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Abstract
This paper is determined to investigate the low-velocity impact responses of functionally graded carbon nanotube reinforced 
composite viscoelastic beams with general boundary constraints. The beams considered are constructed by a multiplayer 
beam model with layer-wise CNT weight fraction in each individual layer in the thickness direction. The Mori–Tanaka 
micromechanics model with inclusions of CNT agglomerations is used to determine the effective elastic moduli and Pois-
son’s ratio of nanocomposites. The viscoelastic properties are assumed based on Kelvin–Voigt theory. An impactor drops 
vertically on the upper surface of the beams, and the contact force between impactor and beam is simulated based on the 
Hertz contact law. A new hyperbolic shear deformation theory in conjunction with the artificial spring method of quantifi-
ably accounting for the elastic boundary conditions is developed to present energy expressions of the system. Governing 
equations of motions are derived by means of Lagrange method with the help of Gram–Schmidt process that used to pro-
duce admissible functions in a general orthogonal polynomial form. The low-velocity impact responses are solved using the 
Newmark-β method in time domain. Numerical examples are carried out to reveal the effects of CNT weight fractions, CNT 
distribution patterns, CNT agglomeration and artificial spring parameters as well as the impactor velocities on the damped 
dynamic responses of the beams.

Keywords  FG-CNTRC beam · Agglomeration effect · Low-velocity impact · Damped response · Hyperbolic shear 
deformation theory · Gram–Schmidt–Ritz method

1  Introduction

Carbon nanotube (CNT) is known as its extraordinary 
mechanical and physical properties [1, 2]. As ideal candi-
dates of reinforcements for nanocomposites, CNTs can pro-
vide remarkable improvements to the mechanical properties 
of composites [3]. In the recent years, inspired by the con-
cept of functionally graded material (FGM), the functionally 
graded carbon nanotube reinforced composite (FG-CNTRC) 
was developed by dispersing CNTs into the matrix according 
to the uniform or non-uniform distribution patterns, which 
can utilize the CNTs much better and bring considerable 
enhancements to the composite structures. Structures made 
of FG-CNTRCs have greatly potential applications in aero-
space, aeronautics, precision instruments and other engi-
neering fields [4–6], and the investigations on the mechani-
cal responses of those structures are of great importance 
[7–15].

Literature review indicates that the mechanical responses 
of FG-CNTRC structures have been extensively investigated 
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[16–18]. Zhong et al. [19] performed a vibration analysis of 
FG-CNTRC circular, annular and sector plates with arbitrary 
boundary conditions. Four types of the CNT distribution 
pattern are considered and their influences on the struc-
tures’ vibration behaviors are discussed comprehensively. 
Ansari et al. [20] mainly analyzed the thermal buckling 
response of FG-CNTRC quadrilateral plates. Bhagat et al. 
[21] investigated the buckling and free vibration behaviors 
of FG-CNTRC cylindrical panels exposed to uniform ther-
mal loads. Duc et al. [22] studied the free vibration of FG-
CNTRC plates with cracks by using the third-order shear 
deformation theory and phase field theory. It is worth to 
note that in most of the representative works of predicating 
mechanical properties of CNTRCs, the nanofiller agglom-
erations that are widely observed are not taken into account. 
However, agglomeration of nanotubes in manufacturing of 
CNT reinforced composites in large scale is, in fact, inevi-
table and should be included for better understanding the 
reinforcing effects of CNTs [23]. Bisheh et al. [24] used 
the Mori–Tanaka micromechanical model to investigate the 
wave propagation characteristics of piezocomposite cylindri-
cal shells reinforced with agglomerated CNTs. Tornabene 
et al. [25] researched the effects of agglomeration on the 
natural frequencies of functionally graded carbon nano-
tube reinforced laminated composite doubly curved shells. 
Though some encouraging results have been reported, the 
studies that focus on the agglomeration of CNTs are still lim-
ited. Therefore, devoting more efforts on exploring the nano-
tube agglomeration influences on the mechanical behaviors 
of composite structures is meaningful for better applying the 
excellent mechanical properties of CNTs in different engi-
neering fields.

Beam is one of the most fundamental structures that 
primarily used to resist loads, its mechanical characteris-
tics such as the stability, vibration behaviors and dynamic 
response have attracted extensive research interest from 
engineers [26–30]. The low-velocity impact is a kind of tra-
ditional, permanent and often being observed external load 
in many engineering fields; thus, the mechanical responses 
of beams under low-velocity impacts have been experimen-
tally and theoretically studied [31, 32]. Yalamanchili et al. 
[33] analyzed the contact problem between a rigid cylin-
drical indenter and FG beam, in which the indentation of 
homogeneous beam is considered. Kiani et al. [34] carried 
out a study of low-velocity impact responses of the FGM 
beams. SiSi et al. [35] investigated the repeated low-velocity 
impacts on a laminated beam using the higher-order shear 
deformation beam theory. In addition to considering the tra-
ditional composite beam structures, the scholars also took 
the CNTRC beams as research objective to investigate their 
low-velocity impact responses. Salami [36] performed a 
comprehensive analysis on the low-velocity impacts of the 

sandwich beams with CNTRC face sheets using extended 
high-order sandwich panel theory. Wang et al. [37] presented 
an investigation on mechanical response of FG-CNTRC 
plates and sandwich plates subjected to a low-velocity 
impact. Jam and Kiani [38] researched the low-velocity 
impact response of FG-CNTRC beams utilizing a polyno-
mial Ritz method in conjunction with Timoshenko beam 
theory. Although the low-velocity impact response of FG-
CNTRC beams have been reported in some available works, 
it is found, as mentioned before, no works exhibited the 
effects of CNT agglomerations on the low-velocity impact 
behaviors of the CNTRC beams.

In this paper, we present a study on the damped low-
velocity impact response of a functionally graded carbon 
nanotube reinforced composite (FG-CNTRC) viscoelas-
tic beam with elastic boundary constraints. The beam is 
constructed by a multiplayer beam model with the weight 
fraction of carbon nanotubes (CNTs) being constant in each 
layer but varying according to a layer-wise rule in the thick-
ness direction. The effective elastic moduli and Poisson’s 
ratio are evaluated by the Mori–Tanaka micromechanics 
model considering CNT agglomeration with matrix, while 
the viscoelastic properties of beams are assumed based on 
Kelvin–Voigt theory. In addition, the energy expressions of 
the system are derived using a hyperbolic shear deforma-
tion theory with the aid of the artificial spring technique 
of quantifiably accounting for the elastic boundary condi-
tions. The Gram–Schmidt process is implemented to pro-
duce admissible functions in a general orthogonal polyno-
mial form to model the general elastic end constraints. The 
Lagrange methods are employed to derive the governing 
equations of motions. Furthermore, the Newmark-β method 
is adopted to obtain the low-velocity impact responses of 
the FG-CNTRC beam in time domain. A detailed para-
metric study is performed to investigate the effects of the 
CNT agglomeration, CNT distribution patterns and artifi-
cial spring parameters on the damped low-velocity impact 
response of the beam.

2 � Problem description

2.1 � Agglomerated FG‑CNTRC beams with general 
boundary conditions

Figure 1 displays the schematic of an FG-CNTRC beam 
subjected to a low-velocity impact load and with general 
boundary conditions. The length, width and thickness of 
the beam are L, b and h, respectively, and the origin of the 
coordinate system is set at the center of the left end of the 
beam. An impactor drops vertical to the upper surface of the 
beam and contacts the beam with a velocity of vimp. Three 
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artificial springs with stiffnesses of ku , k� , kw at each end of 
the beam are set to model the general boundary conditions.

In the current work, the nanocomposite beam is con-
structed by a multiplayer beam model with the weight frac-
tion of carbon nanotubes (CNTs) being constant in each 
layer but varying according to a layer-wise rule in the thick-
ness direction. The matrix of the nanocomposite is polymer. 
The CNTs can provide superior mechanical properties to the 
polymer matrix; however, CNTs are easy to agglomerate in 
the polymer due to their small diameters and small elastic 
modulus in the radial direction and high aspect ratio. There-
fore, the agglomeration of CNTs within the matrix occurs 
inevitably, as shown in Fig. 1, and the degeneration of the 
stiffness of the beams introduced by the agglomerations has 
to be considered in the evaluation of modulus of elasticity of 
the nanocomposites. Herein, we use a two-parameter micro-
mechanics [39] model to show the effects of agglomeration 
on the mechanical properties of nanocomposites.

2.2 � A two‑parameter model

Experimental results demonstrated that the spatial distri-
bution of CNTs in the matrix is non-uniform, and some 
local regions have a higher concentration of CNTs than 
the average volume fraction in the material, as shown in 
Fig. 1. These local regions with more CNTs are considered 
as “cluster,” assumed to be spherical shapes, and possess 
different elastic properties from the surrounding matrix.

In this work, the beam is constructed by a multiplayer 
beam model and in each layer, and a given CNTRC layer has 
uniformly distributed CNTs within the matrix. In the given 
layer, choose a representative volume element (RVE) of the 
nanocomposite, and the total volume of CNTs in the RVE is 
denoted as Vr which contains CNTs inside and outside the 
sphere cluster in the matrix. Vr can written as:

in which Vcluster
r

 and Vm
r

 represent the volume of CNTs inside 
and outside the sphere cluster in the matrix, respectively. In 
addition, the total volume of RVE, V, can be given by the 
following:

where Vm is the volume of matrix. In order to describe the 
agglomeration of CNTs, the following two parameters ξ and 
ζ are introduced:

in which Vcluster denotes the volume of the sphere cluster 
in the RVE. ξ is the volume fraction of clusters with respect 
to the total volume V of the RVE. It is clear that ξ = 1 means 
the clusters occupy the whole domain of RVE and the CNTs 
uniformly disperse in the matrix. As ξ decreases, a more 
severe agglomeration of CNTs will take place.

(1)Vr = Vcluster
r

+ Vm
r

(2)V = Vr + V
m

(3)� =
Vcluster

V
, � =

Vcluster
r

Vr

0 ≤ �, � ≤ 1

Fig. 1   Schematic of an FG-CNTRC beam with general boundary condition
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The parameter ζ represents the volume ratio of CNTs 
dispersed in clusters and the total volume of the nanotubes. 
ζ = 1 means that all the CNTs are in the sphere cluster. ξ = ζ 
means that the volume fraction of CNTs outside the clusters 
is equal to the volume fraction of CNTs inside the cluster; 
in other words, all the CNTs are dispersed uniformly. For a 
given value of ξ, the bigger the value ζ with ζ > ξ, the more 
heterogeneous the spatial distribution of CNTs. The average 
volume fraction fr of CNTs in the composite is defined as:

The volume fraction fr can be given as:

in which gCNT is the mass fraction of CNTs, ρCNT and ρmatrix 
represent the density of CNTs and matrix, respectively.

(4)fr =
Vr

V

(5)
fr =

gCNT

gCNT +
(
�CNT

/
�matrix

)(
1 − gCNT

)

in which

kr, lr, mr, nr and pr are the Hill’s elastic moduli of the 
CNTs, and Km and Gm are the bulk and shear moduli of 
the matrix, respectively, and can be determined by the well-
known expression of the theory of elasticity:

Em, νm are the modulus of elasticity and Poisson’s ratio 
of the matrix. Finally, the effective bulk modulus K and the 
effective shear modulus G of the composite are derived from 
the Mori–Tanaka method as:

(6d)Gout = Gm +
fr
(
�r − 2Gm�r

)
(1 − � )

2
[
1 − � − fr(1 − �) + fr(1 − �)�r

]

(7a)�r =
3
(
Km + Gm

)
+ kr−lr

3
(
Gm + kr

)

(7b)

�r =
1

5

{
4Gm + 2kr + lr

3
(
Gm + kr

) +

4Gm

Gm + pr
+

2
[
Gm

(
3Km + Gm

)
+ Gm

(
3Km + 7Gm

)]

Gm

(
3Km + Gm

)
+ mr

(
3Km + 7Gm

)
}

(7c)�r =
1

3

[
nr + 2lr +

2
(
kr + lr

)(
3Km + 2Gm − lr

)
Gm + kr

]

(7d)�r =
1

5

[
2

3

(
nr − lr

)
+

8Gmpr

Gm + pr
+

8mrGm

(
3Km + 4Gm

)

3Km

(
mr + Gm

)
+ Gm

(
7mr + Gm

) +
2
(
kr − lr

)(
2Gm + lr

)

3
(
Gm + kr

)
]

(8a)Km=
Em

3
(
1 − 2�m

)

(8b)Gm=
Em

2
(
1 + �m

)

(9a)K=K
out

⎡
⎢⎢⎢⎣
1 +

�

�
K
in

K
out

− 1

�

1 + �(1 − �)
�

K
in

K
out

− 1

�
⎤⎥⎥⎥⎦

(9b)G=G
out

⎡
⎢⎢⎢⎣
1 +

�

�
G

in

G
out

− 1

�

1 + �(1 − �)
�

G
in

G
out

− 1

�
⎤⎥⎥⎥⎦

Due to the existence of agglomeration, the CNTRCs 
are considered as a system of containing sphere clusters 
embedded in a hybrid matrix. Both the matrix and the 
inclusions contain CNTs. In order to calculate the over-
all properties of the whole system, the effective elastic 
stiffnesses of the clusters and the surrounding matrix are 
determined firstly. The Mori–Tanaka method is applied 
to calculate the elastic moduli of the matrix, in which 
the CNTs are assumed to be transversely isotropic. In the 
clusters, the CNTs are assumed to be randomly oriented 
and, therefore, the inclusions are isotropic. The effective 
bulk moduli Kin and Kout and the effective shear moduli 
Gin and Gout of the clusters and the matrix can be given, 
respectively, as:

(6a)Kin = Km +

(
�r − 3Km�r

)
fr�

3
(
� − fr� + fr��r

)

(6b)Kout = Km +
fr
(
�r − 3Km�r

)
(1 − � )

3
[
1 − � − fr(1 − � ) + fr(1 − � )�r

]

(6c)Gin = Gm +

(
�r − 2Gm�r

)
fr�

2
(
� − fr� + fr��r

)
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in which �= 1+�out

3(1−�out)
, �=

2(4−5�out)
15(1−�out)

, �out=
3Kout−2Gout

2(3Kout+Gout)
 . The 

effective overall modulus of elasticity E and Poisson’s ratio 
ν of the agglomerated CNTRC layer is given by

Based on the rule of mixture, the mass density of the 
CNTRCs can be given as:

In the current work, the modulus of elasticity of the 
matrix is Em = 1.9 GPa, Poisson’s ratio is νm = 0.3, and mass 
density is ρmatrix = 1090 kg/m3. The density of the CNTs is 
1200 kg/m3, and the Hill’s elastic modulus for the CNTs 
used in Eq. (7) is listed in Table 1 [24, 40].

The nanocomposite beam made of 20 CNTRC layers 
with the same thickness means the total layer number NL 
is 20 (NL = 20). As mentioned above, the weight fraction 
of CNTs changes from one layer to another, while CNTs 

(10a)E=
9KG

3K + G

(10b)�=
3K − 2G

6K + 2G

(11)� = fr�CNT +
(
1 − fr

)
�matrix

are distributed evenly and oriented randomly in every layer. 
Thus, each layer of the CNTRC beam is isotropic homoge-
neous. Table 2 presents tree patterns of CNT distribution 
across the beam thickness. They are UD, FGO as well as 
FGX. Consequently, the volume fraction of CNTs of the k-th 
layer for the respective distribution patterns is also defined 
in Table 2.

3 � Theory and formulations

3.1 � A new hyperbolic shear deformation theory

Herein, a general form of the high shear deformation theory 
is given as follows [41]:

where u and w are the displacement components of any point 
within the beam; the symbols u0 and w0 represent the x- and 
z-direction displacements of any point of the geometrical 
neutral plane (z = 0); and φ is the shear deformation at the 
geometrical neutral plane. In Eq. (12), f (z) is the shear–strain 
function being in form of a function of thickness coordinate 
z. It is well known that the different selections of this func-
tion can generate various shear deformation theories. For 
example, f (z)=z

(
1 −

4z2

3h2

)
 is from Reddy’s third-order shear 

(12)

⎧⎪⎨⎪⎩

u = u0(x, t) − z
�w0(x, t)

�x
+ f (z)�(x, t)

w = w0(x, t)

Table 1   Hill’s elastic moduli for the CNTs

CNT radius (Å) kr (GPa) lr (GPa) mr (GPa) nr (GPa) pr (GPa)

10 30 10 1 450 1

Table 2   Values of the weight fraction indices and the maximum weight fraction

Where ϒi (i = 1, 2 and 3) denote the control coefficients for the distribution functions of the CNT weight fraction, and gCNT is the total weight 
fraction of CNT nanofillers

Distribution type Distribution functions Υ
i

gmax Schematic

UD g
CNT(k) = Υ

1
g
CNT

1 g
CNT

 
FGO

g
CNT(k) = Υ

2
g
CNT

(
1 −

|2k−NL−1|
NL

) 2 2g
CNT

 
FGX

g
CNT(k) = Υ

3
g
CNT

( |2k−NL−1|
NL

) 2 2g
CNT
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deformation theory (TSDT) [42, 43], f (z)= z

�
sin

(
�z

h

)
 is a 

sinusoidal shear deformation theory (SSDT) [44, 45], while 
f (z)=z represents the first-order shear deformation theory 
(FSDT). In the current study, a new hyperbolic shear–strain 
function, which was originally proposed by Grover et al. [46, 
47], is considered and its form is given as follows:

where r = 3 is a constant being independent of z. The value 
of r is obtained by comparing the results with elasticity solu-
tions in a post processing step given in [48]. The distribution 
of the transverse shear strains exactly satisfies the zero shear 
stress on the upper and lower beam surfaces, so a shear cor-
rection factor is not required.

3.2 � Energy expression

The total energy of the system consists of the total potential 
and kinetic energies of the beam and the impactor. Given 
the assumption of small deformations and small rotations, 
the linear strains associated with the displacement field in 
Eq. (12) are expressed as follows:

The linear stress–strain relation for the FG-CNTRC beam 
is expressed as follows:

where Cii denotes the viscoelastic constants. Based on the 
viscoelastic Kelvin–Voigt model C11(z) = Q11(z)

(
1 + �

�

�t

)

,C55(z) = Q55(z)
(
1 + �

�

�t

)
 , μ is the viscosity coefficient. 

Q11(z) =
E(z)

1−�2
 , Q55(z) =

E(z)

2(1+�)
 denotes the elastic constants 

that are dependent on beam thickness, and ν denotes the 
Poisson’s ratio.

The strain energy Ub and kinetic energy Tb of the beam 
are given as follows:

(13)

⎧⎪⎨⎪⎩

f (z) = sinh−1
�
rz

h

�
+ Ξz

Ξ =
−2r

h
√
r2 + 4

(14)

⎧⎪⎨⎪⎩

�xx =
�u0

�x
+ f (z)

��

�x
− z

�2w0

�x2

�xz =
�f

�z
�

(15)

{
�xx = C11(z)�xx

�xz = C55(z)�xz

(16a)Ub =
1

2

L

∫
0

∫
A

(
�xx�xx + �xz�xz

)
dAdx

Substituting Eqs. (14)–(15) into Eq. (16) and using the 
displacement components in Eq. (8), the strain energy and 
kinetic energy for the FG-CNTRC beams are expressed as 
follows:

The stiffness components in Eq.  (17a) are defined as 
follows:

Additionally, the inertia related terms in Eq. (17b) are 
defined as follows:

The energies of the impactor contain two parts: potential 
energy of the contact force Ui and the kinetic energy of the 
impactor Ti. The contact force is obtained based on the Hertz 
contact law, and the potential energy Ui is given as follows:

where xc is the position of the impact occurring. y is the 
displacement of the impactor, and w0(xc, t) represents the 
transverse displacement of beam at the location of x = xc. In 
physics, the contact indentation α(t) is described as the depth 
of the impactor entering the beam during the impact process 
and can be obtained by the displacement difference between 
the impactor and beam as:

(16b)Tb =
1

2

L

∫
0

∫
A

�(z)

((
�u

�t

)2

+
(
�w

�t

)2
)
dAdx

(17a)Ub =
1

2

L

∫
0

⎛⎜⎜⎜⎜⎝

A
11

�
�u

0

�x

�2

+ Aff

�
��

�x

�2

+ D
11

�
�2w

0

�x2

�2

+ A
55(z)�

2

+2Af

�u
0

�x

��

�x
− 2B

11

�u
0

�x

�2w
0

�x2
− 2Azf

��

�x

�2w
0

�x2

⎞⎟⎟⎟⎟⎠
dx

(17b)

Tb =
1

2

L

∫
0

⎛
⎜⎜⎜⎜⎝

I0

�
�u0

�t

�2

+ Iff

�
��

�t

�2

+ I2

�
�2w0

�t�x

�2

+ I0

�
�w0

�t

�2

+2If
�u0

�t

��

�t
− 2I1

�u0

�t

�2w0

�t�x
− 2Izf

��

�t

�2w0

�t�x

⎞
⎟⎟⎟⎟⎠
dx

(18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
A11 B11 D11 Af Azf Aff

�
= b

h∕2

∫
−h∕2

C11(z)
�
1 z z2 f zf f 2

�
dz

A55 =

h∕2

∫
−h∕2

C55(z)

�
df

dz

�2

dz

(19)
[
I0 I1 I2 Izf Iff

]
= b

h∕2

∫
−h∕2

�(z)
[
1 z z2 zf f 2

]
dz

(20)Ui=
2

5
Ki

[
y(t) − w0

(
xc, t

)] 5

2
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in which Ki represents the contact stiffness which can be 
determined by [49]:

in which Rimp is the radius of the impactor, Ec is the trans-
verse elastic modulus of the beam surface, which is equal 
to the corresponding value of the top layer. Es and νs denote 
the modulus of elasticity and Poisson’s ratio of the impac-
tor. The kinetic energy of the impactor is calculated by the 
following formula:

where Mimp represents the mass of the impactor.
As mentioned in Fig. 1, the general boundary condi-

tions of the beam are represented using the artificial spring 
technique. Three artificial springs, namely two translational 
springs and one rotational spring, are set at each end of the 
beam. At right end, the stiffness parameters of the springs 
are written as k

0

u
 , k

0

�
 and k

0

w
 , and the ones at left end are 

written as k
1

u
 , k

1

�
 and k

1

w
 . It is well known that by assigning 

proper values to the stiffness of the artificial springs, arbi-
trary boundary conditions can be obtained, including the 
classical boundary conditions. The potential energy stored 
in those springs can be considered as follows:

The classical boundary conditions as well as the corre-
sponding spring parameters are given as follows:

(1)	 Clamped: u0 = φ = w0 = 0, 

.
(2)	 Hinged: u0 = w0 = 0, φ ≠ 0, 

.
(3)	 Free: u0 ≠ 0, φ ≠ 0, w0 ≠ 0, 

(21)�(t)=y(t) − w0

(
xc, t

)

(22)Ki=
4

3

√
Rimp

(
1

Ec

+
1 − �2

s

Es

)−1

(23)Ti=
1

2
Mimpẏ

2

(24)U
bs
=
1

2

⎧⎪⎨⎪⎩

L

∫
0
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= − 8

.

The Lagrange’s method is employed to determine the 
dynamic response problem including the impact load, 
and the Lagrange energy function L of the system can be 
expressed as follows:

3.3 � Solution strategies

3.3.1 � Gram–Schmidt orthogonal polynomials

In the current work, the end restraints are transformed into 
quantifiable forms via the artificial spring method, in which 
the selection of admissible function is significant for analyz-
ing the mechanical performances of the composite beam. In 
general, the displacement fields for the beams with arbitrary 
boundary conditions can be written as:

where 
(
Un,Wn,Vn

)
 denote the unknown coefficients cor-

responding to time and expressed as follows: (
Un,Wn,Vn

)
=
(
Un,Wn,Vn

)
ei�nt  , i =

√
−1 , where ωn 

denotes the vibration frequency. fn(x) denotes the polynomial 
admissible functions. Herein, to enhance significantly the 
computational stability, the admissible functions are orthog-
onalized in the domain [0, L] via the Gram–Schmidt process 
as follows [50, 51]:

(i) Select a polynomial term, f1(x), that satisfies at least 
essential or geometric boundary condition as the initial term. 
For the arbitrary boundary conditions: f1(x) = 1.

(ii) The second term of the admissible function is: 
f2(x) =

(
x − b1

)
f1(x).

(iii) The subsequent terms (n ≥ 2) can be derived from the 
following procedure:

k
u
=k

�
=k

w
= log

�
k
u

E
M

�
= log

⎛
⎜⎜⎝
k
�

E
M

⎞
⎟⎟⎠
= log

�
k
w

E
M

�
= −8

(25)L = Tb + Ti−Ub−Ui−Ubs

(26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u0(x, t) =

N�
n=1

Un(t)fn(x)

w0(x, t) =

N�
n=1

Wn(t)fn(x)

�(x, t) =

N�
n=1

Vn(t)fn(x)
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in which bn=
∫ L

0
x[fn(x)]

2
dx

∫ L

0 [fn(x)]
2
dx

 , cn=
∫ L

0
xfn(x)fn−1(x)dx

∫ L

0 [fn−1(x)]
2
dx

 (n ≥ 2).

3.3.2 � Lagrange method for dynamic response

Substituting Eq. (23) into the total energy functional (Π) in 
Eq. (24) for dynamic response analysis and then using the 
Lagrange equation as follows:

where qi represents the unknown coefficients ( Un,Wn,Vn 
and y), and the over-dot denotes the partial derivative with 
respect to time. Subsequently, this results in the following 
form of the motion equation:

where [K] denotes the structural stiffness matrix, [M] 
denotes the mass matrix, and [C] is viscoelastic matrix. 
Additionally, {F} denotes a vector generated by the impact 
load as follows:

Since prior to impact, the composite beam is initially at 
rest and the initial conditions are:

With help of the Newmark-β method, the equation of 
motion Eqs. (28)–(29) in time domain can be solved. The 
details of the Newmark-β method can be found in Ref. [52, 

fn+1(x) =
(
x − bn

)
fn(x)−cnfn−1(x)

(27)
d

dt

(
𝜕L

𝜕q̇i

)
+

𝜕L

𝜕qi
= 0

(28)[𝐊]𝐪 + [𝐂]𝐪̇ + [𝐌]𝐪̈ = {𝐅}

(29)Mimpy= − F

(30){�} =

⎧⎪⎨⎪⎩

�

Ffi(x)

�

⎫⎪⎬⎪⎭

(31)

u0 = 𝜑 = w0 = 0

u̇0 = 𝜑̇ = ẇ0 = 0

y = 0, ẏ = vimp

53] and were not given here for conciseness purpose. At 
each time step, the dynamic deflections of beams w, contact 
indentation α and contact forces F during the impact process 
can be obtained.

4 � Convergence and validation studies

Prior to detail parameter study, the validation and accuracy 
of proposed modeling and computational code have to be 
verified. The results of natural frequencies and dynamic 
responses of FGM beams are computed using and compared 
with ones from the published studies.

Example 1  Free vibration response of an FGM beam.

A functionally graded beam composed of alumina (Al2O3, 
Ec = 380 GPa, ρc = 3800 kg/m3, vc = 0.23) and aluminum (Al, 
Em = 70 GPa, ρm = 2700 kg/m3, vm = 0.23) is considered. The 
top of the beam is fully ceramic, while the bottom is fully 
metallic. The dimensionless fundamental frequencies of the 
beam with various length-to-height ratios are calculated by 
using the proposed method and are compared with those 
from the analytical method [54]. The following dimension-
less frequency parameter (Ω) is used:

Table 3 lists the comparison results of the beams with 
power law index of 0.3. As shown in Table 3, our results 
coincide with the reported ones very well. This demonstrates 
that the modeling reported in present work is effective and 
accurate for the free vibration analysis of the FGM beam. In 
addition, the term number N = 10 is selected by observation 
of the convergency trend in Table 3.

Example 2  Dynamic response of an FGM beam under low-
velocity impacts.

(32)Ωn =
�nL

2

h

√√√√√√
h∕2

∫
−h∕2

�(z)dz

/ h∕2

∫
−h∕2

E(z)dz

Table 3   Comparisons of the 
dimensionless fundamental 
frequency of the FGM beam

m S–S C–C C-F

L/h = 10 L/h = 30 L/h = 100 L/h = 10 L/h = 30 L/h = 100 L/h = 10 L/h = 30 L/h = 100

6 2.7012 2.7380 2.7423 7.6611 8.1569 8.2265 1.1006 1.1358 1.1412
8 2.7012 2.7380 2.7423 5.9090 6.1852 6.2195 0.9718 0.9782 0.9789
10 2.7012 2.7380 2.7423 5.8910 6.1781 6.2141 0.9703 0.9764 0.9771
12 2.7012 2.7380 2.7423 5.8836 6.1774 6.2134 0.9702 0.9763 0.9770
14 2.7012 2.7380 2.7423 5.8835 6.1770 6.2128 0.9702 0.9763 0.9770
Ref [54] 2.695 2.737 2.742 5.811 6.167 6.212 0.969 0.976 0.977
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In this section, the validation of the proposed theory and 
computational code on the dynamic response of a simply 
supported FGM beam subjected to low-velocity impacts 
is performed. A power-law FGM beam with length of 
135 mm, width of 15 mm and thickness of 10 mm with 
linear composition rule (power-law index = 1) is consid-
ered. The upper surface of the beam is ceramic-rich (sili-
con nitride, E = 322.2175GPa, ρ = 2370 kg/m3, ν = 0.28), 
while the lower surface is metal-rich (stainless steel, 
E = 207.7877GPa, ρ = 8166 kg/m3, ν = 0.28). An impactor 
of mass m0 = 10 g, contact velocity V0 = 1 m/s and radius 
R = 12.7 mm is impacted to the upper surface of the beam 
at the middle point. The modified contact stiffness for the 

FGM beams is given reference [34] and not provided here 
for briefness. The contact force between the impactor and 
the beam is calculated and compared with those from the 
work of Kiani et al. [34]. Figure 2 shows that the present 
results agree well with existing results, and thus, the valid-
ity can be confirmed.

From the two validation examples, it is concluded that the 
proposed theory and computational modeling are valid and 
accurate to predict the free vibration behavior and dynamic 
response of the beam subjected to the moving mass.

5 � Results and discussion

In this section, the model and methodology outlined in 
present work is applied to investigate the dynamic charac-
teristics of FG-CNTRC beams subjected to a low-velocity 
steel spherical impactor. The matrix material is isotropic 
epoxy. In the parametric study, the contact force and central 
deflection of the composite beam are calculated and plot-
ted to check the effects of CNT agglomeration, distribution 
patterns, weight fraction, viscoelasticity and elastic bound-
ary conditions on dynamic response of the beam. In order 
to facilitate the presentations, the following dimensionless 
spring stiffness parameters is used:

where k� and EM denote the spring stiffness and elastic mod-
ulus of the epoxy matrix, respectively. Otherwise stated spe-
cially, the geometries of the composite beam are: L = 0.5 m, 

(33)k� = log10

(
k�

EM

)

Fig. 2   Comparisons of the contact force between the beam and the 
impactor

Fig. 3   Effect of beam theories on low-velocity impact behaviors of composite beams
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h = 0.025 m and b = 2 h, and the mechanical properties of 
the matrix and CNTs are given in Sect. 2. The radius of the 
impactor is 10 mm and is made of the steel with materials 
properties of E = 200GPa, ρ = 7850 kg/m3 and ν = 0.3.

5.1 � Effect of various beam theories

Firstly, we compare the results obtained by different beam 
theories. In this comparison, the third-order shear deforma-
tion theory (TSDT), sinusoidal shear deformation theory 
(SSTD), first-order shear deformation theory (FSDT) and 
present hyperbolic shear deformation theory are consid-
ered. A composite beam with FGX distribution pattern and 
clamped–clamped boundary condition is implemented. The 
velocity of impactor is 3.0 m/s. Figure 3a, b present the 
time histories of the contact forces and central deflections 
of beams, respectively, obtained by different beam theories. 
One can see that the contact forces obtained by different 
beam theories are almost the same, indicating that the selec-
tion of beam theories has no obvious effect on the predica-
tion of contact forces. However, for the central deflections 
of beams, a remarkable difference between the results from 
various beam theories can be found. The FSDT results the 
highest prediction, followed by TSDT and SSDT. The result 
curve of present model is accord with the one of TSDT.

5.2 � Effect of agglomeration of CNTs

In this subsection, the effects of CNT agglomeration on the 
low-velocity impact behaviors of CNT-reinforced beams are 
investigated. As mentioned before, agglomeration parameter 
ξ stands for the volume fraction of inclusions in the compos-
ite and parameter ζ represents the volume fraction of CNTs 

concentrated in the inclusions. We consider an extreme 
case of agglomeration in which all CNTs are concentrated 
in spherical subregions, i.e., ζ = 1. The other agglomeration 
parameter ξ varies from 0.2 to 1.0. FGO distribution pat-
tern is selected in this example. Figure 4 presents the time 
histories of the contact force and central deflections of the 
agglomerated CNTs-reinforced beams. It is observed from 
Fig. 4a that as ξ increases the peak values of contact force 
increase while the contact time decreases. From Fig. 4b, 
we can find that an increase in ξ leads to a descent of the 
peak values of central deflections. This phenomenon can 
be explained that ξ represents a volume fraction of clusters, 
a smaller value ξ means less clusters in matrix, and in the 
assumption of ζ = 1, a smaller value of ξ reflects a more 
server agglomeration of CNTs. Therefore, an increase in ξ 
demonstrates a weakening agglomeration degree of CNTs, 
indicating the progressively larger elastic modulus of the 
CNTRCs. Thus, a greater value of ξ can result in a greater 
contact stiffness, a shorter contact time and lower central 
deflections.

For a more general case of partial agglomeration of CNTs 
(ξ ≤ ζ), the value of ξ is fixed and the ζ varies. Figure 5 
presents the variation of contact forces and central deflec-
tions with respct to time. It is observed that an increase in 
agglomeration parameter ζ leads to an decrease peak values 
of contact forces, while the contact duration and beam cen-
tral deflections increase as ζ increases. That is because a 
greater ζ means that a more amount of CNTs concnetrates 
in the inclusions and the effective modulus of elasticity the 
CNTs reinforced nanocomposite decrease. Thus, the upper 
surface of the beam becomes softer and the contact stiff-
ness decreases, leading to a lower contact force and longer 
contact duration. On the other hand, the decrease of effective 

Fig. 4   Effect of CNT agglomeration on low-velocity impact behaviors of composite beams with ζ = 1
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modulus of elasticiy results in a decrease of the structural 
stiffness and the dynamic responses of the beams become 
larger.

In addition, from Figs. 4 and 5 it is found that when ξ = ζ, 
the beams have the highest values of contact force, lowest 
contact durations and lowest dynamic deflections. This is 
because in the case of ξ = ζ, there is no agglometrtion within 
the nanocomposite and the CNTs are dispersed uniformly 
in the matrix, maximum value of the effective stiffness can 
be obtained.

5.3 � Effect of viscoelastic parameter

The effect of viscoelasticity of the composite beams on the 
low-velocity impact behaviors is examined in this example. 
The agglomeration parameters are ξ = 0.5 and ζ = 0.75. FGX 
distribution pattern is considered herein. Figure 6a–c shows 
the time histories of the contact force, contact indentation 
and central deflection of the composite beams with various 
values of viscoelastic parameter μ. As seen from Fig. 6, as μ 
increases the peak values of the contact forces and indenta-
tions slightly increases, but it is interesting to find that the 
curves of the contact force and indentation are very close, 
demostrating that the viscoelasticity is of little influence 
on the contact stiffness. It is reasonable although the vis-
coelasticity can lead to an energy dissipation, however, the 
contat time is extremely short in the contact progress and 
the energy dissipation in so short duration can be neglected. 
Moreover, the dynamic deflections decrease as μ increases 

because the energy dissipation of the composite beam due 
to the viscoelasticity cannot be neglected and introduce an 
great decay of the dynamic responses.

5.4 � Effect of CNT distributions

Figure 6 shows the influence of CNT distribution patterns 
on the time histories of the contact force and central deflec-
tion of functionally graded multilayer agglomerated CNTRC 
beams with clamped–clamped boundary conditions. All 
the three distribution patterns considered in present work, 
namely UD, FGX and FGO, are used and no viscoelasticity 
is taken into account. As observed from the plots in Fig. 7a, 
the case of FGX has the least contact time and the larg-
est contact force. In contrast, FGO distribution leads to the 
smallest peak contact force and the longest contact time. The 
reason explaining this phenomenon is that for FGX pattern 
the composite beam has the most CNTs on the upper surface 
and can result in the greatest contact stiffness at the contact 
location and largest contact force. For the central deflec-
tions observed in Fig. 7b, the FGX beam has the lowest peak 
value of the dynamic central deflection among all the three 
considered distribution patterns, while the FGO beam has 
the greatest ones. For instance, the peak central deflection of 
FGX beam is, respectively, about 85.27% of that of UD type 
composite beam and 67.72% of that of FGO beams when the 
gCNT = 20%. This is attributed to the considerably improved 
overall beam stiffness due to the addition of the CNTs and 
this reinforcing effect is the maximum in the FGX beam.

Fig. 5   Effect of CNT agglomeration on low-velocity impact behaviors of composite beams
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5.5 � Effect of CNT weight fraction

Figure 8 depicts the effect of total CNT weight fraction gCNT 
on the time histories of the contact force and central deflec-
tion of the FGX agglomerated beam, along with those of 
the pure epoxy beam for comparison. It is expectable that an 
increase in CNT weight fraction results in a shorter contact 
time and larger peak contact force due to the increase in con-
tact stiffness. Besides, the peak central deflection remarkably 
decreases as the CNT weight fraction increases.

Moreover, we investigate the effects of agglomeration 
parameter on the reinforcing efficiency of the CNTs by the 

estimation of central deflections of the composite beams 
under low-velocity impact. The case of ξ = 0.25 is taken into 
account and the parameter ζ varies ranging from 0.25 to 1.0. 
A parameter η, which is defined as � =

[
(wmid)matrix

−(wmid)CNT
(wmid)matrix

]
% , 

is introduced to represent the reinforcing efficiency of the 
addition of CNT nanofillers. (wmid)matrix is the peak value of 
central deflections of the beam made of pure polymer matrix 
and (wmid)CNT is the peak value for the central deflections of 
the beam made of CNTRCs. Based on the results of Table 2, 
it is worth noticing that the agglomeration of the nanofillers 
significantly affects the dynamic responses. The results in 

Fig. 6   Effect of viscoelastic parameters on low-velocity impact behaviors of CNTRC beams
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Table 2 indicate that the influence of the agglomeration 
parameters on the dynamic response of the composite beams 
is more pronounced for a greater amount of CNT additions. 
For instance, when gCNT = 5.0%, an increase in agglomera-
tion parameter ζ from 0.25 to 1.0 leads to a decrease in the 
reinforcing efficiency η from 50.16% to 19.17%, while when 
gCNT = 20.0%, the reduction of η ranges from 72.17% to 
20.97%. Meanwhile, it is noticed that the role of CNT vol-
ume fraction becomes gradually weaker as the agglomera-
tion parameter ζ increases. When the CNTs are all in the 
cluster (fully agglomerated), adding more CNTs in the 
matrix has no obvious improvement to the mechanical prop-
erties of the beams. It can be explained in physics that the 
dynamic response of a structure basically depends on its 
stiffness and mass, and the existence of CNT agglomerations 

makes the contribution of CNTs to the mass become greater, 
while the contribution to the beam stiffness becomes smaller 
(Table 4).

5.6 � Effect of elastic boundary

In this section, the effects of elastic boundary conditions on 
the low-velocity impact behaviors of the FG-CNTRC beams 
are discussed. The left end of the beam is clamped, while 
the right end is elastically restricted. When investigating the 
effects of the spring parameter, only the considered spring 
parameter varies in the range from -8 to 8, and the others are 
all set to be 8. The contact forces, contact indentations and 
central deflections of the beams are calculated and plotted. 

Fig. 7   Effect of CNT distribution pattern on the impact response of the FG-CNTRC beams
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Figures 9, 10 and 11 present the time histories of contact 
forces, contact indentations and central deflections of the 
viscoelastic nanocomposite beam under the low-velocity 
impact load with vimp = 1.0 m/s. FGO distribution pattern 
and gCNT = 10% are considered. From Figs. 9 and 10, we 
can find that the variation of ku and kϕ has no influence on 
the contact forces and indentation of the beam, a extremely 
slight decrease can be found as the kw increases. This is 
because the the elastic ends have no obvious influence on 
the contact stifness between the beam and the impactor, 
and thus, the changing of the boundary conditions can-
not produce remarkable changes to the contact forces and 
indentations.

Figure 11 shows the effect of elastic boundary condi-
tions on the central deflections of the nanocomposite beams 
under low-velocity impact. It is clear that the dynamic cen-
tral deflections of the beams are affected dramatically by the 
variation of the spring parameters. As the artifical spring 
parameters decrease, the dynamic deflections increase. That 
is because as the artifical spring parameters decrease, the 

boundary end restrains are gradually relax, reducing the 
stiffness of the system.

5.7 � Effect of impact velocity

In the last, we focus on the effects of impact velocity on 
the responses of the beams during the impact process. The 
agglomeration parameters are ξ = 0.25 and ζ = 0.75. UD dis-
tribution pattern is considered herein. Other parameters are 
presented in Fig. 12. The time histories of the contact force, 
contact indentation and central deflection of the composite 
beams subjected to the impact with various velocities are 
plotted in Fig. 12a–c. Three different initial velocities of 
vimp = 1.0 m/s, 3.0 m/s and 5.0 m/s are considered in this 
example. As expected, an increase in the impact velocity 
results in hihger peak values of contact forces and indenta-
tions but the lower contact times. However, the effect of 
imact velocity is much more pronounced on the peak con-
tact force/indentation than the contact time. Moreover, the 
a larger impact velocity causes a greater central deflection.

Fig. 8   Effect of CNT content on the impact response of the FG-CNTRC beams

Table 4   The effect of CNT 
weight fraction on the low-
velocity impact response of the 
composite beam (vimp = 1.0 m/s, 
FGX)

gCNT ξ = 0.25, ζ = 0.25 ξ = 0.25, ζ = 0.5 ξ = 0.25, ζ = 0.75 ξ = 0.25, ζ = 1.0

wmid η wmid η wmid η wmid η

Polymer 4.3359 – 4.3359 – 4.3359 – 4.3359 –
5.0% 2.1609 50.16% 2.2582 47.92% 2.5902 40.26% 3.5048 19.17%
10.0% 1.6289 62.43% 1.7259 60.20% 2.0826 51.97% 3.4494 20.45%
15.0% 1.3568 68.71% 1.4472 66.62% 1.7932 58.64% 3.4329 20.83%
20.0% 1.1834 72.71% 1.2678 70.76% 1.5986 63.13% 3.4266 20.97%
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6 � Conclusions

In the current work, the low-velocity impact responses 
of an FG-CNTRC viscoelastic beam with general bound-
ary constraints are studied. The beam is constructed by a 
multiplayer beam model with the weight fraction of carbon 
nanotubes (CNTs) being constant in each layer but varying 
according to a layer-wise rule in the thickness direction. The 
Mori–Tanaka micromechanics model is used to calculate the 
effective elastic moduli and Poisson’s ratio of the nanocom-
posites, in which the CNT agglomeration is considered with 
the aid of a two-parameter model. The viscoelastic proper-
ties of beams are assumed based on Kelvin–Voigt theory. 

A high-order shear deformation theory in conjunction with 
the artificial spring method of quantifiably accounting for 
the elastic boundary conditions is developed to present the 
energy expressions of the system. The governing equa-
tions of motions are derived by means of the Lagrange 
method with the help of a Gram–Schmidt process to pro-
duce admissible functions in a general orthogonal polyno-
mial form and solved by the Newmark-β method in time 
domain. The numerical examples are carried out to reveal 
the effects of CNT weight fractions, CNT distribution pat-
terns, CNT agglomeration and artificial spring parameters 
on the dynamic response of the beams. A few conclusions 
can be summarized from the numerical results:

Fig. 9   Effect of elastic boundary conditions on the contact force of the FG-CNTRC beams
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1.	 The selection of beam theories has no remarkable effect 
on the predication of contact forces, while it has a rela-
tively obvious effect on the predication of central deflec-
tions of beams.

2.	 CNT agglomerations weaken reinforcing efficiency 
of the nanofillers and the modulus of elasticity of the 
CNTRCs decrease. As the agglomeration become gradu-
ally severe, the contact forces decrease and the peak val-
ues of dynamic deflection increase.

3.	 Dispersing more CNT nanofillers near the beam’s top 
and bottom surfaces is the most effective way to enhance 
the resistance of the beam to low-velocity impact loads. 
Adding CNT nanofillers can improve the stiffness of the 
beam and reduce the peak values of dynamic deflections 

of the beam under low-velocity impact loads. However, 
the improvements of CNTs to the beam stiffness become 
more and more insignificant when the CNT weight frac-
tions are in a higher value and the agglomerations effect 
is severe.

4.	 The elastic boundary conditions have no remarkable 
influences of artificial springs on the contact forces and 
indentations, while have dramatically effects on the 
dynamic deflections of the beams.

5.	 The viscoelasticity has remarkable effects on the contact 
forces and contact indentations of the nanocomposite 
beam under low-velocity impact, but has significant 
influences on the central deflections of the beam. The 

Fig. 10   Effect of elastic boundary conditions on the contact indentations of the FG-CNTRC beams
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viscoelasticity of the nanocomposites can introduce an 
great decay of the dynamic responses.

Appendix

In this Appendix, the details of [K], [M] and [C] in Eq. (28) 
are given.

The displacement components in Eq. (26) can be rewrit-
ten in the following form: in which U(t), V(t) and W(t) are the generalized coordinate 

vectors, and ξ(x) is the column vectors as follows:

(A1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u0(x, t) =

N�
n=1

Un(t)fn(x) = �T (t)�(x)

w0(x, t) =

N�
n=1

Wn(t)fn(x) = �T (t)�(x)

�(x, t) =

N�
n=1

Vn(t)fn(x) = �T (t)�(x)

(A2)�(x) =
[
f1(x), f1(x)… fn(x)… , fN(x)

]T

Fig. 11   Effect of elastic boundary conditions on the dynamic central deflection of the FG-CNTRC beams
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Only considering the elastic part, the stiffness compo-
nents in Eq. (17a) are rewritten as follows:

Only considering the viscoelastic part, the stiffness com-
ponents in Eq. (17a) are rewritten as follows:

(A3)
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11
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11
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11
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ff
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= b
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Q11(z)
�
1 z z2 f zf f 2

�
dz

Ae
55

= b

h∕2

∫
−h∕2

Q55(z)

�
df

dz

�2

dz The stiffness matrix [K] can be expressed as following 
form:

(A4)
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�
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(A5)[�] =
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K11 K12 K13�
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�T
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�T �
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Fig. 12   Effect of impact velocity on the impact response of the FG-CNTRC beams
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in which K11 =
L∫
0

(
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��
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The mass matrix [M] can be expressed as following form:
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The matrix [C] can be expressed as following form:
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