
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:45 
https://doi.org/10.1007/s40430-022-03954-5

TECHNICAL PAPER

Signal‑based parameter and fault identification in roller bearings 
using adaptive neuro‑fuzzy inference systems

Rajasekhara Reddy Mutra1  · D. Mallikarjuna Reddy1 · J. Srinivas2 · D. Sachin1 · K. Babu Rao3

Received: 12 July 2022 / Accepted: 5 December 2022 / Published online: 28 December 2022 
© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2022

Abstract
The rolling element bearings are used in high load-bearing, high stiffness, and high-speed applications. They have wide 
applications in aero-engine and automobile rotors. In practice, major rotor failures occur with bearing faults. Therefore, it is 
required to identify the location and intensity of such bearing faults from time to time. In recent times, several signal-based 
fault identification approaches were proposed for the condition monitoring of ball and roller bearing systems in rotors. In 
the present work, an experimental framework of the rotor-bearing system is established to study the dynamics of the system 
under different operating conditions including the faults on the inner race, roller, and outer race. Experiments are conducted 
under different operating conditions with these faults. The experimental results are compared initially with finite element 
analysis as a means of validation. Using the empirical mode decomposition (EMD) method, the intrinsic modal functions are 
estimated for the time response signals. An inverse identification approach is proposed for the identification of the operat-
ing parameters from the vibration response using a counter propagation neural network (CPNN) model. Later, an adaptive 
neuro-fuzzy inference system (ANFIS) is proposed for the classification and identification of faults by analyzing the operating 
conditions from CPNN and statistical parameters from EMD. The proposed CPNN- and ANFIS-based methodology could 
predict the faults in roller by 100%, inner race by 87.5%, and outer race by 96%.

Keywords Fault detection · Empirical mode decomposition · Feature extraction · Soft computing schemes

1 Introduction

Machinery health monitoring is gaining more importance 
in the industry because of the need to improve reliability 
and reduce the risk of production loss due to machinery 
breakdowns. The use of acoustic and vibration signals is 
common in the domain of condition monitoring of both 
structures and rotating machinery. By comparing the vibra-
tion or acoustic signals of a machine running in healthy or 
normal and faulty conditions, identification of faults like 
rotor rub, unbalance of mass, failure of gears, misalignment 
of the shaft, and bearing faults is possible. These signal 
data can also be used to identify the incipient failures of the 
machinery components, using the online monitoring system, 
decreasing the prospect of catastrophic failure and down-
time. For the detection of machinery-bearing faults, a variety 
of modern signal processing approaches are available. These 
approaches are utilized to examine bearing defect signal data 
utilizing time domain [1–3], frequency domain [4–7], and 
a combination of the two time–frequency-domain methods 
[8]. These approaches each have their own set of benefits 
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and drawbacks. The presence of noise can distort fault data 
recorded in the form of vibration or acoustic signals for 
bearing problems. To detect early onset failures, a suitable 
signal processing approach is required [9, 10]. Tang et al. 
[11] explained the spatial localization of acoustic technique 
to identify the defect localization on rolling element bear-
ing stationary outer race. Maczak and Jasinski [12] inves-
tigated local faults in gears using a model-based approach. 
Inturi et al. [13] described the experimental analysis of the 
three-stage gearbox under constant and fluctuating operat-
ing conditions with bearing faults using wavelet transform 
to predict the different statistical parameters. Further, based 
on the fault severity the identified fault is classified using 
a support vector machine. In continuation to this, the sup-
port vector machine is used to extract the features from a 
rotor vibration signal and acoustic emission to classify the 
misalignment presented in the paper [14]. The advantage of 
this method was the direct use of the time signal processing 
algorithms for the implementation of the diagnostic systems 
working online simply and faster.

Vibration-based analysis has been increasingly popular 
for diagnosing bearing faults in recent years. The rotating 
machine's characteristics are reflected in the vibration data, 
which is based on the premise that all elements of the system 
influence the vibration signal. As a result, analyzing vibra-
tion signal data is critical for ensuring that the equipment 
runs without failure. Unfortunately, these methods are not 
able to provide inherent data related to non-stationary sig-
nals. These methods give only a partial performance for 
machinery diagnostics. To overcome this problem, a signal 
processing technique called Wavelet analysis also called the 
time–frequency method has been introduced. The wavelet 
transform method is a variable window method, which uses 
a time-domain signal interval to find out the respective fre-
quency components of the same signal. When compared to 
a raw vibration signal, it has been proven in recent years that 
the statistical measure of kurtosis detects the fault at an early 
stage. A value of kurtosis > 3 indicates the presence of 
defects [15]. In the identification and estimation of faults, 
the wavelet transform technique [16, 17] has been widely 
employed. The non-stationary signal is analyzed using the 
wavelet technique. The fixed window size in wavelet analysis 
is a drawback. A high-frequency component may be detected 
effectively in advance (with less relative error) than a low-
frequency component by modifying the window size, and a 
low-frequency component can be identified well in compari-
son to a high-frequency component by adjusting the window 
size. In many cases, the wavelet method is used in combina-
tion with additional features, such as Gaussian/ exponential 
enveloped functions and support vector regressions [18, 19]. 
Tabrizi et al. [20] identified the small defects in the roller 
bearings by using the wavelet packet decomposition (WPD) 
and empirical mode decomposition (EMD) methods. 

De-noising techniques [21] are used to enrich the fault detec-
tion process. The wavelet packet transform method (WPT) 
is a simplification of the wavelet transform method and has 
been used in many signal processing applications such as 
de-noising and compression [22–24]. Spectral Kurtosis 
analysis and combined ensemble empirical mode decompo-
sition (EEMD) is used for fault identification of rolling bear-
ing [25]. The method of empirical mode decomposition 
(EMD) along with Hilbert–Huang transform (HHT) is used 
to obtain the features data of bearing defect signal, which 
can understand the condition monitoring of fault signal [26]. 
Li et al. [27] demonstrated twelve sensitive features of bear-
ing fault signals for early fault identification. Both empirical 
mode decomposition and wavelet packet analysis are 
together used to get the features and are then given as inputs 
for Radial Basis Function Networks (RBFNs) to categorize 
different faults [28]. In the work, three different types of 
neural network models were used for fault analysis of bear-
ing elements. The effectiveness of fault detection in the bear-
ings using the deep neural network (DNN) technique and 
convolution neural network over ANN was studied [29–31] 
successfully and demonstrated the intelligent fault detection 
method of rotating machinery with huge test data. This study 
also highlighted the advantages of using deep neural net-
works over shallow networks. The same method was vali-
dated using data captured from the bearing and gearbox. 
Mutra et al. [32, 33] used a neural network-based surrogate 
model to explain the parametric identification of a high-
speed rotor system supported on oil/oil-free bearings. An 
impulse is created whenever a rolling element passes 
through a local fault in a bearing. Because the impulse 
period is so short in comparison to the time between pulses, 
the induced energy will be spread out across a large fre-
quency range. As a result, the impact pressures will excite 
numerous resonances of the bearing and the entire structure, 
and the FFT technique will be unable to determine the prob-
lem frequencies. Envelope detection is a technique for con-
verting a bipolar input signal to a unipolar signal using a 
smoothing circuit for FFT analysis of system frequencies. 
[34]. Zhou et al. [35] demonstrated the identification of the 
fault characteristics of the motor base screw loosening 
through online vibration by using the similarity measure-
ment theory. The corresponding amplitude and frequency 
characteristics of the curve were obtained from the FFT 
technique. Cai et al. [36] explained a new method for fault 
diagnosis for rolling bearings by combining the instantane-
ous spectrum estimation with fractional Fourier instantane-
ous spectrum (FRFT). Here the maximum kurtosis coeffi-
cient method is used to estimate the spectrum of the optimal 
fractional domain. Moshrefzadeh and Fasana [37] explained 
the lumped parameter model to identify the frequency 
response of the planetary gearbox with different faults in the 
bearings. Ho and Randall [38] proposed a method of 
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envelope analysis using the Hilbert–Huang transform. Hil-
bert transform is applied in frequency bands where the sig-
nal-to-noise ratio is maximum. Rai and Mohanty [39] dem-
onstrated bearing fault detection using Hilbert–Huang 
transform (HHT) method to capture characteristic defect 
frequencies of a rotating bearing. HHT provides multi-res-
olution in various frequency scales as it takes signal fre-
quency with its variation in the time domain for considera-
tion. However, it has an error in the estimation of defect 
frequencies of the bearings. To enhance the resolution of the 
Hilbert transforming frequency domain, the researchers used 
FFT of intrinsic mode functions (IMFs). Mutra and Srinivas 
[40] explained the identification of floating ring bearing 
coefficients from the vibration response using a modified 
particle swarm optimization scheme. Ali et al. [41] employed 
a soft computing method for both empirical mode decom-
position and the artificial neural network (ANN) technique 
in automatic fault detection and Diagnosis (FDD) of bear-
ings elements using vibration data is proposed. Presently, 
artificial neural networks [42, 43] have gained more atten-
tion in industrial automation applications. Also, a neural 
network is used for data processing and classification tech-
nique. Correspondingly, an artificial intelligence self-adap-
tive FDD system inspired by the genetic algorithm (GA) and 
nearest neighbor (NN) was studied in [44]. Literature studies 
show that online and automated monitoring can be achieved 
by incorporating the expert systems such as ANN Support 
Vector Machine (SVM) and k-nearest neighbor to detect 
faults in the machine. Even though roller bearing identifica-
tion is not new, the proposed methodology simplifies the 
approach with the use of experimental data. The reliability 
and speed of identification are the main targets in the present 
work. Because of the high efficiency to identify similarities 
among large data matrices, ANN has gained popularity over 
its competitors. For hyperspectral image classification, a 
feature extraction method integrating principal component 
analysis and local binary pattern is presented in [45]. Vibra-
tion amplitude feature extraction from spectral imaging Con-
volution Deep Believe Network (CDBN) is proposed in [46]. 
To learn the extracted features CDBN along with Gaussian 
distribution is utilized. To minimize the sum of the eco-
nomic cost and maximize customer satisfaction, a time-
dependent split delivery green vehicle routing problem with 
multiple time windows is presented in [47]. To accelerate 
the convergence, a dynamic parameter adjustment mecha-
nism by particle swarm optimization and the fuzzy is devel-
oped in [48]. To solve the large-scale traveling salesman 
problems the proposed method worked satisfactorily. Adap-
tive mathematical morphology spectrum [49] used in scale 
selection methods that depends on experimental parameters 
like noise ratio, fault frequencies, etc.

Despite all the above fault identification research, there 
are limited works that make use of experimental data 

directly to predict the fault locations in rotor-bearing systems 
accurately. The current research focuses on dynamic mod-
eling and experimental research of a rotor-bearing system 
with common bearing defects. Extraction of fault features 
using the EMD method is developed and neural network 
model is employed to predict the parameters and an Adap-
tive Fuzzy-Neuro inference system is used to identify the 
bearing fault type. The contribution of this paper mainly 
includes (i) a multi-stage-prediction model for fault identi-
fication in roller bearings from non-stationary time series. 
(ii) Demonstrated prediction accuracy of various parameters 
using statistical features. (iii) Illustrated the efficiency of the 
proposed model to predict different types of fault types. (iv) 
A finite element model is developed to simulate fault signals 
in roller bearings. (v) Post-processing of time series data 
using statistical parameters is presented. (vi) Inverse model 
is developed to identify the operating parameters from the 
vibration response and the fault classification using ANFIS 
is the prime novelty in this paper.

The following is how the rest of the article is organized:
The mathematical model of the rotor-bearing system is 

described in Sect. 2. The architecture of a suggested system 
is discussed in Sect. 3. Section 4 explains the experimen-
tation performed to collect the vibration data of bearings 
at various runtimes and the empirical mode decomposition 
(EMD) method, which results in the feature extraction and 
selection procedure. Section 5 presents the conclusion drawn 
with the future direction.

2  Mathematical modeling 
of the rotor‑bearing system

The rotor model is simplified using the finite element (FE) 
method as shown in Fig. 1, with four degrees of freedom per 
node, which are two bending deflections (Ux, Uy) and their 
corresponding slopes (θx,θy).

The rotor system's equations of motion are as follows:

where [M], [C], [K] are the effective mass, damp-
ing, and square stiffness matrices, and [G] is a skew-
symmetric gyroscopic matrix, ω is rotational speed 
while {q} is a vector representing displacements. 

(1)[M]{q̈} + ([C] − 𝜔[G]){q̇} + [K]{q} = {FB}

Fig. 1  FE model considered
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{FB} =
[

F
u
+ FxFy

]T
= {F

u
} + {F

b
} is the resultant force 

vector component. Fu is the unbalance force along with grav-
ity force vector and Fb is the vector of roller bearing forces.

3  Methodology

3.1  Empirical mode decomposition (EMD)

Empirical mode decomposition is a nonlinear, non-stationary 
signal analysis technique that decomposes a signal into a series 
of full and nearly orthogonal intrinsic mode functions (IMFs). 
The IMF reflects oscillatory modes contained in the signal and 
functions as fundamental functions defined by the signal rather 

than predetermined kernels. A finite number of IMFs could be 
decomposed from the signal. The following definitions must 
be met by each IMF.

(1) The number of extreme and zero-crossings in the whole 
data set must be equal or deviate by no more than one.

(2) The mean value of the upper and lower envelopes is 
zero at any point.

The procedure for EMD and its algorithm is clearly 
explained in Fig. 2. The original signal is decomposed as fol-
lows after a series of computations.

(2)x(t) =

n
∑

i=0

ci(t) + rn(t)

Fig.2  Flow diagram of EMD 
process
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where ci(t) is the sum of IMF levels and rn(t) is the final 
residue.

EMD provides better diagnostic information about the 
system by analyzing its vibration response, sound, and 
acoustic emission signals than the conventional methods. 
IMFs use statistical characteristics to identify defects in 
machine elements' early stages.

3.2  Identification procedure via counter 
propagation neural network

Once the features are extracted, a machine learning approach 
can be conveniently adapted to identify the system param-
eters including faults. Several machine learning techniques 
such as support vector machines, neural networks, and 
neuro-fuzzy systems have been employed in this line. In the 
present work, the instar–outstar counter propagation neu-
ral network model is exploited. The concept of the Coun-
ter Propagation Neural Network (CPNN) was introduced 
by Robert Hecht-Nielsen[50]. This architecture is a novel 
combination of existing network types that provides ver-
satility in using it. Figure 3 shows the network with inputs 
and outputs. The algorithm is provided with inputs in vec-
tor pairs as (x1,y1). CPNN learns to link an x vector on the 
input layer to a y vector on the output layer in this example. 
The CPNN will learn to approximate this mapping for every 
value of x in the range provided by the collection of training 
vectors if the connection between x and y can be represented 
by a continuous function, phi, such that y = Φ(x). Further-
more, if phi has an inverse, such that x is a function of y, the 
CPNN will learn the inverse mapping, x = Φ−1(y). The first 
and second layers, that is, the input layer and Kohonen layer 
form an instar model, and the second and third layers, the 
Kohonen layer and output layer constitute an outstar model 
[51]. In this network, the second and third layers perform 
Kohonen and Grossberg learnings, respectively. Thus it 
combines unsupervised Kohonen learning and supervised 

Grossberg learning. The CPNN is much faster than BPNN, 
and there is no chance of its weights getting trapped in the 
local minima. However, it may be inferior to the BPNN in 
mapping applications.

3.3  Adaptive neuro‑fuzzy inference system (ANFIS)

This section provides a brief description and capabilities 
of the Adaptive Neuro-Fuzzy Inference System (ANFIS). 
ANFIS systems use the capabilities of fuzzy logic and neural 
networks. Fuzzy logic maps the input data to desired output 
with highly connected neural network weighted processing 
elements. The parameters of fuzzy inference systems are 
tuned by neural network learning methods. With the applica-
tion of neural networks, ANFIS refines the fuzzy IF–THEN 
rules. Different rules cannot share the same output member-
ship function. The basic fuzzy inference system consists of 
fuzzy rules, data-driven membership functions, and fuzzy 
reasoning to derive the outputs. Out of many FIS systems, 
the Takagi–Sugeno Fuzzy system has many applications due 
to its linguistic interpretable capability.

The learning algorithm for ANFIS is a hybrid algorithm 
that is a combination of gradient descent and least-squares 
methods. A hybrid learning algorithm extracts rules from 
input–output data of the systems that are being modeled. 
The neural network of ANFIS fine-tunes the rules with 
updating weights of the rules. Many research articles have a 
greater explanation of ANFIS. Identification of an optimal 
fuzzy model concerning the training data reduces to a lin-
ear least-squares estimation problem. The method follows 
in two steps: (i) the First step involves the extraction of an 
initial fuzzy model from input–output data by using a cluster 
estimation method incorporating all possible input variables. 
(ii) In the next step the important input variables are identi-
fied by testing the significance of each variable in the initial 
fuzzy model. This initial fuzzy model can be selected based 
on the fuzzy rules framed by either using the subtractive 

Fig. 3  Architecture of CPNN
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Fig. 4  Methodology of ANFIS for fault type identification
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Fig. 5  Flowchart of diagnostic 
procedure

Fig. 6  Schematic diagram of an 
experimental setup
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clustering technique or the grid partitioning method. In the 
current analysis, the subtractive clustering technique is used 
to identify the type of fault occurring in the rotor-bearing 
system. The cluster estimation technique helps in locating 
the cluster centers of the input–output data pairs. This in turn 
helps in the determination of the rules which are scattered in 
input–output space, as each cluster center is an indication of 
the presence of a rule.

3.4  Fault classification through ANFIS

The methodology for fault type identification by ANFIS 
is given in the below flow diagram. The experimental data 
collected from EMD and CPNN is divided into three data 
sets. The training data set is used for training the ANFIS, 
the Checking data set is used for checking the performance 
of ANFIS for variation in the data set and Validation data 
is used to find the outputs, i.e., type of fault from ANFIS. 
For fault type identification Sugeno type FIS with a sub-
tractive clustering system is generated by providing input 
membership functions, Range of influence, and accept and 
reject ratios. The generated FIS is then trained with training 
data set. A training data set contains the first few columns 
as inputs and the last column as output (preidentified). A 
hybrid optimization method is used with an error tolerance is 
less than 1 ×  10–2 and a max epoch of 100. If error tolerance 
is greater than 1 ×  10–2 ANFIS needs to be re-trained with 
modifications in input membership functions, and range of 
influence for each input.

Once the training error is within the predefined error 
limit, ANFIS is checked for model data overfitting by 

training routine with checking data set. Generally, data 
overfit is identified by the trend of Root Mean Square Error 
(RMSE) curves. The model data overfit is identified by 
an increase in the error of checking data. If overfitting is 
observed then input parameters for the training of the ANFIS 
are altered, else ANFIS is validated with random input data. 
The percentage error in the output of ANFIS is calculated 
with the Actual output of random data. Figure 4 shows the 
flowchart for the fault classification through ANFIS.

Figure 5 shows the methodology of identification with 
feature extraction from signal and learning process using 
input–output training data. The computational FE model is 
developed to validate the response of the present experi-
mental model in terms of frequency response at different 
speeds and different bearing fault conditions. This compari-
son is explained in Sect. 4.5. The statistical parameters were 
extracted from the raw response signals obtained from the 
experimental test rig in different operating conditions. Fur-
ther, an inverse model is developed using CPNN and identi-
fied operating parameters from the vibration response. Later, 
ANFIS is used to classify the fault condition in the system.

Table 1  Specification of the 
motor

Feature Details

Phase Single-phase 
induction 
motor

Rated power 1 HP, 0.75 kW
Pole 4
AC voltage 220–240 V
Speed 3000 rpm
Casing Squirrel cage
Body Cast iron

Fig. 7  Artificially generated 
defect on a roller bearing with 
30% roller fault, b roller bearing 
with 60% inner race fault, and c 
roller bearing with 100% outer 
race fault

(a)  (b)  (c)

Table 2  Specifications of the DPI testing bearing

Feature Details

Bearing type Roller (DPI N-304)
Number of rollers 10
Outside diameter 52 mm
Inside diameter 20 mm
Pitch diameter 36 mm
Roller diameter 07 mm
Weight 0.153 kg
Basic dynamic load rating 23.1 kN
Basic static load rating 19.2 kN
Limit speed 14,000 rpm
Material High carbon chromium 

bearing steel of grade 
SAE J404
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4  Results and discussion

4.1  Construction of the experimental test rig and its 
components

The experimental test rig consists of a rotor-bearing sys-
tem, driving unit, and hydraulic loading unit as shown 
in Fig. 6. The rig comprises a stainless steel shaft held 
between two single-row cylindrical roller bearings of 
SKFDPI N-304 type which are supported in bearing hous-
ings each at the end of the shaft. The single-phase motor is 
connected to the shaft with flexible coupling the specifica-
tions of the single-phase motor are depicted in Table 1. 
The speed of rotation using variable frequency drive from 
500 to 3000 RPM can be achieved. A digital non-contact 
type tachometer is used to measure the rotational speed 
of the rotor. On the test bearing a radial load is applied 
with the help of the hydraulic loading arrangement. A data 
acquisition system is selected to monitor and acquire the 
vibration and acoustic signals. An OROS of 34 series, 4 
channel, and 24-bit compact analyzer is employed in this 
research. It was employed to record the vibration signals 
at desired sampling rates. The hardware is comprised of 3 
parts: (1) Piezoelectric accelerometer (2) Charge amplifier 
(3) Analyzer. An accelerometer was connected to the com-
pact analyzer through a charge amplifier. The analyzer was 
further linked to a computer. The amplifier is very much 
essential to amplify the signals from an accelerometer 
that are generally weak. The amplifier also separates the 
sensor from the analyzer and display apparatus. A piezo-
electric accelerometer with a sensitivity of 105 mV/g is 
positioned near the test bearing to capture vibration sig-
nals. This acceleration transducer takes measurements in 

the zone of highest load, and the frequency-domain signal 
is presented when linked to a computer through a Fast 
Fourier Transform (FFT) analyzer. Because faults on the 
inner races or rolling components provide the greatest risk 
of exposure, the current experimental study includes these 
forms of defects as well. With the use of an Electrical 
Discharge Machine, faults are recreated by creating flaws 
on the races and rollers of the bearing. Thermal sensors 
are used to measure temperature change. The tests were 
carried out on artificially damaged bearings with the flaws 
depicted in Fig. 7. For ease of understanding let us con-
sider Fault-1 is the surface fault on Bearing Roller, Fault-2 
is the surface fault on the bearing inner race and Fault-3 
is the surface fault on the bearing outer race. Different 
operating parameters such as radial load, temperature, and 
unbalanced phase angle are used as variables in addition to 
bearing faults, and response is recorded at various operat-
ing speeds of interest. The data is then familiarized with 
several fault situations that are reproduced at 500, 1500, 
and 2500 rpm. The vibration response was recorded at 
500 Hz in all cases; with the frequency band, three to five 
kHz chosen for simplicity of spectra of bearing vibrations.

DPI N-304 roller testing bearing whose specifications are 
presented in Table 2.

Initially, the raw signals of the time domain and fre-
quency response of the system from the experimental test 
rig are identified. Only in one case (100% of inner race fault) 
the raw signal of the time domain and frequency response of 
the system is shown in Fig. 8.

Fig. 8  Time and frequency response of the experimental test rig (100% of inner race fault): a time domain and b frequency response
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Fig. 9  The decomposed results of the vibration signals with EMD. a 
Healthy bearing signal, b Fault 1(roller bearing with 30% roller fault), 
c Fault 2 (roller bearing with 60% inner race fault), d Fault 3 (roller 

bearing with 100% outer race fault), e Fault 4 (roller bearing with 
60% roller fault) and f Fault 5 (roller bearing with 100% inner race 
fault)
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Fig. 9  (continued)
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Fig. 9  (continued)
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Fig. 10  Frequency spectrum of 
IMFs for 0 to 500 Hz range. a 
No-fault (healthy bearing), b 
Fault 1(roller bearing with 30% 
roller fault), c Fault 2 (roller 
bearing with 60% inner race 
fault), d Fault 3(roller bearing 
with 100% outer race fault), e 
Fault 4 (roller bearing with 60% 
roller fault) and f Fault 5 (roller 
bearing with 100% inner race 
fault)
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4.2  Time‑domain analysis of the signal

Intrinsic mode functions for healthy and defective vibration 
signals are first obtained. Decomposition of time-domain 
signals for healthy and fault rotor-bearing systems are pro-
cessed through the EMD algorithm and obtained ten intrin-
sic mode functions as shown in Fig. 9a–f.

It is observed that the faults in the inner race and on the 
roller are much inflecting the response of the system com-
pared to a fault in the outer race. From these plots, it is very 
difficult to identify the type of fault and expertise required 
in analyzing this signal data. It is discussed earlier operating 
conditions can vary in addition to a fault in bearings. This 
makes the identification methods to be robust.

4.3  Frequency‑domain analysis of signal

It is a well-known fact that the first parameter to predict any 
fault is by analyzing the frequency content of the signal. 
The time-domain signal shown in Fig. 8 and IMFs shown 

in Fig. 9 as such does not provide any information about the 
fault. Further, Fig. 10a–f shows frequency response IMF1 
for healthy and faulty condition bearings.

The primary peak frequency for a healthy bearing is 
45 Hz, but numerous peaks emerge under various defective 
situations, and these peaks are caused by bearing defects. 
The bearing inner race and roller faults are much influencing 
the response of the system compared to outer race fault. As 
per the methodology, CPNN is used to extract the operating 
conditions from the time domain/IMF response statistical 
data. An inverse neural network model is developed to iden-
tify the different parameters such as radial load, temperature, 
fault number, and unbalanced phase angle from the known 
system response at different rotor speeds. Table 3 shows the 
experimental response data for various parameters. Train-
ing data consists of the signal characteristics namely statical 
parameters like mean, kurtosis, skewness, and peak to a peak 
value [52] as inputs, and corresponding operating parame-
ters (radial load, temperature, fault type and unbalance phase 
angle) as outputs are employed a counter propagation neural 

Table 3  Experimental data at a rotor speed of 500 rpm

Sl. no Radial load (N) Tempera-
ture (°C)

Fault number Unbalance 
phase angle

Mean Kurtosis Skewness Peak to Peak Variance Standard 
deviation

1 500 28 1 0° 1.09e− 04 302.73 19.04 0.0801 − 320.178 3.78
2 500 34 2 90° 1.20e− 04 389.09 18.39 0.0436 − 200.714 4.41
3 500 42 3 180° 1.40e− 05 412.65 19.40 0.0328 − 1084.54 7.28
4 1000 28 2 180° 8.18e− 04 401.35 13.98 0.0142 227.0334 7.38
5 1000 34 3 0° 1.74e− 05 406.29 19.03 0.0354 − 85.0121 9.68
6 1000 42 1 90° 1.32e− 04 402.86 13.99 0.0175 − 72.7869 11.51
7 2000 28 3 90° 1.20e− 04 422.93 15.43 0.0834 − 20.0132 21.98
8 2000 34 1 180° 1.43e− 05 289.76 15.30 0.0384 − 1084.54 9.61
9 2000 42 2 0° 3.02e− 04 403.87 19.08 0.0212 − 85.0121 4.21
10 500 28 1 0° 1.20e− 05 260.62 19.87 0.0821 − 310.178 20.7
11 500 34 2 90° 1.02e− 05 476.87 21.98 0.0321 − 206.714 7.86
12 500 42 3 180° 1.52e− 04 273.63 22.42 0.0184 − 1093.54 8.63
13 1000 28 2 180° 6.74e− 04 438.27 14.09 0.0141 220.0334 7.72
14 1000 34 3 0° 1.04e− 05 506.01 22.08 0.0382 − 82.0121 6.43
15 1000 42 1 90° 3.21e− 04 409.88 19.76 0.0854 − 72.7869 3.9
16 2000 28 3 90° 2.9e− 04 238.74 19.88 0.0274 − 29.0132 4.86
17 2000 34 1 180° 8.21e− 04 287.09 19.19 0.0128 − 1099.54 5.92
18 2000 42 2 0° 1.01e− 04 226.93 16.87 0.0816 − 95.0121 11.97
19 500 28 1 0° 1.84e− 05 493.83 15.98 0.0301 − 324.178 22.09
20 500 34 2 90° 8.66e− 04 409.89 15.06 0.0384 − 203.714 22.76
21 500 42 3 180° 4.8e− 04 364.54 19.46 0.0863 − 1084.54 21.7
22 1000 28 2 180° 2.0e− 04 494.50 19.05 0.0147 227.0334 12.62
23 1000 34 3 0° 4.33e− 04 394.84 18.64 0.0384 − 85.0121 12.07
24 1000 42 1 90° 4.09e− 05 411.02 19.01 0.8976 − 72.7869 14.63
25 2000 28 3 90° 2.40e− 04 402.94 19.89 0.0249 − 20.0132 8.42
26 2000 34 1 180° 1.45e− 04 414.33 19.45 0.0148 − 1084.54 8.53
27 2000 42 2 0° 1.70e− 04 398.72 15.98 0.0784 − 85.0121 7.42
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network. A separate neural network identification model is 
used for different shaft speeds (Tables 4, 5).   

Initially, training data consists of the central moments 
such as mean, kurtosis, skewness, and peak to peak as the 
inputs, and corresponding operating parameters are provided 
as outputs to train the network. After training the full CPNN 
with the instar–outstar learning rule, using adaptive learning 
rates, α, and β, the weights of hidden and output layers are 
obtained for an error tolerance of 1e−4. Here learning rate 
α = 0.4 and momentum factor β = 0.01 is employed through-
out. Figure 11 shows the convergence trend with different 
hidden nodes to estimate the correct number of hidden nodes 
at a rotor speed of 500 rpm. The mean square error is low 
and converges at a faster rate when the number of hidden 
nodes is equal to five.

Further, to show the capabilities of CPNN over BPNN 
a comparison was made for the convergence trend at three 
rotor speeds (500 rpm, 1500 rpm, and 2500 rpm) with five 

hidden nodes shown in Figs. 12, 13, and 14, respectively. 
BPNN is a common method and is reliable in the identifica-
tion of random data analysis. Initially, training data consists 
of the central moments such as mean, kurtosis, skewness, 
and peak to peak as the inputs, and corresponding operating 
parameters are provided as outputs to train the network. The 
parameters such as learning rate of 0.6, momentum rate of 
0.9, and activation function are sigmoid. The parameters are 
verified for the error tolerance of  1e−4.

It is observed that in all three cases the CPNN is converg-
ing faster with less RMSE compared to BPNN. This reduces 
the computational time for the designers and helps in pre-
dicting accurate data. Table 6 depicts the test data, which 
includes three scenarios in which the targets are provided. 
The neural network's projected outcomes are compared to 
the measured values. In all three situations, the difference 
between anticipated and actual parameter values is less than 
three percent.

Table 4  Experimental data at a rotor speed of 1500 rpm

Sl. no Radial Load (N) Tem-
perature 
(°C)

Fault number Unbal-
ance phase 
angle

Mean Kurtosis Skewness Peak to Peak Variance Standard deviation

1 500 28 1 0° 3.70e−03 333.03 22.848 0.1602 − 416.231 4.914
2 500 34 2 90° 2.00e−03 427.99 22.068 0.0872 − 260.928 5.733
3 500 42 3 180° 5.90e−04 453.95 23.28 0.0656 − 1409.9 9.464
4 1000 28 2 180° 9.76e−04 441.45 16.776 0.0284 295.1434 9.594
5 1000 34 3 0° 7.08e−04 446.99 22.836 0.0708 − 110.516 12.584
6 1000 42 1 90° 2.46e−03 443.16 16.788 0.035 − 94.623 14.963
7 2000 28 3 900 5.36e−04 465.23 18.516 0.1668 − 26.0172 28.574
8 2000 34 1 180° 4.54e−04 318.76 18.36 0.0768 − 1409.9 12.493
9 2000 42 2 0° 2.35e−03 444.27 22.896 0.0424 − 110.516 5.473
10 500 28 1 0° 2.98e−04 286.62 23.844 0.1642 − 403.231 26.91
11 500 34 2 90° 6.32e−04 524.57 26.376 0.0642 − 268.728 10.218
12 500 42 3 180° 6.82e−03 300.93 26.904 0.0368 − 1421.6 11.219
13 1000 28 2 180° 8.25e − 04 482.07 16.908 0.0282 286.0434 10.036
14 1000 34 3 0° 4.51e−04 556.61 26.496 0.0764 − 106.616 8.359
15 1000 42 1 90° 1.69e−03 450.88 23.712 0.1708 − 94.623 5.07
16 2000 28 3 90° 8.63  e−03 262.64 23.856 0.0548 − 37.7172 6.318
17 2000 34 1 180° 1.45e−04 315.79 23.028 0.0256 − 1429.4 7.696
18 2000 42 2 0° 9.20e−03 249.63 20.244 0.1632 − 123.516 15.561
19 500 28 1 0° 0.94e−03 543.23 19.176 0.0602 − 421.431 28.717
20 500 34 2 90° 6.65e−03 450.89 18.072 0.0768 − 264.828 29.588
21 500 42 3 180° 5.24e−03 400.94 23.352 0.1726 − 1409.9 28.21
22 1000 28 2 180° 1.90e−03 543.9 22.86 0.0294 295.1434 16.406
23 1000 34 3 0° 9.64e− 03 434.34 22.368 0.0768 − 110.516 15.691
24 1000 42 1 90° 3.59e−04 452.12 22.812 1.7952 − 94.623 19.019
25 2000 28 3 90° 1.09e−03 443.24 23.868 0.0498 − 26.0172 10.946
26 2000 34 1 180° 8.84e−03 455.73 23.34 0.0296 − 1409.9 11.089
27 2000 42 2 0° 7.55e−03 438.52 19.176 0.1568 − 110.516 9.646
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Table 5  Experimental data at a rotor speed of 2500 rpm

Sl. no Radial Load (N) Tempera-
ture (°C)

Fault number Unbalance 
phase angle

Mean Kurtosis Skewness Peak to peak Variance Standard 
deviation

1 500 28 1 0° 3.29e−04 544.94 34.272 0.20025 − 457.855 5.40
2 500 34 2 90° 3.64e−03 700.32 33.102 0.109 − 287.021 6.30
3 500 42 3 180° 4.26e−04 742.7 34.92 0.082 − 1550.89 10.41
4 1000 28 2 180° 2.46e−03 722.4 25.164 0.0355 324.6578 10.55
5 1000 34 3 0° 5.20e−05 731.32 34.254 0.0885 − 121.567 13.84
6 1000 42 1 90° 3.98e−04 725.18 25.182 0.04375 − 104.085 16.45
7 2000 28 3 90° 3.69e−04 761.24 27.774 0.2085 − 28.6189 31.43
8 2000 34 1 180° 4.30e−04 521.58 27.54 0.096 − 1550.89 13.74
9 2000 42 2 0° 9.07e−04 726.96 34.344 0.053 − 121.567 6.02
10 500 28 1 0° 3.61e−04 469.16 35.766 0.20525 − 443.555 29.60
11 500 34 2 90° 3.08e−04 858.36 39.564 0.08025 − 295.601 11.23
12 500 42 3 180° 4.58e−04 492.54 40.356 0.046 − 1563.76 12.34
13 1000 28 2 180° 2.02e−03 788.86 25.362 0.03525 314.6478 11.03
14 1000 34 3 0° 3.13e−04 910.88 39.744 0.0955 − 117.277 9.19
15 1000 42 1 90° 9.65e−04 737.74 35.568 0.2135 − 104.085 5.57
16 2000 28 3 90° 8.95e−04 429.72 35.784 0.0685 − 41.4889 6.94
17 2000 34 1 180° 2.47e−03 516.72 34.542 0.032 − 1572.34 8.46
18 2000 42 2 0° 3.04e−04 408.44 30.366 0.204 − 135.867 17.11
19 500 28 1 0° 5.53e−04 888.84 28.764 0.07525 − 463.575 31.5887
20 500 34 2 90° 2.60e−03 737.82 27.108 0.096 − 291.311 32.54
21 500 42 3 180° 1.46e−03 656.12 35.028 0.21575 − 1550.89 31.03
22 1000 28 2 180° 6.28e−03 890.1 34.29 0.03675 324.6578 18.04
23 1000 34 3 0° 1.30e−03 710.72 33.552 0.096 − 121.567 17.26
24 1000 42 1 90° 1.23e−04 739.86 34.218 2.244 − 104.085 20.92
25 2000 28 3 90° 7.21e−03 725.22 35.802 0.06225 − 28.6189 12.04
26 2000 34 1 180° 4.37e−04 745.74 35.01 0.037 − 1550.89 12.19
27 2000 42 2 0° 5.132e−03 717.66 28.764 0.196 − 121.567 10.61

Fig. 11  Convergence trend Fig. 12  Convergence trend (speed 500 rpm)
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4.4  Fault identification by ANFIS

In the current work, the ANFIS methodology is described in 
the flow diagram shown in Fig. 4. MATLAB R2018b soft-
ware is used for ANFIS simulations. Operating parameters 
like radial Load, bearing temperature, and unbalance phase 

angle are collected from CPNN output; statistical parameters 
of IMF like mean, kurtosis, skewness, and peak-to-peak var-
iation are collected from EMD for different faults and speeds 
of the rotor-bearing system are provided as inputs and fault 
type is provided as output to ANFIS. A total of 81 samples 
are collected from experimental simulations of know faults. 

Fig. 13  Convergence trend (speed 1500 rpm) Fig. 14  Convergence trend (speed 2500 rpm)

Table 6  Identified results

Sl. 
no

Speed 
(rpm)

Mean ×  10−4 Kur-
tosis

Skew-
ness

Peak to 
peak

Radial Load (N) Temperature (°C) Fault number Unbalance phase angle % Error

Predicted Actual Predicted Actual Predicted Actual Predicted Actual

1 500 8.662 302.97 19.04 0.0809 500 499 28 27.5 1 1 0° 0° 1.78
2 1500 1.096 387.03 18.39 0.0436 1000 1001 34 33 2 2 90° 90° 2.9
3 2500 2.412 411.76 19.40 0.0328 2000 1998 42 43 3 3 180° 180° 2.32

Table 7  ANFIS parameters Parameter Value Remarks

Type of FIS Takagi−Surgeon type
Number of input 7
Number of outputs 1/1
Input MF type Gbellmf Bell Curve
Output type Linear (first-order Takagi−Surgeon type)
Number of fuzzy rules 27
Learning algorithm Hybrid
Number of nodes 442
Number of epochs 100
Error tolerance 1 ×  10−2

Actual RMS error 0.000591281 at 100 epoch Fault type
Evaluation method Training and checking data versus 

ANFIS output
Both the data are considered to 

get accurate results
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Out of 81 samples, that were used for training, 27 samples 
were used for checking and 27 were used for testing. 40 sam-
ples are collected randomly for validation of ANFIS (only 
input provided to ANFIS) for identification of fault type. 
Genfis2 surgeon type ANFIS generates FIS structure from 

data using subtractive clustering. The number of the input 
membership function is 26 for each input, which generates 
27 fuzzy if–then rules, connected by T-norm (Fuzzy AND) 
operators. A hybrid learning algorithm is used in training 
ANFIS. The training of ANFIS is done by minimal error 

Fig. 15  Training data set inputs and output

Fig. 16  Training error versus validation error
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tolerance with a designated epoch number. The training 
process stops whenever the designated epoch number is 
reached or the training error goal is achieved. In the current 
case, we considered 1 ×  10–2 errors with 100 epochs. The 
Trained ANFIS system can be evaluated with any other input 
data. The results of outputs from ANFIS are compared with 
checking and validated data. Table 7 shows the parameters 
used for ANFIS simulation. Figure 15 shows the data col-
lected for training.

The data for training is collected randomly from the 
experimental results. All the 7 input and their know outputs 
are shown in the figure. From the figure, it is clear that the 
collected data is very random and is not structured. Similar 
data is collected for checking, validation, and random data 
to identify the capabilities of ANFIS for fault type.

The Generated ANFIS is trained with training and 
validation data. The Error for the 100 epoch is shown in 
Fig. 16. The Trend of both the error curves is decreasing 

Fig. 17  ANFIS model overfitting curves (training and checking data)

Fig. 18  ANFIS OUTPUT prediction
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trend with a training error of 0.0005913 and a valida-
tion error of 0.0004508. With these outputs, it can be 
concluded that the error is minimal than the target and 

show a better result even with limited data of 81 samples. 
Figure 17 shows the error curves for training and check-
ing data.

To identify the model overfitting of the ANFIS system, 
the ANFIS system is trained with training and checking 
data sets as input arguments. At close to the  55th epoch the 
checking data error shows an abnormal peak. This could be 
due to the number of data used for training being smaller 
than the number of modifiable parameters. The error 
before and after this peak is close by and maintains the 
same trend. So considering the model parameters before or 
after the peak does not have much variation. From the plot, 
it can be interpreted that the trained ANFIS system does 
not possess model over or data overfitting. As the results 
of error curves are promising, ANFIS is used to validate 
with random data. Forty samples of random experimental 
data are collected and only input parameters are provided 
with trained ANFIS to identify the fault type. Figure 18 
shows the output comparison of ANFIS with experimental 
output for all three types of faults. Table 8 presents the 
error from the experimental output or actual output. The 
Error values are rounded off to the second digit. An error 
less than 0.05 is considered as matching output, an error 
between 0.05 to 0.1 is considered an alarming output, and 
an error above 0.1 is considered as strongly not matching 
or caution outputs. Out of 40 random sample inputs, only 
one prediction is strongly not matching with experimental 
or actual output. The Trained ANFIS is 100% accurate in 
predicting Fault type-1 (12 samples out of 12 are match-
ing), 87.5% in predicting Fault type-2 (14 samples out of 
16 are matching, one sample is strongly not matching), and 
96% in predicting Fault type-3 (10 samples out of 12 are 
matching, two are close by).

A mathematical model to simulate bearing fault is devel-
oped using finite element methods. Using EMD raw time 
series data from both finite element models and experiments 
are decomposed to their intrinsic functions. EMD natural 
processes the statistical features from the time series data. 
In this article, statistical features such as mean, kurtosis, 
skewness, peak to peak, variance, and standard deviation 
are employed in fault identification. Further, these statistical 
data are used in CPNN and ANFIS schemes for the effective 
detection of faults.

There are some limitations also presented in the above 
study while conducting the experiments the temperature 
change, misalignments, and rotor–stator rubbing. Selection 
and decision of statistical parameters used to train the neural 
network and number of trained data sets.

Table 8  Error in prediction of fault type by ANFIS

S. No. Exp output ANFIS output Error

1 2 1.99 0.01
2 1 1.00 0.00
3 3 2.99 0.01
4 1 1 0.00
5 2 2.0 0.00
6 2 1.72 0.28
7 1 0.99 0.01
8 3 2.99 0.01
9 3 2.88 0.12
10 2 1.99 0.01
11 3 2.99 0.01
12 3 2.99 0.01
13 1 0.99 0.01
14 1 1.00 0.00
15 3 3.00 0.00
16 3 3.01 0.01
17 1 0.99 0.01
18 1 0.99 0.01
19 2 2.00 0.00
20 2 2.00 0.00
21 2 0.01 1.99
22 3 3.00 0.00
23 1 1.00 0.00
24 2 1.79 0.21
25 2 2.09 0.09
26 1 0.99 0.01
27 2 2.03 0.03
28 2 1.93 0.064
29 2 2.00 0.00
30 1 1.00 0.00
31 1 0.99 0.01
32 3 3.00 0.00
33 1 1.00 0.00
34 2 2.00 0.00
35 3 2.70 0.29
36 2 1.99 0.01
37 2 2.00 0.00
38 3 3.00 0.00
39 2 1.99 0.01
40 3 2.99 0.01
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Fig. 19  Frequency response at a rotor speed of 2500 rpm. a FE model and b experimental

Fig. 20  Comparison of FE and experimental model. a Rotor speed 500 rpm, b rotor speed 1500 rpm, and c rotor speed 2500 rpm
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4.5  Validation

For the healthy bearing condition at a rotor speed of 
2500 rpm, a comparison of the frequency response from the 
finite element (FE) model and the experimental model is 
performed. The frequency response from FE and the experi-
mental model is shown in Fig. 19.

The first dominating peak frequency from FE and experi-
mental are 47.3 Hz and 46 Hz, respectively. The values are 
compared in terms of frequency these frequency values are 
reasonably coming close. The comparison of the dominant 
peak frequency for the healthy and different bearing fault 

conditions from the FE model and Experimental at various 
speeds are shown in Fig. 20.

It is observed that the identified dominant peak frequen-
cies from FE and experimental are closer.

Further, with the finite element model, the time and fre-
quency response with different bearing faults are identified. 
An interactive MATLAB code is developed to identify these 
responses. At a constant rotor speed of 15,000 rpm and a 
bearing inner defect, Fig. 21 illustrates the time and fre-
quency response at the bearing location.

It is observed from the bearing vibration spectra, that for 
the faulty condition the initial two dominant peak frequen-
cies are 5.99 Hz and 18.28 Hz. whereas the speed-dependent 

Fig. 21  Time and frequency response at bearing node with inner race fault. a Time domain, b bearing vibration spectra, and c envelope spectrum
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peak frequency is 184.7 Hz. It is seen in the amplitude dif-
ference for the healthy and damaged conditions from the 
envelope spectrum. Figure 22 depicts the time and frequency 
response at a bearing location with a roller defect at a con-
stant rotor speed of 15,000 rpm.

It is observed from the bearing vibration spectra, that for 
the faulty condition the initial two dominant peak frequen-
cies are 6.94 Hz and 18.28 Hz. whereas the speed-dependent 
peak frequency is 240.8 Hz. Compare to the inner race faulty 
condition the first and third dominant peak frequencies are 
increased slightly. It is seen in the amplitude difference for 
the healthy and damaged conditions from the envelope spec-
trum. Figure 23 shows the time and frequency response at 

bearing location at a constant rotor speed of 15,000 rpm with 
outer race fault. 

It is observed from the bearing vibration spectra, that for 
the faulty condition the initial two dominant peak frequen-
cies are 8.59 Hz and 22.31 Hz. whereas the speed-dependent 
peak frequency is 265.9 Hz. Compare to inner race and roller 
faulty condition the dominant peak frequencies are increas-
ing. It indicates the faults on the inner race and roller are 
much influencing the response of the system compared to 
the outer race fault. It is seen in the amplitude difference 
for the healthy and damaged conditions from the envelope 
spectrum.

Fig. 22  Time and frequency response at bearing node with roller fault. a Time domain, b bearing vibration spectra, and c envelope spectrum
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5  Conclusions

This research paper proposed a methodology for param-
eter and fault type identification from vibration response 
through empirical mode decomposition (EMD), counter 
propagation neural network (CPNN), and adaptive neuro-
fuzzy inference system (ANFIS). Initially, an experimental 
rotor-bearing model was established to study the dynam-
ics of the system under different operating conditions. The 
experimental results are validated with FEM simulation 
results for a healthy rotor-bearing system. Both time-domain 
and frequency-domain results are compared and found that 
the results are with minimal deviation. For the healthy and 
defective circumstances, the empirical mode decomposition 
approach was utilized to break down the extracted signal 
into intrinsic mode functions. CPNN was used to predict the 
operating parameters and ANFIS Classifies and predicts the 
faults in roller bearing of rotor systems. The following were 
the concluding remarks of the present work:

• It was observed from Intrinsic Mode Functions (IMF) 
that the faults on the inner race and the roller are much 
more influencing the response of the system compared 
to the fault on the outer race.

• It was observed from frequency-domain analysis of IMF 
that the dominant peak frequency for the healthy bear-
ing was 45 Hz, whereas for various faulty conditions the 
multiple peaks forming these peaks are due to bearing 
faults.

• It was observed that the first dominant peak frequency 
in a healthy system from the finite element model and 
experimental are 47.3 Hz and 46 Hz. The values are com-
pared in terms of frequency these frequency values are 
reasonably coming close.

• CPNN with five hidden layer neurons perfectly generalize 
the input–output relationship in extraction or prediction 
of operating conditions.

• CPNN was superior and faster compared to BPNN for 
feature prediction and extraction.

Fig. 23  Time and frequency response at bearing node with outer race fault. a Time domain, b bearing vibration spectra, and c envelope spectrum
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• It was observed that the trained ANFIS is 100% accu-
rate in predicting Fault type-1 87.5% in predicting Fault 
type-2 and 96% in predicting Fault type-3.

• From the FE model also the inference from the frequency 
response was identified that the faults on the inner race 
and the roller were much influencing the response of the 
system compared to faults on the outer race.

• The amplitude change also clearly demonstrates the 
faulty conditions.
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