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Abstract
A classical re-entrant cell is a type of metamaterial known as auxetic. While the most unusual and advantageous feature of 
auxetic materials is that they have negative Poisson’s ratios, having low stiffness—as seen in the classical re-entrant cell—may 
be a drawback. A study was conducted to increase the stiffness of the classical re-entrant cell while maintaining the negative 
Poisson's ratio. This paper reports the nonlinear experimental and numerical works of three re-entrant cells one of which is 
a well-known classical re-entrant cell, and the latter two were modified based on classical re-entrant cell. In the work, the 
cellular structure specimens were fabricated with a 3D printer using polylactic acid (PLA) material and crushing tests were 
conducted until the full crush phase. The specimens were also modelled using solid finite elements considering wall-to-wall 
frictional contacts and analysed. The linear mechanical properties of the cells were also determined by employing analyti-
cal expressions that were developed for modified cells. Thus, both the theoretical and the nonlinear numerical results were 
validated using experiments. In conclusion, the modified cells exhibited an increase in stiffness, energy absorption capacity, 
and plasticity, compared to the classical re-entrant cell. All benefits and drawbacks of the modifications to achieve stiff cells 
are reported in this paper.

Keywords Re-entrant cellular structures · Auxetic · Energy absorption · Negative Poisson’s ratio · Nonlinear crushing 
response

1 Introduction

Metamaterials are materials with the ability to tailor for the 
needs of the application. Due to the tuning ability, meta-
materials have been investigated and improved for decades 
[1]. Cellular structures that a subgroup of metamaterials 
are advantageous in creating light-weight and high-strength 
structures because of their high stiffness/strength to mass 
ratios. Particularly honeycomb cellular structures have 
been used for decades as engineering materials in naval, 

bioengineering, aerospace, and automobile industries [1, 
2]. Among all cellular structures, the most striking ones 
are auxetics. Auxetics are anisotropic materials that have 
a negative Poisson's ratio (NPR) owing to exhibiting trans-
verse contraction under uniaxial compression and transverse 
expansion under uniaxial tension load [1]. In mechanics, 
Poisson's ratio is usually calculated as positive for linear 
elastic isotropic materials by definition; however, theoreti-
cally, Poisson’s ratio values are given between − 1 and 0.5 
in textbooks [3]. Poisson’s ratio is calculated as negative 
for some natural and fabricated modern materials [4]. Ting 
and Chen state that the Poisson's ratio of anisotropic mate-
rials can be theoretically unlimited, and metamaterials can 
be designed for desired mechanical properties [5]. As well 
as they can be found in nature, auxetics are mostly designed 
and fabricated metamaterials [1, 6–9]. Although Evans [10] 
first use the term “auxetic” for material having NPR, just a 
couple of years earlier Lakes had published his pioneering 
work covering materials with NPR [11].

Auxetic metamaterials can have cellular structures. When 
it comes to cellular structure, NPR is closely related to the 
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deformation of the structure. Considering the deformation 
mechanism of the unit cell, auxetic metamaterials can be 
classified into three main topics: (1) re-entrant cellular struc-
tures; (2) chiral structures; (3) rotating unit structures [1]. 
Among all cellular structures, the most researched group are 
the re-entrant cells that are derived from regular honeycomb 
cell by deforming the outward corners inward. One of the 
first study that proves theoretically and experimentally cel-
lular honeycomb structures may have NPR was presented by 
Gibson et al. [12]. Later, Gibson et al. [2] published the first 
re-entrant cell structure's image in their textbook. Masters 
and Evans developed a general theoretical model to deter-
mine elastic properties of regular and re-entrant honeycomb 
cells based on flexure, stretching, and hinging deformation 
modes [13]. In the following years, many new types of aux-
etic cells have been derived from the re-entrant cell. Double-
arrow cells have almost the same deformation mechanism as 
re-entrant cells: the deformation is governed by the inclined 
cell wall [14, 15]. A star-shaped auxetic cell has been gen-
erated by deforming the straight walls of a re-entrant cell. 
Iterative deformation of the walls increases the number of 
corners. Grima et al. [16] simulated the star-shaped cell 
behaviour in the molecular levels. Auxetic behaviour can 
be acquired by removing the regular rhombic cell walls: 
Smith et al. [17] presented the missing-rib auxetic structure 
obtained by removing the cell walls. Because they have tun-
ing ability, mechanical properties of the auxetics can be set 
at desired values or material behaviour can be adapted for 
desired purposes, i.e. Poisson's ratios, elasticity modulus, 
shear modulus, and bulk modulus can be designed. Thanks 
to these properties, researchers have revealed unconventional 
properties, e.g. under the impact, auxetic material densifies 
at the impact zone in contrast to nonauxetics because of 
indentation resistance relation with the modulus of elastic-
ity [18–21]. Lakes and Elms [22] have unveiled higher yield 
strength and energy absorption of auxetic foams than those 
of nonauxetic at the same density. Moreover, auxetic foams 
have a lower stiffness than nonauxetic ones. As reported by 
Dirrenberger et al. [23], the indentation resistance of aux-
etic cellular structures can be as high as regular honeycomb 
structures. Due to having synclastic curvature and high 
impact resistance, auxetics may be a useful lining material 
for spherical surfaces [24]. NPR bestows the auxetic materi-
als a high shear strength and low bulk modulus. Theoreti-
cally, while Poisson's ratio is at the value of -1, the shear 
modulus will be infinite. Because of the potentially having 
an extraordinarily high shear resistance, many researchers 
have widely investigated the shear properties of the auxetics 
[25–30]. As stated by Choi and Lakes [31], although they 
have a smaller modulus of elasticity than nonauxetics, auxet-
ics have a larger fracture toughness. Auxetic materials may 
have many uncovered possible employing fields. However, 
many research papers have unveiled application fields such 

as acoustic absorption, wave transmission, and vibration 
damping [32]. Due to the anisotropy, auxetics can be utilized 
for absorption, guidance, and transmission of acoustic waves 
[33–36]. Zhu et al. [37] reported that chiral auxetics effec-
tively attenuates the vibrations. Investigations and potential 
designs of auxetics have been carried on the wave propaga-
tion by Bacigalupo and Gambarotta [38], Liebold-Ribeiro 
and Körner [39], Bacigalupo and De Bellis [40].

To obtain the cellular structures' material properties, a 
unit cell is theoretically modelled by the researchers [13, 
41, 42]. Korner and Liebold-Ribeiro [43] have generated 
a systematic approach to identify whether the cell is aux-
etic or not by employing modal analysis. To obtain desired 
mechanical properties, mostly the cell topology has been 
modified. Besides, because the cellular structures are tiled in 
a pattern, different tile patterns have also been conducted to 
obtain desired mechanical properties. Most of the research-
ers have employed the experiments to verify their models 
generated using finite elements (FE), and they have often 
employed frame elements to model cell walls [44–57]. As an 
alternative to frame elements, shell and solid finite elements 
have also been utilized to obtain the linear and the nonlinear 
behaviour of cell walls [42, 58]. Some researchers have car-
ried on their studies beyond the linear boundaries to acquire 
the cellular structures' energy absorption, damping capacity, 
etc. [22, 52, 59–62]. Determining the mechanical properties 
using the tiled cellular structure analysis leads to complexity 
on boundary conditions. Dirrenberger et al. [23, 47] have 
solved this complexity by employing periodic boundary con-
ditions (PBCs). While determining the mechanical proper-
ties of core cell in periodically tiled cellular structure, the 
cell at the middle of the structure can be utilized with PBCs 
at the structure boundaries [23, 47, 63–66]. Some research-
ers have approached the complexity of cellular structures 
analysis using representative volume elements [67, 68].

Many of the most recent studies on auxetics have focussed 
on tuning the mechanical properties while preserving auxetic 
behaviour. Because of its simple and effective form, the re-
entrant cell has been frequently preferred structure in deriv-
ing new cell types or modification works. Huang et al. [42, 
69] have connected the different cell types using different 
connections to obtain zero and negative Poisson's ratios. Fu 
et al. [70] have obtained stiffness improvement by utilizing 
periodic auxetic structures in the unit cell walls. Li et al. [71] 
have reported a stiffness increment employing sine formed 
cell walls, and they related the period of walls and cell stiff-
ness. Chen and Fu [72] achieved to tune the cell stiffness by 
connecting the cells with beams that have lower stiffness 
than cell walls. In a different work, Chen and Fu [73] have 
reported stiffness increment using a different approximation 
from their previous work: they have designed three new cells 
based on a re-entrant cell by combining both the middle of 
the straight walls and the inward corners. In their study, the 
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cell corners have been connected using first, a low-stiffness 
beam, second a small rhombus cell, and finally, these two 
structures together. Zied et al. [58] have achieved the stiff-
ness increment by converting the straight cell walls to curved 
and elliptic forms. In their numeric and experimental work, 
Ingrole et al. [74] have studied the NPR and stiffness vari-
ation of the structures by building the structures with dif-
ferent cell types. To improve the tuning ability of the cell, 
Huang et al. [42] have connected the cells with thin plates 
that integrated into the straight cell walls. Their unusual tile 
pattern has endowed a wide range of parametric variation 
for tuning the cell material properties. Bezazi et al. [75] have 
acquired the stiffness increment by rounding the cell's sharp 
corners. Rayneau-Kirkhope [76] has reported an increased 
buckling strength and stiffness using lattice structures in the 
cell walls. Baran and Ozturk [77] have strengthened the cell 
by employing new parallel walls that support the existing 
inclined wall. With the new walls, the tuning parameters of 
the cell have been expanded. Tatlier et al. [78] have obtained 
the tuneable stiff cell by placing a circular beam that con-
nects inward corners of the re-entrant cell. They have gained 
stiffer cell than conventional re-entrant cell while preserving 
the auxetic behaviour.

Because the tuneable metamaterials with auxetic behav-
iour can be employed in a wide range of areas, there are 
numerous works on auxetic materials and most of them 
focussed on improving cell stiffness and tuning ability. An 
example is taken from the textbook of Ratner et al. [79]: in 
the case of dentistry, if the tooth and filling material have 
the same stiffness while filling material has zero Poisson's 
ratio, a good interface will build between these two mate-
rials. Hence, the numerical and theoretical improvement 
works of new cells should be verified. And in practice, the 
advantages and disadvantages of the new cells should be 
revealed with limits of availability and tunability.

This paper reports an experimental verification and 
expanded numerical study of modified cells that were pre-
viously introduced by Baran and Ozturk [77] and Tatlier 
et al. [78]. In the following sections, modified cells have 
been reminded, and numerical models of the tiled structures 
have been introduced and validated. The experimental and 
numerical results of linear and nonlinear crushing behaviour 
of the structures have been reported. In the conclusion, supe-
riorities and drawbacks of the new cells to the conventional 
re-entrant cell have been discussed.

2  Materials and methods

2.1  Test specimens and cell configurations

In this paper, the conventional re-entrant cell and modified 
cells will be entitled CRC, Type-I, and Type-II, respectively, 

as seen in Fig. 1. Figure 1 depicts the 3D printed tiled hon-
eycomb structures samples using PLA filament in the first 
row. In the second row of Fig. 1, the CAD drawings with 
model dimensions and in the third-row core cells and defini-
tion parameters can be seen. The definition and numerical 
values of the cell parameters are noticed in Fig. 1g, h, i and 
are provided in Table 1. The red dots in Fig. 1 define the 
measurement points employed in the image processing. The 
loading direction is from the upside to the bottom side of 
the structures and the bottom side is fixed. All specimens 
include a PLA plate with 4.2 mm thickness that printed 
monolithically with the cells at the upper and bottom sides. 
All cells are designed as fixed to the PLA plates at the upper 
and bottom sides with a tile pattern of nine cells along the 
lateral direction and of five cells along the vertical direction. 
The right and left side of the specimens are free.

Because it is possible to verify the results of crushing 
modes of re-entrant structure experiments with the litera-
ture, we tested the classical re-entrant cell with different 
properties. The crushing modes of the classical re-entrant 
structure seen in Fig. 2b, d, and f are observed by Ingrole 
et al. [74]. After observing quite similar crushing modes 
with Ingrole et al. [74], the samples were printed with up and 
bottom PLA plates. Then, the test machine misalignment 
that leads to the failure seen in Fig. 2a was fixed. In the detail 
of Fig. 2, Fig. 2a, b, d, and f depicts post-experiment clas-
sical re-entrant structures. To investigate the scale effects, a 
scaled-down sample by a coefficient of 0.5 as seen in Fig. 2f 
was also tested. In the linear zone, the results of this sample 
derive the same results as for the full-scale structure when 
they are multiplied by 2. Figure 2c and e depicts the post-
experiment crushing modes of Type-I and Type-II samples, 
respectively.

It is obvious that with annexed new walls, densities of 
the modified unit cells will increase. Hence, to indicate the 
density increment, the ratio of the density of modified cell 
(ρ) to the density of the CRC (ρ*) is calculated as 2.8 and 
1.78 for Type-I and Type-II, respectively.

Mechanical properties of the cell walls' base material 
PLA have been determined in accordance with the given 
calculation method in ASTM-D638-14 [80]. To identify 
the material properties of 3D-printed PLA walls, three dog-
bone-shaped specimens were printed considering both the 
layers of walls and the layers of specimens being along the 
same direction. Dog-bone specimens were printed with at 
least four perimeter walls along the length. In addition, the 
infill density has a 100% fill rate and an angle of 45 degrees 
with the width of the samples. Figure 3a, b, and c depicts the 
employed dog-bone-shaped sample dimensions, 3D printed 
samples, and tensile testing, respectively. The stress–strain 
curves of the 3D printed PLA that can be seen in Fig. 4a 
were acquired from the tensile tests of the specimens and 
determined mechanical properties of the material can be 
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1  3D printed re-entrant and modified honeycomb specimens, tiled structure dimensions, and unit cells: a, d, g conventional re-entrant cell; 
b, e, h, Type-I cell; c, f, i, Type-II cell

Table 1  Definition and values 
of unit cell parameters

Symbol Definition Value (wall axis-
to-wall axis for 
lengths)

l Cell inclined wall length (mm) 10
h Cell height (mm) 20
θ Cell angle (degrees)  − 30
t Cell wall thickness (mm) 0.8
t1 New inclined wall thickness (only for Type-I) (mm) 0.8
t2 New circular wall thickness (only for Type-II) (mm) 0.8
b Cell width (mm) 40
(l∙sin θ)/2 Rigid zone length of Type-I cell (mm) 2.5
R Circular wall radius of Type-II cell (mm) 5
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tracked from Table 2. The values in the last row of Table 2 
are the mean values of mechanical properties obtained from 
samples. Determined properties were employed to model 
material nonlinearities in the numerical work. A bilinear 
softening material model [81] was employed in the numeri-
cal work to model strain softening which can be clearly 
seen in Fig. 4a. The strain-softening behaviour obtained 
in the experiments is quite similar to concrete behaviour 
[81]. Hence the strain-softening behaviour defined in the FE 
software was an adopted concrete model with the following 
parameters: open shear transfer coefficient is 0.30, closed 
shear transfer coefficient is 1.00, uniaxial cracking stress 
16.01 MPa, uniaxial crushing stress is 31.33 MPa and ten-
sile crack factor 0.6. The actual stress–strain relationship in 
Fig. 4a was used to determine for parameters. The material 
employed in FE analyses model stress–strain was obtained 
as depicted in Fig. 4b. There is also a sudden movement 
seen in the stress–strain plot that stems from the rapture of 
the dog-bone samples' perimeter walls at the lower strain 
range of [0.6–1%]. A quite similar 3D printed PLA material 
stress–strain relationship has been presented by Eutionnat-
Diffo et al. [82].

In this work, all samples have been fabricated with a 
3D printer with platform size of 300 × 300 × 300 mm and 
nozzle diameter of 0.4 mm. The accuracy of the printer 
is ± 0.08 mm and PLA filament is defined as semi-flex.

2.2  FE models

The same CAD files used in the 3D printing process were 
also employed in numerical FE analysis. It is obvious that 
the large deflections and the contacts of the adjacent cell 
walls to each other will emerge with the increasing displace-
ments. Solid elements were exerted to model cell walls in 
the nonlinear FE analysis because of having contact ability. 
A solid element is defined by eight nodes, and there are 
three translational degrees of freedom (DoF) at each node. 
The software's default contact algorithm is the pure penalty 
contact algorithm and can model surface-to-surface fric-
tional contacts. This algorithm increases the total virtual 
work when the contact condition violation appears [83]. 
The wall-to-wall contacts were generated with a value of 
0.4 friction. In the models, the displacements were applied 
to the structure at the top side of the network and the bottom 
side of the model has been assumed as fixed support. In all 
remaining parts of the model, translations along both 1 and 
2 axes and rotations around the perpendicular axis (3 axis) 
were assumed as free and the other displacements were fixed 
to fulfil the in-plane behaviour. The material nonlinearity 
of PLA used to generate cell walls was modelled as bilinear 
softening material in compliance with values in Table 2 and 
Fig. 4. Geometric nonlinearity effects were enabled to model 
large deflections in all nonlinear FE analyses. Besides, the 

Fig. 2  Tested specimens in the experimental work



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44:593

1 3

593 Page 6 of 22

following procedures were applied in the FE solver: New-
ton–Rapson algorithm was used with "Unsymmetric" key. 
Both the displacement and the rotation convergence options 
were activated with a convergence tolerance value of 0.5%. 
"Constant energy dissipation ratio" key with the programme 
default value of 1.0 ×  10–4 was activated to ensure stabiliza-
tion while using "Line Search" option in nonlinear analyses. 
While the bottom side was fixed, the displacement loading 
was applied from the top side of the model which was con-
sistent with the loading rate used in the experiment.

2.2.1  Mesh optimization

Due to the obtained results from each solid element solution 
different from each other, a mesh optimization work was 
conducted. Figure 5 indicates a selected sample mesh pattern 
of the unit cell mesh for all types, and for Type-II cell tiled 

structure that the meshing process was the most challenging 
one. In the figure, L is the inclined cell wall's edge lengths 
and identical for all cell types, H is the cell height's edge 
lengths and identical for the CRC and Type-II. H1 and H2 
are Type-I cell height's edge length parameters. H is defined 
for Type-I as H = H1 + 2∙H2. Type-II cell parameter RO is 
the outer edge length of the circular wall that formed as a 
circular arc. RI is the full circular inner wall edge length. 
In Fig. 5, structure edges have also been defined with sym-
bols, where LS is the structure's top and bottom plate's edge 
lengths. While meshing, they were divided into nine times 
larger than the number of H divisions. W is the edge length 
of both the structure and cell width that its actual value is 
40 mm. It was divided into 2, 4, 8, and 16 in mesh opti-
mization analyses. T is the top and bottom plate thickness 
with an actual value of 4.2 mm. Because of its expected 
rigid behaviour, it was not divided into multiple parts. In 

Fig. 3  a Dog-bone-shaped 
specimen dimensions (modified 
from ASTM-D638-14 [80]); b 
3D printed dog-bone-shaped 
specimens; c dog-bone-shaped 
specimen tensile testing
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the mesh optimization work, element edge lengths were 
generated using the inclined cell walls because they govern 
the deformation mode. The aim of the mesh optimization 
work is to generate well-shaped quadrilateral solid element 
faces at each segment of the cell by dividing wall lengths 
on 1–2 plane. All solid element edge lengths were remained 
very close to each other by using a proportional relation-
ship with the cell wall lengths. Thus, only two parameters 
were tracked: the edge lengths of wall solid elements on 1–2 
plane and the lengths of the solid element along the width. 
Because employing solid elements restricts the lengths of 
wall edges, the wall lengths vary from each other for differ-
ent types of cells. Therefore, the lengths of inclined walls are 
9.58 mm, 6.02, and 8.1 mm for CRC, Type-I, and Type-II, 
respectively.

In every analysis, the central cell strain along 2-axis 
was tracked. Total applied displacements along 1-axis 
were − 9.98  mm, − 9.87  mm, and − 10  mm for CRC, 

Type-I, and Type-II, respectively. Figure 6 depicts the 
mesh consistency analysis results. Each curve in the charts 
indicates how many parts edge length is divided into along 
the width. The element edge lengths were picked from the 
solution in which the central cell strain along 2 direction 
was steady. From Fig. 6, the consistent length of element 
edge was picked as 1.91 mm, 2 mm, and 1.62 mm for 
CRC, Type-I, and Type-II, respectively. The results of the 
mesh consistency analyses indicate that the solid element 
edge length does not depend on the number of elements 
along the width. At least four elements were employed in 
the width direction in all three models. The acquired edge 
lengths mean that the inclined wall edges divided into 5, 
3, and 5 parts for the CRC, Type-I, and Type-II, respec-
tively. With the given edge division numbers, the total 
element numbers employed in FE analyses are 2294, 5448, 
and 3998 for the CRC, Type-I, and Type-II, respectively. 
Besides this, the total node numbers are 18,345, 42,780, 

(a) (b)

Fig. 4  a Stress–strain curves of dog-bone-shaped specimens, and b idealized stress–strain relationship for numerical analyses

Table 2  Mechanical properties of PLA material

Density (kg/m3) Elasticity modu-
lus (MPa)

Poisson’s ratio Bulk modulus 
(MPa)

Shear modulus 
(MPa)

Yield strength 
(MPa)

Tangent 
modulus 
(MPa)

Sample#1 1240 1132 0.34 1112.7 426.09 15.908 639.18
Sample#2 1240 1141 0.31 1115.2 428.95 16.075 642.65
Sample#3 1240 1135 0.35 1113.3 426.16 16.061 640.32
Mean 1240 1136 0.33 1113.7 427.07 16.01 640.72
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and 31,995 for the CRC, Type-I, and Type-II analyses, 
respectively. Note that, a single element was employed 
across the thickness in the FE models. The FE models of 
this work employ a geometry file that models the problem 
domain as a single body to generate the mesh. This single 
body does not include a visible edge to control the mesh 
across the thickness. Due to the lack of the control edge, 
FE software did not achieve to divide the thickness into 
more layers. To eliminate the errors that lead from utiliz-
ing the one element across the thickness, the "full integra-
tion element control" option was activated in accordance 
with the FE software help documentation [83].

2.3  Experimental crushing test set‑up

A universal test machine was used to perform the compres-
sion tests. The specimens were placed between a fixed flat 
steel plate and a compression plate. The loading increment 
was set up at 0.01 kN/s which corresponds to the value 
of displacement value of 20 mm/min. The loading was 
recorded by the universal machine itself. All specimens 
were loaded until the full crush phase. A high-resolution 
camera was also employed to monitor the displacement 
points of the specimens which are shown in Fig. 1a, b, and 
c with red dots. After taking the frames from the footage, 
all images were digitalized and flattened by the image pro-
cessing. Thence, the values of the displacements were cal-
culated to employ the evaluation of NPRs and stress–strain 
curves.

3  Results and discussion

3.1  Comparison of numerical and experimental 
results

3.1.1  Poisson's Ratios of Re‑entrant cells

Poisson's ratios of the CRC, Type-I, and Type-II cells were 
calculated by employing previously given equations in the 
works of Baran and Ozturk [77], Tatlier et al. [78] and were 
compared to both the numerical and experimental results 
of this work. The Poisson's ratios of the numerical and the 
experimental analyses of this work were calculated from the 
footage at very early stages of the loading, i.e. structural 
behaviour was linear. Thus, the same linear condition was 
ensured for the calculation of Poisson's ratios as in the theo-
retical analyses. Two different video frames were extracted 
to calculate Poisson's ratios from experimental footage, and 
in the calculations, the mean values of tracking points (see 
Fig. 1a, b and c) were utilized both in the numerical and the 
experimental analyses as:

where �
11

 is the strain along 1 direction, xn is the mean dis-
placement of tracking points along 1 direction, xo is the 

(1)�
11

= (xn − xo)∕xo

(2)�
21

= (yn − yo)∕yo

(3)�
12

= −�
21
∕�

11

Fig. 5  Mesh view of tiled struc-
ture model (sample view taken 
from Type-II) and closer view 
of mesh for each type
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undeformed length of structure along 1 direction, �
21

 is 
the strain along 2 direction, yn is the mean displacement 
of tracking points along 2 direction, yo is the undeformed 
length of structure along 2 direction, and �

12
 is the Poisson’s 

ratio caused from loading along 1 direction.
From Table  3, quite closer results can be observed 

between the experiments and the numerical results when 
compared with theoretical results in column #6. This is 
an expected result since the solid element simulates the 
structure behaviour realistically. In the works of Baran and 
Ozturk [77], Tatlıer et al. [78], the cell walls are considered 
as a frame element and element lengths are substituted in 
the equations as axis-to-axis lengths. Even though this is 
not an inaccurate consideration, due to the rigid wall junc-
tions, wall lengths should be downgraded to model the real 
values of lengths (see Fig. 1). If the inclined wall lengths and 

cell heights are substituted in the equations as axis-to-axis 
length, the results will be calculated as in Table 3 column 
#6. Roughly, the clear span lengths of inclined walls and cell 
heights can be calculated by subtracting half of the thick-
ness from both ends of the wall. Nonetheless, complex junc-
tions of modified cells force the measurement of the lengths 
from the CAD file. The measured inclined wall lengths 
were 9.076 mm, 6.03 mm, and 7.56 mm for the CRC, Type-
I cell, and Type-II cell, respectively. In addition to shortened 
inclined wall lengths, the cell heights that also shortened 
were measured as 18.61 mm, 16.58 mm, and 18.61 mm for 
the CRC, Type-I cell, and Type-II cell, respectively. By sub-
stituting these values in the equations, closer results with 
the experiments were obtained as tracked from column #7. 
This finding is also coherent with the well-known effects of 
the thickness-inclined wall-length ratio on cell behaviour 

Fig. 6  Mesh optimization of results: a CRC tiled structure; b Type-I cell tiled structure; c Type-II cell tiled structure
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that was stated by most of the researchers such as [13]. In 
Table 3, a small variation can be observed between column 
#6 and column #7 for the CRC theoretical results, because 
the clear wall length is quite close to the axis-to-axis length 
for the inclined wall. The given error rates in Table 3 prove 
that the experiments validate the theoretical equations which 
were previously presented by Baran and Ozturk [77] and 
Tatlier et al. [78], in linear region. It should be noted that 
because of the rigid wall junctions, substituting the clear 
lengths of cell walls in the theoretical equations provides a 
good match with experiments. The experiments also validate 
the numerical models of this work. Please refer the appendi-
ces for the equations of analytical model.

3.1.2  Crushing performance of conventional re‑entrant, 
Type‑I, and Type‑II cells

Figures 7, 8, and 9 show in the first columns the randomly 
selected and extracted snapshots from experimental footage 
and equivalent histories with Von-Misses stresses from the 
numerical solution in the second columns. At first glimpse, 
a quite close behaviour is seen between experiments and 
numerical results except for Type-II: in the experiments and 
numerical analyses, both the CRC and Type-I crushed with 
an entire structure buckling. However, the Type-II crushed 
symmetrically without buckling in the experiment, while a 
buckling appears in the numerical analysis that was consist-
ent with the numerical results of other types From Figs. 7, 
8, 9, and 10, it can be interpreted that the materials of all 
three specimens yield quickly at the first stages of the load-
ing; therefore, nonlinear behaviour also rises. Thus, all 
three specimens begin to crush as soon as crushing stress 
exceeded. Particularly, both Type-I and Type-II begin to 
crush earlier than the CRC because they are denser than the 
CRC and have more contact faces. The CRC tiled structure 
did not completely crush as seen from Fig. 11. Even, its 
induced deformation withdrew with a small amount as soon 
as unloading was starting. The other two types were able 
to load until their walls got into each other; however, the 
CRC loading was not succeeded to merge walls and the test 
machine stopped loading automatically.

From the detailed review of Figs. 7, 8, and 9, a one-way 
buckling behaviour can be observed. This finding is not sur-
prising since the other researchers who worked with tiled 
cellular structures with or without rigid plates at the ends 
have reported similar results [74, 84–87]. Besides, the rup-
tures are observed at the rigid connection of the wall junc-
tions. A similar result was previously reported in the work of 
Qi et al. [88]. Although the numerical models simulate the 
structural behaviour successfully, because of the laminated 
structure of walls, it was not possible to model wall ruptures 
that are particularly seen in Type-I (see Fig. 8, indicated with 
red ellipses).Ta
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Fig. 7  The deformation history of CRC tiled structure
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Fig. 8  The deformation history of Type-I cell tiled structure
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Fig. 9  The deformation history of Type-II cell tiled structure
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From Fig. 7, the compression behaviour of the CRC tiled 
structure can be evaluated in detail: as seen from both in the 
numerical and the experimental results, with the buckling 
of the horizontal cell walls that are located at the up and 
the bottom of the centreline, the whole structure buckles 
in one way. The horizontal cell walls along the structural 
centreline do not buckle in the numerical models different 
from the experiments. The directions of the buckled cell 
walls align with a regular "V" pattern that is indicated with 
dashed red lines in Fig. 7. The angle between the arms 
of "V" continues to decrease until the end of the loading. 
This pattern was introduced and named as "V" mode by 
Dong et al. [85]. Dong et al. [85] stated that this behaviour 
is related to thin-walled cells. Meanwhile, the inclined cell 
walls exhibit bending behaviour more than buckling. This 
finding is coherent with the modelling inclined wall as bend-
ing beams in the theoretical models [13, 77, 78].

Almost the same structural behaviour can be observed for 
Type-I cell tiled structure with those of the CRC tiled one, 
from Fig. 8. The behaviour of Type-I structure is governed 
by strengthened cell walls that became structural column 

like elements. With the loading, columns buckle simultane-
ously in the same direction. Different from the CRC, the 
inclined walls of Type-I do not buckle in the cell size level 
owing to large rigidity. A complete column buckling was 
observed from bottom to top of the structure. The structure 
inflates and becomes denser on the side of buckling owing to 
the folding of rigid columns on themselves. The horizontal 
cell walls exhibit a double-curved buckling behaviour, and 
early ruptures of these walls appear that stem from large 
stiffness of inclined walls. This behaviour is like the shear 
wall-beam connection behaviour in structural engineering. 
These rigid walls can bestow a very large shear strength 
to the Type-I structure along 2 direction and axial strength 
along 1 direction. A closer look at the last two steps of the 
numerical result reveals the bending of the walls out of the 
plane which is unexpected and not seen in the experiments. 
Despite all attempts to a successful solution, the numerical 
solution did not converge after the strain level of − 0.390. 
The numerical solution did not converge after a certain dis-
placement level. Hence FE software terminated the solu-
tion. Although in FE analyses, all boundary conditions were 

Fig. 10  Experimental and numerical nominal stress–strain curves of cells: a CRC tiled structure; b Type-I cell tiled structure; c Type-II cell tiled 
structure

Fig. 11  Fully crushed specimens
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defined to simulate the experimental conditions, the nonpar-
allel deformation of the face plates could not be simulated 
in the numerical analyses.

The most distinctive difference was obtained between 
numerical and experimental results for Type-II as seen in 
Fig. 9. In the experiments, at first, inclined walls crushed. 
After the first circular wall collapses that are indicated with 
red circles in Fig. 9, a serial crushing of cells was observed. 
Somehow the behaviour was an independent cell behaviour 
more than a whole structural behaviour. All inclined walls 
collapsed with the mode of double-curved buckling. Then 
the circular walls that stand up the structure collapsed simul-
taneously. At the last phase, the whole structure was crushed 
with a pattern that may be named multiple "X" mode. The 
arms of the "X" pattern are mostly parallel to inclined cell 
walls. As seen from Fig. 9, the horizontal cell walls buckled 
nowhere in the structure due to the perfectly symmetrical 
behaviour and two-way support of deformed circular walls. 
The crushing of Type-II cell was the most brittle one of 
all cells and suddenly appeared. As with Type-I numerical 
analysis, also Type-II numerical analyses were terminated by 
the FE software at a certain level of displacement that can be 
seen in Fig. 9. Again, like Type-I, the out-of-plane bending 
of walls is also observed at the last step of numerical results 
of Type-II. The reason for this behaviour is increased stiff-
ness and structural constraints of the modified cells, because 
out-of-plane bending did not appear in the CRC analyses. 
From the evaluation of the numerical results of all cells, 
it is understood that the numerically determined structural 
behaviour and experiments are consistent at a certain level.

From Fig. 11, a critical conclusion can be obtained: after 
the unloading of the structures, only the induced displace-
ment of CRC tiled structures withdrew. Unlike the other two 
types, owing to its small density it was not possible to load 
the CRC structure until the walls merge. This behaviour can 
be interpreted as the CRC exhibiting more elastic behaviour 
than both Type-I and Type-II because of having more void. 
Also, the top view of the crushed specimens is evidence of 
having a positive Poisson's ratio of the modified cells after 
crushing. The CRC structure does not bulge across 3 direc-
tion as seen in Fig. 11. The dense cellular structures will 
exhibit plastic behaviour. Moreover, the loading limits of 
dense cellular structures should be set up carefully to avoid 
brittle collapses. Having a large stiffness leads more plastic 
deformations. The cell types and their design parameters 
should be scrutinized for the needs of the application.

Figure 10 depicts the nominal stress–strain relationships 
obtained from the experimental and numerical results of the 
specimens. The strain may be calculated using Eq. (1) and 
the nominal stress is obtained by:
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where �
11

 is nominal stress; F
11

 is the load values obtained 
from the test machine data acquisition system in the experi-
ments and the reaction forces in the numerical solution; A 
is the cross-sectional area of the specimen calculated by the 
multiplication of the width and length of the structure. From 
Fig. 10, a similar tendency with an amount of deviation can 
be observed between the available parts of numerical solu-
tions and experiments. With a close look at the linear parts 
of the curves, this tendency became a quite good match. 
Figure 10a depicts a typical ductile material stress–strain 
curve obtained from the results of the CRC tiled structure. 
After the linear region where the strain level is between 
zero and 0.03, a plateau region starts that ends at around 
0.45 strain level. Then a well-known auxetic material den-
sification region evidently appears at the strain level 0.45. 
The curve comes to an end at about 1.8 MPa stress and 0.7 
strain level. The plateau stress may be determined from the 
curve as 0.7 MPa. Owing to no sudden wall crushes, the 
stress–strain curve does not fluctuate. The CRC specimen 
draws an ideal smooth ductile curve that will be employed 
for the benchmark of the modified cells. Figure 10a also 
shows that there is quite good coherence between numerical 
and experimental results in means of structural behaviour.

Although their stress–strain curves seen in Fig. 10b tend 
almost the same, the difference between numerical and 
experimental results of Type-I appears the most distinctive 
one of all cell types (see Fig. 10). While numerical results 

plot an ideal stress–strain curve, some early collapses of cell 
walls and inclined wall lines cause a major oscillation on 
the experimental curve at the strain level of about 0.05. Just 
after the sudden crushes, developing wall-to-wall contacts 
strengthen the structure and stress rises for a short while. A 
second yield point appears at the stress level of 0.55 MPa and 
strain level of 0.072 after the first stress–strain yield point of 
1.28 MPa, 0.018. After a brittle crush, the stress–strain curve 
plots a smooth plateau curve thanks to harmonious structural 
behaviour until the point of 0.20 MPa and 0.46 stress–strain. 
With infant wall-to-wall contacts smooth densification can 
be tracked from the curve. As soon as the curve passes the 
stress–strain point at the value of 0.84 MPa and 0.68, fully 
developed wall-to-wall contacts bestow quick and large den-
sification until the full crush point that located at the point 
of 20.96 MPa and 0.72. The cell wall and the strong inclined 
wall line collapses that appear at the strain level of 0.048 
can be seen in Fig. 8 with red ellipses and the red dashed 
line on the left side, respectively. The cell wall crushes may 
stem from the high rigidity of the inclined walls. The lami-
nated structure of horizontal walls is broken down by rigid 
inclined walls with the increasing load, and the behaviour 
quickly became nonlinear. The plateau stress of the Type-I 
tiled structure can be determined as 0.3 MPa from Fig. 10b. 
The numerical stress–strain curve of Type-I can be inter-
preted as follows: the smooth stress–strain curves can be 
obtained from the physical models with a nonlaminated or 

Fig. 12  Comparison of the 
experimental nominal stress–
strain curves of structures
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nonfibered monolithic fabrication of the walls. In any case, 
considering the material and structural uncertainties, the 
harmony of the numerical and the experimental results with 
an amount of offset is impressive and validates the numeri-
cal model.

The stress–strain curve of the Type-II tiled structure 
can be tracked from Fig. 10c as a ductile structural behav-
iour. Although they do not seem too similar in Fig. 9, the 
numerical and the experimental behaviour draws compatible 
stress–strain curves with an amount of offset. After the linear 
region ends at the point of 0.41 MPa and 0.042 stress–strain, 
a plateau region starts with fluctuations caused by the brittle 
collapses of inclined walls. The plateau region finalizes with 
the end of the fluctuations at the point of 0.32 MPa stress 
and 0.24 strain. This point is also where the end of the duc-
tile crushes of the circular walls. Meanwhile, wall-to-wall 
contacts have already developed. The densification region 
appears with a low slope just after the end of the plateau 
region and quickly rises thanks to fully developed contacts. 
The densification is observed from the point of 0.32 MPa 
and 0.24 stress–strain to the endpoint of 17.23 MPa and 0.74 
stress–strain. The plateau stress can be determined from the 
stress–strain curve as 0.3 MPa. The shortest plateau region 
belongs to Type-II among all types.

Evaluation of Figs. 8, 9, 11b, c together reveals an impor-
tant finding: the nonconvergence and then the termination of 
the numerical analyses start with the complex contacts. The 
divergences in the analyses begin with the multiple contacts 
of the distant walls in Type-I analyses and the circular wall 
inner surface contacts in Type-II analyses. In the analyses, 
because the automatic surface-to-surface contacts option 
could not build the contacts, all contacts were defined one by 
one. The mentioned contacts were both nonpredictable and 
complex. Due to the predictable and noncomplex contacts, 
FE analyses of the CRC could be completed successfully. 
In addition, computer time consumptions of analyses were 
very high (approximately 1–2 days with Intel I7 7th gen 
quad-core CPU) and analyses required high-capacity CPUs.

A comparison between experimental, numerical, and the-
oretical results is presented in Table 4. The infrequent large 
error rates appear in Table 4 between experimental, numeri-
cal, and theoretical results. These errors may be stem from 
the structural uncertainties of 3D printed PLA wall material, 
e.g. the difficulty of modelling fibrous and layered printing, 
the poor-quality adhesion of layers, the printing errors. The 
experimental results give that while the density increments 
are 2.8 for Type-I and 1.78 for Type-II with respect to CRC, 
the elasticity moduli are 23.12 and 3.90 times larger than 
those of CRC, respectively. The close stiffness increment 
rates can also be determined utilizing the numerical and 
theoretical results. Please refer the appendices for the equa-
tions of analytical model.

The comparison of experimental results of specimens in 
Fig. 12 depicts improvement in the energy absorption ability 
of the cells. The energy absorption capacities were calcu-
lated from the area under the force–deflection curves which 
are the same tend as stress–strain curves that are no need 
to present here. The calculated areas under the experimen-
tal curves are 43.872 J, 173.183 J, and 350.068 J for CRC, 
Type-I, and Type-II, respectively. According to these results, 
the energy absorption capacities of Type-I and Type-II are 
3.95 and 7.98 times larger than the CRC for a density incre-
ment of 2.8 and 1.78 times, respectively.

It should be remembered that although the rigidities and 
energy absorption capacities are increased in modified cells, 
the higher plasticity comes as a side product. This may be 
an important drawback for applications that are not desired 
plasticity. In this case, the loading limits and cell properties 
should be tuned for the requirement of the project. The sup-
porting walls of the investigated cells Type-I and Type-II 
may be fabricated less stiff than the main walls to avoid brit-
tle crushes using thickness and different materials options.

4  Conclusion

In this study, the experimental and numerical crushing 
results of two modified re-entrant cells that based on clas-
sical re-entrant cell are presented. These modified cells 
were introduced and studied by the authors in their previ-
ous papers. In this paper, comparisons of the experimental, 
numerical, and theoretical results indicate a quite well match 
in means of negative Poisson's ratios and elastic moduli, in 
the linear region. Besides that, almost the same structural 
behaviour was achieved in the nonlinear numerical analy-
ses as experiments. Although in some numerical analy-
ses, the structures could not be loaded until the last limits, 
with an amount of offset, similar stress–strain curves and 
load–deflection histories were obtained between numerical 
analyses and experiments. The mentioned findings depict 
that the experiments validate the numerical and theoretical 
models.

Results of this work reveal some design hints about re-
entrant cells. A simple support to the inclined walls of the 
cell bestows to cell higher stiffness and energy absorption 
capacity while preserving its auxetic behaviour. However, 
large stiffness brings brittle crushes. To maintain high elas-
tic behaviour, cell voids should be preserved as much as 
possible. Whether they are stiffened or not, re-entrant cells 
easily cross from linear to nonlinear regions even if they 
are subjected to a very low displacement. Particularly stiff-
ened and became dense cell behaviours govern by wall-to-
wall multiple contacts after the inclined wall crushes. After 
the full contacts, the structure can be loaded until the full 
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crush and cell walls fuse into each other. On the contrary 
to the dense cells, conventional re-entrant cell walls do not 
fuse into each other and when the structure is unloaded, 
an amount of induced displacement withdraw. Meanwhile, 
at the full crush, the conventional cell tiled structure does 
not swell along the axis that is perpendicular to the loading 
plane, unlike stiffened cell tiled one.

While designing cellular structures with desirable 
mechanical properties, the advantages and drawbacks men-
tioned above should be considered.

Appendix

Note that while calculating the classical re-entrant cell's 
mechanical properties it should be employed with very low 
stiffness and low cross-sectional parameters for the strength-
ening walls of the modified cells in the following equations.

(a) Type-I cell equations:

All equations of the Type-I cell may be derived from 
the deformation of the inclined walls. Employing inclined 
inner and outer walls on the quarter cell, the equations may 
be derived employed in this paper (for further information 
please refer to Baran and Ozturk [77]). Poisson’s ratio and 
elasticity modulus of the Type-I cell may be expressed as:

Appearing terms in equations may be given as:
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wall, t
2
 is the thickness of the inclined inner wall, h is the height 

of the re-entrant cell (length of the horizontal wall), b
2
 is the 

width of the inclined wall, K
1
 , K

2
 , and K

3
 are the stiffness terms 

that governs cell deformation, �
1
 and �

2
 are the shear deflection 

coefficients of the inclined outer walls and inner wall, respec-
tively, k

1
 and k

2
 are the cross-section shear coefficients of the 

inclined outer walls and inner wall, respectively, l
1
 is the length 

of the inclined outer walls, Gs1 and Gs2 are the shear moduli 

of the inclined outer walls’ and inner wall’s materials, respec-
tively, �s1 and �s2 are Poisson’s ratios of the inclined outer walls’ 
and inner wall’s materials, respectively.

(b) Type-II cell equations:

All equations of the Type-II cell may be derived from the 
deformation of the inclined and circular walls. Employing 
inclined and circular walls of the quarter cell, the equations 
may be derived employed in this paper (for further informa-
tion please refer to Tatlıer et al. [78]). Poisson’s ratio and 
elasticity modulus of the Type-II cell may be expressed as:

Appearing terms in equations may be given as:
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Gsi , �i , R, and D that appear in equations above may be 
expressed as (where i is 1 for the circular wall and 2 for the 
inclined wall, respectively):

where �
12

 is Poisson’s ratio, E
1
 is the elasticity modulus 

of the re-entrant cell, �
11

 and �
21

 are the axial and the trans-
verse displacement of cell, L is the length of inclined wall, 
t
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 is the thickness of the inclined wall, � is the angle of the 

inclined wall, h is the height of the re-entrant cell (length 
of the horizontal wall), b
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 is the width of the inclined wall, 
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Kij terms are the stiffness terms that govern cell deforma-
tion (where i and j indicate the cell’s degrees of freedoms: 
1 and 3 are along with 1 axis and 2 is along with 2 axis), 
A
1
 and A

2
 are the cross-sectional areas of the circular and 

inclined walls, respectively, Es1 and Es2 are the elastic-
ity moduli of the circular and inclined walls’ materials, 
respectively, I

1
 and I

2
 are the second moment of inertias 

of the circular and inclined walls, respectively, h is the 
height of the re-entrant cell (length of the horizontal wall), 
b
2
 is the width of the inclined wall, �i terms are the shear 

deflection coefficients of the circular and inclined walls, 
ki terms are the cross-sectional shear coefficients of the 
circular and inclined walls, Gsi terms are the shear moduli 
of the circular and inclined walls, �

si
 terms are Poisson’s 

ratios of the circular and inclined walls’ materials, R is the 
radius of the circular wall, and D is the determinant of the 
structural matrix of the cell.
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