elastica of Timoshenko beam-columns with internal joints, 
where the non-conservative loads were considered by Aris-
tizabal-Ochoa [10]; shear deformable maximum column 
strength with constant volume and regular polygonal cross 
sections by Lee and Lee [11]; finite deflection of elastic rods 
following a hyperbolic tangent law by Oden and Childs [12]; 
large deflection of tapered cantilever beams considering 
distributed loads, concentrated loads, and tip coupling by 
Lee et al. [13]; Euler buckling loads with the corresponding 
buckled elastica of a non-prismatic column with a constant 
volume by Lee and Oh [14]; and bifurcation elastica of a 
slender beam subjected to axial external thrust by Berkey 
and Freedman [15]. Second, regarding nonlinear materi-
als, several studies addressing elastica behavior have been 
conducted. For example, Giardina and Wei [16] and Ana-
tolyevich and Yokovlevna [17] conducted two representative 
studies, where a material hardened by plastic deformation 
according to the Ramberg–Osgood constitutive law was 
considered.

In bending analysis, the material and geometric nonlinear 
behavior of structural members should be considered based 
on the GMI Ig . In the literature, Ig has been applied to elastica 
analysis, which considers highly deformed geometric nonlin-
ear beams/columns. We now review the most representative 
works on beams/columns made of the Ludwick-type materi-
als considered in this study. Lewis and Monasa [2] studied 
a largely deformed cantilever beam and applied coupling to 
the free end, where the exact curvature of the deformed beam 
was considered. Lee [3] applied the shear force formula to 
derive differential equations for the elastica of a buckled can-
tilever beam. Lee and Lee [5] studied post-buckling elastica 
for regular polygonal nonlinear cantilever columns made of 
Ludwick-type materials. Kim et al. [6] computed the buck-
ling load and buckled elastica of nonlinear cantilever columns 
with elliptical cross sections that which followed the Ludwick 
constitutive law. Brojan and Kosel [7] applied the relationship 
between strain and stress to a superellipsoidal cross section. 
Eren [18] studied cantilever beam elastica with a uniform load 
and vertical point load. Eren [19] calculated simple beam elas-
tica with a uniform load as a function of curvature expressed 
by arc length functions of two different types. Jung and Kang 
[20] studied the deformed elastica of uniform rectangular col-
umns composed of nonlinear fibrous materials subjected to 

horizontal and vertical point loads. Saetiew and Chucheep-
sakul [21] derived first-order simultaneous differential equa-
tions to compute the buckling load of a linearly tapered col-
umn. Brojan and Kosel [7] investigated the stability of Euler 
columns considering their buckled shapes. Borboni and Santis 
[22] investigated cantilever beams with asymmetrical cross 
sections subjected to nonlinear bending under vertical and 
horizontal point loads with moment coupling. Liu et al. [23] 
studied curved beam elastica considering the effects of axial 
expansion, which implicitly formulated the corresponding 
stress–strain relationships.

As discussed above, the subject of the GMI Ig and non-
linear column buckling remains an important topic in clas-
sical mechanics. In the case of nonlinear column buckling, 
the conventional moment of inertia of a plane area I , which 
only applies to linear materials, is no longer valid for nonlin-
ear members that follow the Ludwick constitutive law [3, 4]. 
Therefore, it is necessary to develop Ig formulations for various 
cross-sectional shapes and apply Ig to the buckling analysis 
of appropriate structural members for real-world engineering. 
From this perspective, this study has two main goals: reformu-
lating Ig in a manner that is applicable to nonlinear elastic col-
umn buckling and applying Ig to the buckled column problem.

In this study, the GMIs for regular elliptical as well as rec-
tangular cross section were formulated analytically and explic-
itly, and when applied to cantilever beam elastica, a uniformly 
distributed load was considered. The results for the stress and 
strain imposed on the cross section along the depth of the sec-
tion, which are some of the most important design criteria for 
material and geometric nonlinear columns in actual engineer-
ing, are presented based on numerical experiments.

We begin by reformulating Ig for rectangular and elliptical 
cross sections based on theories from the literature [3–5]. 
This includes the derivation of governing differential equa-
tions with corresponding boundary conditions for buckled 
column elastica with a simply supported end and the devel-
opment of numerical solution methods. Finally, based on 
numerical experiments, parametric studies of the GMI Ig 
and elastica of buckled columns are conducted and discussed 
extensively.

Our elastic analysis is based on the following assump-
tions: no initial imperfections exist in the column axis, the 
column material is inextensible/incompressible, and the 
plane of the cross section remains flat, even after buckling.

2  GMI for Ludwick‑type material 
cross sections

2.1  Configuration of cross sections

Prior to buckling analysis, for columns following the 
Ludwick constitutive law, the calculation method for Ig 
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is summarized based on theory from the open literature 
[3–5] and reformulated for the rectangular and elliptical 
cross sections considered in this study. Formulating Ig for a 
nonlinear elastic column is an essential preprocessing step.

Figure 1a presents an arbitrary planar cross section 
symmetrical about the w and h axes, where an elliptical 
area with semi-axes of a∕2 and b∕2 is presented as an 
example. The bending moment M is applied to the cross 
section through which the strain � is linearly distributed 
and the stress � for a nonlinear material is nonlinearly 
distributed along the cross-sectional depth h , as shown 
in Fig. 2b, where n is the material constant and E is the 
Young’s modulus.

For Ludwick-type materials, the relationship between 
�−� and the curvature � is given as follows [24]:

The infinitesimal force dF on an area dA at the coordinate 
h can be obtained as

where w is a function of h (i.e., w = f (h) ) for any closed 
curve along the cross-sectional boundary.

(1)� = �h,

(2)� = E�1∕n = E(�h)1∕n

(3)dF = �dA = E(�h)1∕nwdh,

The bending moment M imposed on area A can be 
obtained using Eq. 3 as

where the GMI Ig is defined as

Note that if n = 1 (i.e., linear elastic material), then Ig 
is reduced to Ig = I , which is the conventional moment of 
inertia of the cross section.

The typical properties of n and E for the Ludwick-type 
materials considered in this study are.

• n = 1 and E = 207 GPa for steel (linear elastic material),
• n = 2.16 and E = 458.5 MPa for annealed copper,
• n = 4.785 and E = 455.8 MPa for the NP8 aluminum 

alloy,

where a linear material such as steel ( n = 1 ) can be consid-
ered in terms of the GMI Ig.

To apply Ig to column buckling, rectangular and elliptical 
cross sections were considered in this study. The configu-
rations of each cross-sectional feature with corresponding 
width and depth dimensions are presented in Fig. 2a and b, 
respectively.

2.2  Formulation of GMI Ig

2.2.1  Rectangular cross section

GMI Ig was reformulated to consider column buckling. 
Applying Eq. 5 to the cross section in Fig. 2a yields Ig[3] as

The GMI Ig is initially expressed in terms of a and b , as 
shown in Eq. 6. For column buckling analysis, it is desirable 
to express Ig as an area A , rather than in terms of a and b . 
This is because the magnitude of A differs for different cross-
sectional shapes with the same a and b , and it is effective 
to compare buckling behaviors for the same A . Therefore, 
the ratio of b to a , which is defined as the aspect ratio � in 
Fig. 2a, is defined as

Then, the area A is expressed as A = ab , and a and b are 
solved for a uniform area A as

(4)

M = ∫ dM = ∫ (dF)h = E�1∕n
b∕2

∫
−b∕2

wh1+1∕ndh = EIg�
1∕n,

(5)Ig =
b∕2

∫
−b∕2

wh1+1∕ndh

(6)Ig =
0.5(1+1∕n)n

2n + 1
ab2+1∕n.

(7)� =
b

a
.

Fig. 1  a Symmetrical cross section acted to M and b stress � and 
strain � distributed along depth of cross section

Fig. 2  Configuration of a rectangular and b elliptical cross section
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Subsequently, considering Eq. 8, Ig in Eq. 6 is rear-
ranged in terms of n , � , and A as follows:

where n1 = (1 + 1∕n)∕2 and n2 = (3 + 1∕n)∕2 . In Eq. 9, � , 
which is called the GMI coefficient, is dimensionless, where 
Ig is computed using the given A.

2.2.2  Elliptical cross section

Applying Eq. 5 to the elliptical cross section in Fig. 2b 
yields Ig as [4]

where B is a beta function given explicitly in a definite inte-
gral form.

Similarly, the aspect ratio � for an elliptical cross sec-
tion is defined as

Then, the area A is expressed as A = �ab∕4 , and a and 
b are solved for a uniform area A as

Subsequently, considering Eq. 12, the GMI Ig in Eq. 10 
is rearranged explicitly in a definite integral form in terms 
of n , � , and A as

where the GMI coefficient � can be calculated numerically 
using the Runge–Kutta method, which is the direct integra-
tion method considered in this study.

As indicated in Eqs. 9 and 13, � depends on the cross-
sectional shape (rectangular or elliptical), n , and � . Note 
that Ig has physical dimensions of Ig = [A]n2 = [L]3+1∕n , 
as shown in Eqs. (9) and (13). If A is given in  cm2, then 
the units of Ig are  cm4 with n = 1 for steel (the linear 
material),  cm3.463 with n = 2.16 for annealed copper, and 
 cm3.209 with n = 4.785 for the NP8 aluminum alloy.

(8)a =

�
A

�
, b =

√
�A.

(9)Ig =
0.5(1+1∕n)

2 + 1∕n
�n1An2 = �An2, � =

0.51+1∕n

2 + 1∕n
�n1,

(10)Ig =
2abn+2

n + 3
× B

(
1

2
,
n + 2

2

)
,

(11)� =
b

a
.

(12)a = 2

√
A

��
, b = 2

√
�A

�
.

(13)

Ig =
4�n1An2

�n2

1

∫
0

�2n1
√
1 − �2d� = �An2, � =

4�n1

�n2

1

∫
0

�2n1
√
1 − �2d� ,

2.3  Numerical example of GMI Ig

The GMI coefficient � is computed using Eqs. 9 and 13 for 
the given values of n and � , and then, the value of Ig is cal-
culated from � using Eqs. 9 and 13 for the given area A of a 
rectangular or elliptical shape.

Table 1 compares the GMI Ig results from this study to 
those presented in references [3–6] to verify the reformu-
lation of Ig developed in this study. The two results for Ig 
obtained by changing the values of � for two typical non-
linear materials ( n = 2.16 and 4.785 with A = 15  cm2) are 
in good agreement, as shown in Table 1, indicating that the 
reformulation of Ig developed in this study yields correct 
results.

It is noteworthy to compare the GMI Ig results for rectan-
gular and elliptical cross sections, which are often used for 
structural members in practical engineering. Table 2 presents 
a comparison of the three material constants n for the same � 
and A(15  cm2) values. The Ig value of a rectangle is always 
approximately 5% greater than the Ig value of an ellipse, 
regardless of the magnitudes of n and � . Note that the ratios 
of 1.0472, 1.0495, and 1.0475 for given n = 1, 2.16 , and 
4.785 are similar, but not identical. Additionally, although 
all results are not shown here, the ratio for rectangular to 
elliptical shapes is always the same, regardless of �.

The GMI coefficient � expressed in Eqs.  9 and 13 
depends on the cross-sectional shape, material constant n , 

Table 1  Comparison GMI I
g
 ( A = 15  cm2) between this study and 

references

Shape n and � Dater source GMI I
g

Rectangular n = 2.16,� = 0.3 This study 6.63820  cm3.463

Reference [14] 6.63820  cm3.463

n = 4.785 , � = 0.5 This study 9.92946  cm3.209

Reference [14] 9.92946  cm3.209

Elliptical n = 2.16,� = 0.7 This study 11.7558  cm3.463

References [4, 6] 11.7543  cm3.463

n = 4.785 , � = 1. 
0

This study 14.4133  cm3.209

References [4, 6] 14.4121  cm3.209

Table 2  Comparison of GMI I
g
 ( A = 15  cm2) between cross-sectional 

shapes

n and � Shape GMI I
g
 Ratio

n = 1, � = 0.3 Rectangular 5.6250  cm4 1.0472
Elliptical 5.3715  cm4 –

n = 2.16, � = 0.5 Rectangular 9.6456  cm3.463 1.0495
Elliptical 9.1910  cm3.463 –

n = 4.785, � = 1 Rectangular 15.097  cm3.209 1.0475
Elliptical 14.413  cm3.209 –
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and aspect ratio � . Once a surface map of � is graphically 
derived by varying n and � , then Ig = �An2 in Eqs. 9 and 13 
can be easily calculated for a given area A . Surface maps 
of � are reported for 0 < n ≤ 10 and 0 < 𝛼 ≤ 1.5 for the 
rectangle in Fig. 3a and ellipse in Fig. 3b. These surface 
maps indicate that � increases with increases in n and � . 
According to these results, the greatest values of � occur 
at the greatest values of n = 10 and � = 1.5 in 0 < n ≤ 10 
and 0 < 𝛼 ≤ 1.5 . As expected, for cross sections with the 
same n and � , the � value of the rectangular cross section 

is always approximately 5% greater than the � value of the 
elliptical cross section, as indicated in Table 2.

A practical example of calculating the GMI Ig in dimen-
sional units is illustrated in Fig. 4, which presents Ig ver-
sus � curves according to the cross-sectional shape with 
A = 20  cm2. The Ig versus � curves are nonlinear because 
Ig increases as � increases, indicating that the greater the 
depth of the cross section, the higher the bending stiffness. 
When � = 1 , meaning a = b , Ig is the same relative to the 
w axis and h axis. In Fig. 4a, Ig with 𝛼 > 1 corresponding 
to the weak axis, whereas Ig with 𝛼 < 1 corresponds to the 

Fig. 3  Surface map � by varying n and � of a rectangular and b elliptical cross section

Fig. 4  Ig Iversus � curves: a by cross-sectional shape and b by material constant n
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strong axis. It is important not to overestimate the buckling 
load Pcr , so it is better not to apply Ig to the strong axis 
( 𝛼 < 1 ) when calculating Pcr . The Ig value of a rectangular 
cross section is approximately 5% greater than that of an 
elliptical cross section. Figure 4b presents Ig versus � curves 
according to the material constant n with A = 20  cm2 for an 
elliptical cross section, where Ig increases with an increas-
ing � . The Ig versus � curves are nonlinear for n = 2.16 and 
4.785 (i.e., nonlinear materials), whereas the curve is linear 
for n = 1(i.e., linear material).

3  Application of GMI Ig to buckled column 
elastica

3.1  Mathematical modeling of column buckling

The GMI Ig was applied to post-buckling column elastica. 
We present and discuss the mathematical modeling of elas-
tica, numerical solution methods, and numerical experi-
ments. In this study, the buckling loads of a simple column 
made of Ludwick-type materials were evaluated.

Figure 5a presents a simple support column of length 
l made of a Ludwick-type material that is loaded with an 
external load P at the top end, which moves downward 
after buckling. The column contains no initial imper-
fections, meaning it is perfectly straight until buckling 
begins. When P is smaller than the buckling load Pcr (i.e., 
P < Pcr ), the axis of the column represented by the dotted 

curve remains a straight line. As P gradually increases and 
eventually reaches Pcr (i.e.,P = Pcr ), the column buckles 
and elastically deforms. The shape of the highly deformed 
column after buckling, which is called an elastica, is illus-
trated by the solid curve in rectangular coordinates ( x, y ) 
originating from the base end o . The arc length at ( x, y ) 
measured from the base end is displayed in s. Based on 
the inextensibility/incompressibility of the column, the 
elastica arc length matches the original length l  . At any 
( x, y ), the rotational angle of the cross section is denoted 
as � and the vertical deflection at the top end ( s = l ) is 
represented by Δv . The � value at the base end ( s = 0 ) is 
denoted as �i . The internal force consists of (N,Q,M) at 
any ( x, y ) in Fig. 5, which denotes the axial force, shear 
force, and bending moment, respectively. Figure 5b pre-
sents the trigonometric relationships of a post-buckling 
column element at coordinates ( x, y ) and the sign conven-
tion of the positive internal forces of (N,Q,M) imposed 
on the element.

The internal forces of (N,Q,M) at any (x, y) can be 
expressed using the post-buckling equilibrium state pre-
sented in Fig. 5a as follows:

The trigonometric relationships of the buckled col-
umn element presented in Fig. 5b are based on the Ber-
noulli–Euler beam theory as follows:

By using the exact curvature of � = d�∕ds and GMI 
Ig
(
= �An2

)
 , the bending moment M can be expressed as 

follows:

Combining Eqs. 16 and 19, and rearranging in terms 
of d�∕ds yields

To discuss numerical results in a dimensionless form, 
dimensionless system parameters are defined as follows:

(14)N = P cos �,

(15)Q = P sin �,

(16)M = Py.

(17)
dx

ds
= cos �,

(18)
dy

ds
= sin �.

(19)M = EIg�
1∕n = �EAn2

(
d�

ds

)1∕n

.

(20)
d�

ds
=

(
Py

�EAn2

)n

.

Fig. 5  a Geometry of simply supported column and b trigonometric 
relationships of buckled column element and its sign conventions of 
(N,Q,M)
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where (�, �, �) are dimensionless coordinates, �v is the 
dimensionless vertical deflection at the top moveable end 
( s = l ), and p is the normalized load parameter.

By combining the system parameters in Eqs. 17, 18, and 
20, we can derive a dimensionless form of the governing dif-
ferential equations for a post-buckling column that follows the 
Ludwick constitutive law as

Considering the boundary conditions for the initial prob-
lems in Eqs. 26–28, the coordinates (x, y) of the base end 
( s = 0) are zero and have the following dimensionless form:

One of the initial boundary conditions, namely the rotation 
�i at the bottom end ( � = 0 ), is not considered as an initial 
value in the differential Eqs. 26–28 and is derived later through 
numerical analysis.

At the top end ( s = l) , the coordinate y is zero, and its 
dimensionless form is

The internal forces (N,Q,M) of a post-buckling column are 
normalized as follows:

(21)� =
s

l
,

(22)� =
x

l
,

(23)� =
y

l
,

(24)�v =
Δv

l

(
= 1 − ��=1

)
,

(25)p =
Pl2n1

EAn2
,

(26)
d�

d�
= cos �,

(27)
d�

d�
= sin �,

(28)
d�

d�
=

(
p�

�

)n

.

(29)� = 0, � = 0 at � = 0

(30)� = 0 at � = 1

(31)n =
Nl2n1

EAn2
= p cos �,

3.2  Numerical solution methods and verification

There are no closed-form solutions for Eqs. 26 and 28. 
Therefore, to solve these differential equations numerically, 
approximate numerical methods were developed to compute 
the buckling loads and post-buckling elastica. The input col-
umn parameters were the cross-sectional shape (rectangular 
or elliptical), span lengthl , cross-sectional dimensions of 
a and b , material properties of (n,E) , and load P . The cor-
responding dimensionless parameters � , � , and p are calcu-
lated using these dimensional parameters. To compute the 
elastica of (�, �) , the Runge–Kutta method [25], which is 
a direct numerical integral method, was used to integrate 
Eqs. 26–28. To determine the unknown �i at the base end 
( � = 0 ), a numerical method for solving nonlinear equa-
tions, such as the bisection method [25], can be applied. 
This type of solution method for deriving an unknown �i 
has been frequently used to solve the initial and boundary 
value problems in the literature [14]. For interested readers, 
the numerical method for calculating the elastica of (�, �, �) 
is described below.

(1) Set the column parameters of the cross-sectional shape 
n, � , and p (and calculate � for the given n and �).

(2) Assume a trial unknown �i at � = 0 . The first trial �i is 
�i = 0.

(3) Subject the boundary conditions in Eq. 29 to Eqs. 26 
to 28 and integrate Eqs. 26 to 28 at 0 ≤ � ≤ 1 using the 
Runge–Kutta method. Subsequently, the trial solution 
(�, �, �) along the arc length � is obtained.

(4) In this calculation, evaluate Er = ��=1 for the boundary 
condition in Eq. 30 considering the following conver-
gence criterion:

If the criterion in Eq. 34 is satisfied, then calculation is 
stopped after an additional calculation of 

(
n, q, m

)
.

5) If the above criterion is not met, then increase the 
trial �i by Δ and return to step 2 with the advanced trial 
�i(← �i + Δ).

6) Monitor whether the sign of Er1 × Er2 has changed dur-
ing steps 2–5, where Er1 and Er2 are Er values corresponding 
to the previous and current trials, respectively. If the sign 
of Er1 × Er2 does not change until � = � , then the given p 

(32)q =
Ql2n1

EAn2
= psin�,

(33)m =
Ml1∕n

EAn2
= p�.

(34)||Er
|| ≤ 1 × 10−8.
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is smaller than pcr and the column is still straight. Because 
�i cannot exceed � , we stop calculating. Here, the buckling 
load parameter pcr is defined as

7) When changing the sign ofEr1 × Er2 , the target 
solution for �i is between �i1,Er1 , and �i2 with Er1 . A more 
advanced new trial �i3 for the target solution �i compared 
to �i1 and �i2 is evaluated using the bisection method [25] as

8) Once the step 7 is completed, repeat the steps above 
until the following criterion is satisfied:

9) If the criterion in Eq. 37 is satisfied, compute 
(
n, q,m

)
 

and stop the calculation. If the sign of Er1 × Er2 for a given 
p in the steps above does not change until �i = � , then the 
given p is less than pcr , meaning the column does not buckle, 
as mentioned in step 6.

A numerical solution method for calculating the buck-
ling load parameter pcr was developed based on the fact 
that the buckling loads pcr for nonlinear columns follow-
ing the Ludwick constitutive law are jump buckling loads 
[5]. A column under a load parameter p < pcr does not 
buckle, meaning �i = 0 , whereas a column with p > pcr 
buckles, meaning �i ≠ 0 . Therefore, it is clear that p will 
be pcr , which is the smallest p that �i has encountered. A 
numerical method for calculating pcr can be developed in 
the same manner by adopting the numerical method for a 
buckled column described above. Starting with p = 0 , we 
increase p by the increment Δp(< �) and steps 2–5 are per-
formed until Er1 × Er2 changes its sign. Δp can be arbitrarily 
selected from 0 < Δp < 𝜋. Then, pcr is located between 
two adjacent pa and pb , between which the previous sign of 
Er1 × Er2 does not change, and the current sign of Er1 × Er2 
changes. In this calculation, pa is p2 from the previous itera-
tion, whereas pb is p1 from the current iteration. Therefore, 
pb > pa . Steps 2–5 are iterated from pa–pb in small incre-
ments Δp

(
< pb − pa

)
 until the following convergence crite-

rion is satisfied:

Figure 6 presents a typical example of determining pcr 
for a rectangular cross section with n = 2.16 and � = 0.5 . 
In the first iteration with i = 1 , pb for Δp = 0.1 is pb = 
0 .6 with D = (0.6 − 0.5)∕0.1 = 1 > 1 × 10−5 ,  where 
the sign of Er1 × Er2 changes, implying that the solution 

(35)pcr =
Pcrl

2n1

EAn2
.

(36)�i3 =
�i1 + �i2

2
.

(37)
�i1 + �i2

2
≤ 1 × 10−5.

(38)p
cr
≈ p

b
, ifD =

p
b
− p

a

p
b

≤ 1 × 10
−5
.

pcr lies within 0.5
(
= pa

)
< pcr < 0.6

(
= pb

)
 . Finally, for 

i = 6 , pcr is determined as pcr
(
= pb

)
= 0.53644 with 

Er = 1.95 × 10−6 < 1 × 10−5.
To calculate the buckling load parameter pcr and buckling 

elastica (�, �, �) using the analytical and numerical methods 
described above, two FORTRAN programs were designed. 
These programs contain a subroutine that calculates the GMI 
Ig . For validation purposes, a comparison of the buckling 
load Pcr values calculated in this study and the reference 
values for steel columns ( n = 1 and E = 270 GPa) for l = 1 
m and A = 20  cm2 are presented in Table 3. The references 
presented here are the only results published in the literature. 
Although the Pcr value in this study was approximated using 
numerical methods, it matches well with the closed solution 
from reference [24] (within five digits of accuracy).

3.3  Numerical experiments

Numerical experiments were conducted for the buckling 
load parameter pcr and elastica (�, �) using the FORTRAN 
programs developed in this study. As discussed in Sect. 2.1, 
three different material constants were considered in our 
numerical experiments: n = 4.785 for the NP8 aluminum 
alloy, n = 2.16 for annealed copper, and n = 1 for steel. In 
our numerical experiments, only the fundamental critical 
buckling load parameters pcr of the columns were calculated 
because a higher buckling load is less important than the 
critical pcr [26]. Therefore, only the post-buckling equilib-
rium paths versus pcr are presented.

Fig. 6  Convergence analysis according to iteration number i to obtain 
buckling load parameter pcr
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It is relevant to compare the buckling loads pcr between 
rectangular and elliptical cross sections, which are often 
used for structural members in practical engineering. Table 4 
presents comparisons of pcr values for three different values 
of n with the same � , l(= 1 m), and A(= 20  cm2). The pcr 
value of the rectangular section is always approximately 5% 
greater than that of the elliptical section, regardless of the 
magnitudes of n and � . It is noteworthy that the ratios in this 

table are the same as those in Table 2, where the GMI Ig val-
ues are compared. Additionally, even for values not shown 
here, the ratios of values for rectangular to elliptical cross 
sections are always the same, regardless of �.

We now discuss the various effects of the dimension-
less system parameters on the buckling load parameter 
pcr . Figure 7a presents the pcr versus aspect ratio � curves 
obtained by varying the material constant n . As expected, 
pcr increases with an increase in � because a larger � results 
in a larger Ig for the cross section. The buckling load param-
eter pcr curves for nonlinear materials with n = 4.785 and 
n = 2.16 are nonlinear, whereas the pcr curve for the linear 
material with n = 1 is linear. One can see that the order of 
the magnitudes of pcr values for columns with three different 
n values depends on � . For example, the magnitude order for 
� = 0.5 is from n = 2.16 to n = 4.785 to n = 1, whereas the 
orders for � = 0.1 and 0.9 differ from the order for � = 0.5 . 
The buckling load pcr in dimensional units for an elliptical 
column with l = 1 m and A = 20  cm2 with a varying � is pre-
sented in Fig. 7b. Here, the conversion from the dimension-
less pcr to the dimensional buckling load Pcr was calculated 
using Eq. 35 as Pcr =

(
EAn2∕l2n1

)
pcr . pcr increases with an 

Table 3  Comparisons* of 
buckling load P

cr
 between this 

study and reference

*l = 1 m, A = 20  cm2 and E = 207 GPa for steel column ( n = 1)

Shape � Width a (cm) Depth b (cm) Buckling load P
cr

(kN)

This study Reference [24]

Rectangular 0.3 8.165 2.449 204.30 204.30
0.5 6.325 3.162 340.50 340.50

Elliptical 0.7 6.031 4.222 455.22 455.22
1.0 5.046 5.046 650.31 650.31

Table 4  Comparisons* of buckling load P
cr

 between cross-sectional 
shapes

*l = 1 m and A = 20  cm2

**See Sect. 2.1 for n and E of Ludwick-type material

n , � and E** Shape P
cr

 (kN) (kN)) ratio

n = 1, � = 0.3, Rectangular 204.30 1.0472
E = 207GPa Elliptical 195.09 –
n = 2.16, � = 0.5, Rectangular 5.2197 1.0495
E = 458.5MPa Elliptical 4.9737 –
n = 4.785, � = 1, Rectangular 15.851 1.0475
E = 455.8MPa Elliptical 15.132 –

Fig. 7  Buckling curves of a dimensionless pcr and b dimensional pcr by changing �
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increase in � , similar to Fig. 7a. The increasing slope of pcr 
is steeper at smaller � values. The dimensionless pcr does not 
exhibit large deviations between the three different columns, 
whereas the dimensional pcr exhibits large deviations. This 
is because pcr is related to the Young’s modulus E , as shown 
in Eq. (35), which exhibits large deviations for the three dif-
ferent materials. As a result, the corresponding pcr is highly 
dependent on E , even if the non-dimensional pcr does not 
vary significantly among the three different materials.

For nonlinear elastic members, the slenderness ratio sr 
can be expressed as

where z is an exponential constant, so sr is dimensionless. 
Then, z is derived such that z = n1 and sr is finally expressed 
as

The area A and length l are expressed in terms of sr for 
a given � as

To visualize the effects sr on the buckling load Pcr , Pcr ver-
sus sr curves are presented for two cases. Figure 8a presents 
the curves with a varying A and Fig. 8b presents the curves 
with a varying l according to Eq. 40. The remaining column 
parameters are also presented in this figure. As expected, as 

(39.1)
sr =

l
√

Ig∕A
z

,

(39.2)
sr =

l
�

Ig∕A
n1

=
l

√
�A

.

(40)A =
l2

�s2
r

, l = sr

√
�A.

sr increases, Pcr decreases, exhibiting a very large decreas-
ing rate. For example, when comparing Pcr = 21.33  kN 
with sr = 50 and Pcr = 0.1754 kN to sr = 200 for n = 2.16 
in Fig. 8a, the difference is 121.6 (= 21.33/0.1754) times, 
which is relatively large. This indicates that sr is one of the 
most important factors for column design.

It is important to gain a complete understanding of 
the load parameter p

(
> pcr

)
 versus 

(
�v, �i

)
 curve, which 

is called the equilibrium path. Figure 9 presents the equi-
librium paths of rectangular cross sections with � = 0.5 
for three different materials. The equilibrium paths with 
respect to �v are presented in Fig. 9a. For n = 2.16 , if 
p < 0.5364

(
= pcr

)
 , then �v does not deform and the col-

umn does not buckle. However, as p gradually increases 
and eventually reaches pcr = 0.5364 , �v abruptly increases 
from �v = 0 to �v = 0.4813 , causing fatal buckling of the 
column with unexpected and dangerous consequences. 
When the column buckles, there are possible two equilib-
rium paths: the unstable path indicated by the dashed line 
and stable path indicated by the solid line. The column 
only follows the unstable path, which is a pass-through 
path, from its initial straight state until it reaches the final 
steady equilibrium state of the post-buckling column (see 
Fig. 10b). As described previously, in the solution method 
for calculating pcr , the unstable and stable paths meet at 
pcr , resulting in a sudden jump from �v = 0 in the initially 
straight state to �v,pcr = 0.4813 in the buckled state. The 
unstable path is strongly nonlinear and �v decreases as 
pcr increases. Additionally, the stable path is also strongly 
nonlinear and as pcr increases, �v increases, approaching 
the maximum physical value of a simple column at �v = 2 . 
For a linear elastic column with n = 1 (e.g., steel), the col-
umn remains straight until buckling at p = 0.4112

(
= pcr

)
 , 

Fig. 8  sr versus Pcr curves: a with changing A for rectangular cross section and b with changing l for elliptical cross section



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:46 

1 3

Page 11 of 14 46

meaning there is no unstable path and �v does not abruptly 
jump, unlike the nonlinear materials with n = 2.16 and 
n = 4.785. Therefore, for linear columns, buckling can 
be detected immediately after it occurs, facilitating the 
avoidance of catastrophic collapse caused by buckling. 
After buckling with a stable path, the equilibrium path 
is strongly nonlinear, where �v increases with an increas-
ing p . The equilibrium paths of the initial rotation �i are 
presented in Fig. 9b. These paths are also nonlinear, simi-
lar to the equilibrium path for �v , where �i increases as p 
increases and eventually approaches �i = �.

In practical engineering fields, it is necessary to understand 
the elastica behavior of buckling and post-buckling processes 

for column design. In Fig. 10a, for the elliptical cross section, 
the buckling elastica (�, �) of the steel ( n = 1 ), annealed cop-
per ( n = 2.16 ), and NP8 aluminum alloy ( n = 4.785 ) columns 
with � = 0.5 are presented. The larger the value of n , the more 
severe the elastica. For n = 1 , the column remains straight 
at the buckling load pcr = 0.393 , whereas for n = 2.16 and 
4.785 , the buckling elastica deforms significantly, which corre-
sponds to the equilibrium paths shown in Fig. 9. For n = 2.16 , 
a very large vertical deflection of �v = 0.187(= 1 − 0.813) 
occurs at pcr = 0.51 , which is denoted by, leading to abrupt 
deformation immediately after column buckling. Because 
these sharp deformations of buckling elastica are unpredict-
able and cause catastrophic collapse, it is critical to exercise 
caution when determining pcr in nonlinear column design. The 
post-buckling elastica of the elliptical cross section for � = 0.5 
and n = 2.16 is presented in Fig. 10b, where four elastica with 
p = 0.709, 0.603, 0.534 , and 0.511

(
= pcr

)
 are included. The 

dashed elastica with p
(
> pcr

)
= 0.709, 0.603, and 0.534 is 

unstable before the bucking elastica for pcr = 0.511 occurs. 
An unstable dashed elastica represents a path that cannot 
exist naturally. In the unstable region before the buckling elas-
tica, an elastica with p(> pcr) is present in the upper region 
close to the unbuckled straight column and all elastica with 
p > pcr(= 0.511) exist in this upper region. As discussed 
above, the top end of the column catastrophically moves to 
the deformation coordinates (0.406, 0.267), which are indi-
cated by ▶ in Fig. 10a, immediately after column buckling. 
After passing through the unstable elastica, the post-buckling 
elastica, which are indicated by the solid line, becomes sta-
ble. In this lower stable region, four buckled elastica with 
p = 0.511

(
= pcr

)
, 0.534, 0.603 , and 0.709 can be observed. 

Here, the top end of the elastica with p > 0.603 can theo-
retically be located below the base end because the vertical 

Fig. 9  Equilibrium paths for rectangular cross section: a vertical deflection �v and b initial rotation �i

Fig. 10  Elastica for elliptical cross section: a buckling elastica by n 
and b post-buckled column elastica for n = 2.16 with a varying p
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deflection �v becomes �v = 1 when p = 0.603 . For example, 
see the elastica with p = 0.709(> 0.603).

Next, we discuss the internal forces ( N,Q,M ), and distrib-
uted strain � and stress � of buckled columns. The dimension-
less forms of 

(
n, q,m

)
 can be converted into the dimensional 

form of ( N,Q,M ) using Eqs. 31–33. For example, a diagram 
of ( N,Q,M ) with n = 4.785 and E = 455.8 MPa for the NP8 
aluminum alloy is presented in Fig. 11, where the input param-
eter areas are the elliptical cross section, l = 1 m, a = 5.642 cm, 
and b = 4.514  cm ( � = 0.8,A = 20  cm2, and Ig = 19.98 
 cm3.209). Based on these column parameters, the buckling load, 
Pcr , is calculated as Pcr = 13.223 kN. As expected, at the mid-
arc of  the elast ica ( i .e . ,  s = 0.5  m),  Nm  is 
Nm

(
= Pcr

)
= 13.223 kN and Qm = 0 because �m = 0 . At the 

base end ( s = 0 ), No is No = 0.667 kN and Qo = 13.206 kN 
with �i = 1.621 rad, where Pcr(= 13.223kN) =

√
N2
o
+ Q2

o
 . 

Additionally, as expected, at the mid-arc, Mm with 
ys=0.5m = 0.445  m is the maximum value because 
Mm = Pcr × ys=0.5m = 5.882 kNm.

Finally, the distribution of ( �, � ) for the buckling elastica at 
the mid-arc ( s = 0.5m ), where the maximum bending moment 
Mm occurs, is presented in Fig. 12. The input column param-
eters are the same as those in Fig. 11. Given N and M , the 
distribution of ( �, � ) along the cross-sectional depth h can be 
obtained as follows:

(41)� = �N + �M =

(
|N|
EA

)n

±

(
|M|
EIg

)n

h,−
b

2
≤ h ≤

b

2
,

(42)� = E�1∕n.

For the values of Nm = 13.223 kN and Mm = 5.882 kNm 
at the mid-arc in Fig. 11, the corresponding ( �N, �M ) can 
be obtained as �N = +1.596 × 10−9 and �M,h=±b∕2 = ±0.278 , 
from which � = +0.278 and � = −0.276 at the two edges 
with h = ±b∕2 ( b = 4.514 ) were obtained using Eq. 41. 
Note that �N = +1.596 × 10−9 is very small and almost neg-
ligible compared to �M,h=±b∕2 , and � is nearly equal to �M , 
implying that the change in the neutral axis position caused 

Fig. 11  Buckling internal forces (N,Q,M) for elliptical cross section with n = 4.785 and � = 0.8

Fig. 12  Buckling strain � and stress � at mid-arc for elliptical cross 
section
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by �N is negligible. Considering the values of � = +0.278 
and � = −0.276 at the two edges, the linear relationship of 
� = �h can be plotted, as shown in Fig. 12, where the curva-
ture of � = 0.123∕cm was calculated using Eq. 19. The non-
linear stress equation � = E�1∕n was obtained and the result 
is presented in Fig. 12. The �max values at the two edges 
were calculated as �max = +348.7 MPa at the top edge and 
�max = −348.3 MPa at the bottom edge. Because the shape 
of the nonlinearly distributed stress is almost rectangular, it 
is more advantageous to use the total cross-sectional area 
for the stress � compared to the case of linear materials. 
As shown in Fig. 12, this is beneficial for ensuring column 
safety when designing nonlinear elastic columns.

4  Concluding remarks

This study investigated the geometric and material non-
linear buckling of simple columns made of Ludwick-type 
materials. Before modeling nonlinear column buckling, a 
GMI Ig calculation method was derived based on theories 
from the open literature and reformulated for rectangular 
and elliptical cross sections. The buckling of a simple col-
umn was considered to apply the reformulated Ig to bend-
ing analysis. Nonlinear differential equations that govern 
the buckled column elastica were derived and numerically 
solved to obtain the buckling load and elastica of the col-
umn. An iterative numerical method was developed to cal-
culate the elastica, where the Runge–Kutta method was 
used to integrate the governing equations and the bisection 
method was used to determine the rotational angle at the 
bottom hinged end. Numerical parametric experiments on 
GMI Ig for rectangular and elliptical cross sections were 
discussed in detail. As a major focus of this study, para-
metric studies on buckling behavior, including buckling 
load, equilibrium path, buckling and buckled elastica, and 
the strain and stress distribution of a buckled column, were 
conducted and discussed in detail. The buckling loads of 
materials and geometric nonlinear simple columns were 
reported for the first time in this paper. Additionally, a 
slenderness ratio applicable to nonlinear elastic members 
was derived and applied to the buckling problem. The 
results of this study should be useful for buckling analysis 
and nonlinear elastic column design. Further studies on the 
GMI Ig for asymmetric cross-sectional shapes are required, 
as are further studies on support conditions other than the 
simply supported columns considered in this study.
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