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Abstract
In this paper, a theoretical framework was developed to incorporate BBC 2008 advanced yield criterion into the classical 
Marciniak–Kuczynski theory to compute limit strains of anisotropic metallic sheets. The classical Hill’s 48 yield function 
was also utilized to compare with the results obtained by BBC 2008. The anisotropy parameters contained in BBC 2008 
yield function were identified by minimizing an error function using Levenberg–Marquardt method. The data from uniaxial 
and plane strain tensile testings were employed to establish the error function. All the experimental tests were performed on 
AA 3003-H19 aluminum sheets. The yield criteria were assessed from the standpoint of predicting material properties and 
the yield locus by comparing theoretical findings and experimental data. The influence of the use and non-use of the plane 
strain yield stresses in the identification procedure on the FLD calculation was also investigated. To verify the theoretical 
predictions of the FLD, a series of Nakajima tests were accomplished. Comparing the experimental results and theoretical 
predictions revealed that the best agreement was found when BBC 2008-16p yield function was utilized to express the yield 
locus. Failure to use the plane strain yield stresses in the calibration procedure of the BBC 2008-16p criterion also causes 
overpredicting the limit strains for positive strain ratios.
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List of symbols
C	� Constant
f0 , f	� Initial and current imperfection factor
f ps	� Slope of total force–width diagram for 

plane strain tensile test
Fnn	� Normal force applied to the interface of 

perfect and imperfect regions
Fnt	� Shear force applied to the interface of 

perfect and imperfect regions
Ft	� Total force measured experimentally
Fe	� Force applied to the notch-affected 

zone
F, G, H, L, M, N	� Anisotropy parameters of Hill’s 48 

yield criterion
g(�)	� Strain ratio in terms of stress ratio
h(�)	� Effective stress in terms of stress ratio

K	� Strain hardening coefficient
li,mi, ni, k, s	� Anisotropy parameters in BBC2008 

yield criterion
n	� Strain hardening exponent
[Q]	� Rotation matrix
rb	� Equi-biaxial r value for a specimen 

oriented along RD and TD
r�i

	� Lankford coefficient (r value) along 
�i angle with respect to the rolling 
direction

RD, TD, ND	� Rolling direction, transverse direction, 
normal direction

t0, t	� Initial and current thickness of sheet 
metal

W 	� Total width of specimens
Wps	� Width of plane strain region
We	� Width of the notch-affected zone
Y�i

	� Uniaxial yield stress along �i angle 
with respect to the rolling direction

Yb	� Equi-biaxial yield stress for a specimen 
oriented along RD and TD

Y�i

ps	� Plane strain yield stress along �i angle 
with respect to the rolling direction
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�ji (i, j = 1, 2, 3)	� Stress components in the plastic orthot-
ropy axes

�nn
B , �ttB	� Normal stress components along 

normal and transverse directions of the 
groove

�nt
B,	� Shear stress component along the trans-

verse direction of the groove
�ps	� Plane strain yield stress
�ji (i, j = 1,2,3)	� Strain components in the plastic orthot-

ropy axes
�	� Strain ratio in the perfect region
�	� Stress ratio in the perfect region
�	� Groove orientation angle
Δr	� Comparative or relative deviations of r 

values
Δ�	� Comparative or relative deviations of 

yield stresses
()A	� Parameters and variables related to the 

perfect region
()B	� Parameters and variables related to the 

groove region

1  Introduction

The formability of metallic sheets can be effectively assessed 
using a forming limits diagram, abbreviated as FLD. This 
diagram contains all combinations of the principal minor 
and major strains that metallic sheets can undergo with-
out necking during plastic deformation. The FLD concept 
was initially presented by Keeler [1] and then developed 
by Goodwin [2]. There have been numerous attempts to 
acquire FLD during the previous decades using experimen-
tal, numerical, and theoretical methods. Due to the high cost 
and time-consuming nature of the experimental methods, 
numerical and theoretical approaches for determining limit 
strains have received more attention from several research-
ers. Hence, numerous theories have been proposed to predict 
limit strains, such as diffuse necking [3], localized necking 
[4], Marciniak–Kuczynski model [5–7], bifurcation theory 
[8], and maximum modified force criterion (MMFC) [9–13]. 
Another technique to determine the limit strains is to use a 
ductile fracture criterion. In this method, stress and strain 
histories calculated by theoretical analysis or numerical 
simulations are transferred to the ductile failure criteria 
to investigate whether necking has occurred. The criteria 
GTN [14, 15], Xue [16], Bao and Wierzbicki [17], and 
Mohr–Marcadet 2015 [18], DF2016 [19] are examples of 
the ductile fracture criteria. Among the theoretical models, 
the proposed model by Marciniak–Kuczynski, abbreviated 
as M–K, is the most preferred in the theoretical prediction of 
FLD due to its simplicity and ability to incorporate different 
yield criteria and constitutive laws analytically.

In the analysis of the sheet metal’s formability, the yield 
criterion is the most significant element because it deter-
mines the transition conditions from elastic to plastic stress 
state as well as the anisotropic behavior of the material. 
Depending on the yield function used, different results may 
be obtained. Due to this fact, several investigations have 
been performed to evaluate the effect of various yield crite-
ria on the forming limits prediction.

Lian et al. [20] calculated the right-hand side of the FLD 
using Hill’s 79 yield criterion. The effect of Barlat–Lian 
1989 and Hill’s 79 yield functions on the calculation of 
forming limits was studied by Lian et al. [21]. They demon-
strated that the FLDs of a large number of materials could 
be characterized by selecting the yield function exponent M 
in the range of 5–10 in the Barlat–Lian 1989 criterion. Xu 
and Weinmann [22] performed an investigation on the FLD 
calculation of metallic sheets using MK model and Hill’s 
1993 yield criterion. Xu and Weinmann [22] showed that 
limit strains are significantly affected by the shape of the 
yield locus. They concluded that increasing the yield surface 
sharpness in the biaxial tension zone reduces the forming 
limits for positive strain ratios. Cao et al. [23] studied the 
FLD of sheet metals for linear and nonlinear strain paths 
using M–K model and Karafillis and Boyce yield criterion. 
They found that the calculated FLD for AA 6111-T4 and AA 
2008-T4 matched well with the experimental data. Banabic 
and Dannenmann [24] combined Hill’s 1993 yield function 
with M–K and diffuse necking theories to calculate FLD 
for positive strain ratios. They introduced the parameter of 
the ratio of uniaxial yield stress over biaxial yield stress and 
showed that an enhancement of this parameter gives higher 
limit strains in biaxial tension region. Butuc et al. [25] 
released a more general program for computing FLD using 
M–K approach. They implemented Hill’s 48, Hill’s 79, and 
YLD 96 yield functions as well as the Voce and Swift con-
stitutive equations into the developed code for AA 6xxx-T4 
sheets. The performances of YLD 96 and BBC 2000 yield 
functions on the FLD prediction for AA 5xxx aluminum 
alloy sheet were assessed by Butuc et al. [26]. They found 
a high degree of conformity between experimental FLDs 
and theoretical findings when the yield surface and harden-
ing law are characterized by Yld96 Voce equation, respec-
tively. Ávila and Vieira [27] examined the influence of von 
Mises, Hill’s 48, Hill’s 79, Hill’s 93, and Hosford–Logan 
yield criteria on the calculation of forming limits for biax-
ial tension using M–K theory. They demonstrated that the 
yield function has a predominant influence on the theoreti-
cal results. Dariani and Azodi [28] incorporated Hill’s 79 
yield criterion into the M–K model and demonstrated that 
theoretical results of FLD prediction are dependent upon the 
exponent of the yield function. They obtained the optimum 
exponent of Hill’s 79 yield function for different materials 
in the case that the best agreement was reached between 
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the experimental and the predicted FLD. Banabic et al. [29] 
combined the BBC 2000 yield function and classical M–K 
theory to compute the forming limits for AA2008-T4 alu-
minum alloy sheet. Ganjiani and Assempour [30] studied 
the effect of Hosford and BBC 2000 yield criterion on the 
prediction of FLDs using M–K theory. Ganjiani and Assem-
pour [30] revealed that using BBC 2000 yield criterion leads 
to the best correlation between the experimental FLD and 
theoretical results for AA5XXX alloy. As well, the use of 
exponents 6 and 8 for the Hosford criterion leads to the 
appropriate prediction of FLD for AK steel and AA5XXX 
alloy, respectively. Ahmadi et al. [31] employed BBC2000, 
BBC2002, and BBC2003 yield criteria combined with the 
Voce and Swift constitutive laws to calculate forming lim-
its by MK model. Their results showed that utilizing BBC 
2003 yield criterion and the Voce constitutive law gives the 
best theoretical results for AA3003-O aluminum alloy sheet. 
The effect of Hill’s 48, 90, 93, YLD 89, and Plunkett yield 
functions on the FLD prediction of Al 5754 sheets were 
assessed by Dasappa et al. [32]. The results revealed that 
the computed limit strains are significantly influenced by 
the method used to identify the anisotropy coefficients of the 
yield criteria and the shape of the yield surface. Panich et al. 
[33] applied YLD 2000, Hill’s 48, and Von Mises yield func-
tions along with modified Voce and Swift constitutive laws 
for FLD and FLSD computation of DP780 and TRIP780 
sheets. They deduced that the best agreement between exper-
imental data and predicted forming limits can be achieved 
using YLD 2000 yield function in combination with Swift 
constitutive law. Basak and Panda [34] employed Bao–Wier-
zbicki ductile damage criterion and classical M–K theory 
in combination with Hill’s 48 and YLD 2000 yield func-
tions to calculate the forming and fracture limit diagrams 
of AA5052 and EDD metallic sheets. They showed that uti-
lizing Yld2000-2d yield criterion in the theoretical models 
gives the best description of experimental data. Djavanroodi 
et al. [35] investigated FLD prediction of Ti–6Al–4V and 
AA7075 sheets theoretically and numerically using Hill’s 
93 and BBC 2000 yield functions. They demonstrated that 
implementing Hill’s 93 and BBC 2000 yield functions in 
the numerical computation of FLD yields better results 
for Ti–6Al–4V and AA7075, respectively. The effect of 
the yield function exponent on the calculation of FLD was 
assessed by Lei et al. [36]. They acquired the optimal value 
of the exponent for Barlat–Lian 1989 yield function so that 
the calculated limit strains were in the best agreement with 
experimental FLD for SZA6 zirconium alloy. The proposed 
analytical models are not limited to single-layer sheets, but 
also for multilayer sheets. For example, Jalali et al. [37, 38] 
examined the formability of bimetals utilizing M–K model 
combined with Hill’s 79 yield.

The reviewed literature revealed that the degree of agree-
ment between the computed FLD based on the theoretical 

models and experimental results strongly depends on the 
utilized yield function. Consequently, the incorporation of 
a proper yield criterion that can accurately capture the ani-
sotropic properties of the metallic sheets improves the FLD 
prediction accuracy.

The anisotropic yield functions can be divided into 
two categories: classical anisotropic yield functions and 
advanced yield criteria. Hill's family criteria [39–42] are 
one of the best examples of the classical anisotropic yield 
function. These types of yield criteria have been used by 
many researchers so far due to their simple formulation and 
ease of determining the anisotropy coefficients utilized in 
them. The main disadvantage of classical criteria is their 
inability to accurately describe the yield surface and prop-
erties of highly anisotropic sheet metals, particularly alu-
minum alloys. Another type of yield criterion, the so-called 
advanced yield criterion, incorporates several coefficients 
that may be identified based on experimental data. Because 
of the large number of input data required to determine the 
parameters used in the advanced yield criteria, they can 
accurately describe the planar distribution of the plastic 
behavior (i.e., plastic anisotropy coefficient and yield stress) 
and yield locus [43]. BBC yield criteria family [44–47], 
YLD yield criteria family [48–50], Yoon 2014 [51], Lou 
and Yoon 2018 [52], and Cazacu 2019 [53, 54] are the best 
examples of the advanced yield functions. The advanced 
yield criteria differ in their mathematical formulation and 
accuracy in describing the anisotropic behavior of materials. 
The simpler the formulation of the yield criterion, the higher 
its computational efficiency.

Comsa and Banabic [47] introduced the most recent edi-
tion of the BBC yield criterion family called ‘BBC 2008’ as 
a finite series. The amount of experimental data available 
determines the number of terms in the series. BBC 2008 
has more flexibility than other versions of this yield crite-
rion family (i.e., BBC 2000, BBC 2003, and BBC 2005). 
BBC 2008 does not apply linear stress tensor transforma-
tions, unlike other advanced yield criteria published in the 
literature, such as the YLD yield criterion family [48–50]. 
As a result, its computing efficiency should be higher in 
the theoretical and numerical analysis. Additionally, some 
studies [55, 56] have demonstrated that using the BBC 2008 
yield criterion improves the results of numerical simulations 
and analytical models in analyzing sheet metal forming pro-
cesses. Hence, the authors employed BBC 2008 yield crite-
rion in their theoretical model in the present research.

In this paper, BBC 2008 yield criterion was incorporated 
into the M–K theory to compute the FLD of AA 3003-H19 
anisotropic sheets. Hill’s 48 is the most common yield 
function employed in the theoretical and numerical analy-
sis of sheet metal formability so far. For this reason, it was 
implemented into the theoretical model to compare with the 
results obtained by BBC 2008. To calibrate the anisotropy 
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parameters of BBC 2008 yield function, an error function 
was built and minimized by Levenberg–Marquardt method. 
The Lankford coefficients and yield stresses at angles 0, 15, 
30, 45, 60, 75, and 90° to the rolling direction and plane 
strain yield stresses in the rolling and transverse directions 
obtained from experiments were utilized in the calibration 
procedure. By comparing the experimental data with the 
theoretical findings, the performances of Hill’s 48 and BBC 
2008 (8 and 16 parameters) yield functions were examined 
from the point of view of reproducing material properties as 
well as FLD prediction.

2 � Theoretical model

2.1 � Explanation of yield criteria

The yield criterion is typically formulated by an implicit 
function of the stress components as follows:

where 𝜎̃
(
𝜎ij
)
≥ 0 is the equivalent stress, � is equiva-

lent plastic strain, Y(�) is the material’s yield strength and 
�ij = �ji (i, j = 1, 2, 3) are the stress components expressed 
in the plastic orthotropy axes. The rolling direction (RD), 
transverse direction (TD), and normal direction (ND) of the 
sheet are denoted by subscripts 1, 2, and 3, respectively. The 
equivalent stress is determined by yield function as well as 

(1)Φ = 𝜎̃
(
𝜎ij
)
− Y(𝜀) = 0

the yield strength of a material is characterized by hardening 
law as a function of equivalent plastic strain.

2.1.1 � Hill’s 48 yield criterion

Hill [39] presented a quadratic function as a yield criterion 
for the anisotropic materials. The equivalent stress of Hill’s 
48 yield criterion is expressed as

where F, G, H, L, M, and N are parameters that characterize 
the material's anisotropy state. The anisotropy parameters 
are determined through the following relations

In Eq. (3), the Lankford coefficients are denoted by r, and 
its subscript determines the orientation angle to the rolling 
direction.

2.1.2 � BBC 2008 yield criterion

The yield criterion suggested by Comsa and Banabic [47] 
is in the form of a finite series under plane stress conditions 
for plastically orthotropic metallic sheets. The following for-
mula describes the equivalent stress for the BBC 2008 yield 
criterion.

(2)
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where l(i)
1
, l
(i)

2
,m

(i)

1
, text�m

(i)

2
,m

(i)

3
, n

(i)

1
, n

(i)

2
, n

(i)

3
 are anisotropy 

parameters may be calibrated by experimental data. The 
value of k is determined by the sheet metal’s crystalline 
structure so that its values for BCC and FCC materials are 3 
and 4, respectively. Obviously, whenever s = 1 and s = 2, the 
yield function includes 8 (BBC 2008-8p) & 16 (BBC 2008-
16p) coefficients to describe the anisotropy, respectively.

2.1.2.1  Identification procedure  There are two distinct 
approaches to calibrating the anisotropy parameters contained 
in the advanced yield criteria. The first approach is to solve 
a set of equations where the number of equations equals the 
number of anisotropy coefficients. In this case, the number of 
experimental data should be equal to the number of anisot-
ropy parameters. The failure risk of this method grows as the 
number of parameters increases. Another efficient approach 
is to minimize an error function. The greatest benefit of this 
strategy is that the number of experimental data does not need 
to match the number of anisotropy parameters. In other words, 
it is possible to obtain the anisotropy coefficients with fewer 
experimental data. It is worth noting that the greater the num-
ber of experiments, the greater the accuracy of the identifica-
tion procedure. Comsa and Banabic [47] presented an error 
function to characterize the anisotropic coefficients utilized in 
the BBC 2008 yield function as follows:

where

•	 r�i
 and Y�i

 are the theoretical Lankford coefficient (r 
value) and uniaxial yield stress predicted by the yield 
criterion, respectively. The orientation of the speci-
mens relative to RD is denoted by subscript φ.

•	 Yb and rb define the theoretical equi-biaxial yield stress 
and equi-biaxial r value. These quantities are deter-
mined by BBC 2008 criterion in the case that the equi-
biaxial tensile specimen is oriented along RD and TD.

•	 The quantities denoted by the ‘exp’ superscript are 
related to the experimental values. The number of uti-
lized experimental data is defined by ‘n’ as the sum-
mation limit.

I t  i s  no tewor t hy  t ha t  t he  e r ro r  func t ion 
(Eq.  (5)) is a function of anisotropy parameters 
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theoretical values. The required relations for calculating 
the predicted values are detailed in reference [47]. Two 
types of experimental data required to establish and mini-
mize the error function are data from uniaxial tensile tests 
(i.e., Y0, Y45, Y90, r0, r45 and r90 ) and data from equi-biaxial 
tension of cruciform specimen [44] or bulge test (i.e., 
Yb and rb ). Due to the high cost of sample preparation 
and execution of the biaxial tensile test, as well as the 
fact that biaxial tensile testing equipment is rarely found 
in industrial laboratories, Aretz et al. [57] proposed to 
utilize two yield stresses corresponding to plane strain 
tensile test along RD and TD instead of using Yb and rb 
in the calibration procedure. In this case, all the required 
experiments for the calibration can be executed on a uni-
versal tensile testing machine. Consequently, the error 
function (Eq. (5)) can be revised as follows:

where 
{
�1,�2

}
=
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0

◦

, 90
◦
}
 , and the ‘ps’ superscript indi-

cates the plane strain yield stress. Reference [57] details the 
needed relations for computing the theoretical plane strain 

yield stress.
Since the error function was constructed in the form 

of the sum of squares of nonlinear functions, the Leven-
berg–Marquardt algorithm [58] was used to minimize the 
error function in this study.

2.1.3 � Associated flow rule

The associated flow rule or normality rule determines the 
plastic strain increments and direction of plastic flow. The 
associated flow rule is formulated as

where d𝜀 > 0 is the equivalent plastic strain increment. 
Differentiating of 𝜎̃ with respect to the stress components 
for Hill’s 48 yield criterion is relatively simple, but calcu-
lating them for the BBC 2008 yield function is more com-
plex and can be determined using the chain rule as follows:
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𝜕𝜎ij
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A more detailed description of each term of Eq. (8) is 
presented in Appendix A.

2.2 � M–K model

Marciniak and Kuczynski (M–K) [5–7] introduced 
a theoretical model to characterize the FLD of sheet 
metals. This model was founded on the idea that the 
sheet has an initial inhomogeneity due to a variation 
in its thickness. The inhomogeneity is represented as a 
groove with an inclination angle of �0 . Figure 1 illus-
trates a graphical representation of the M–K model in a 
schematic form. As can be seen, the sheet metal is par-
titioned into two areas: uniform and groove, marked by 
the letters ‘A’ and ‘B,’ respectively. The initial amount 
of inhomogeneity can be quantified by a variable called 
the initial imperfection factor through the following 
relation

where the variable t0 represents the initial sheet thick-
ness, as well as superscripts A and B are related to the 
perfect and imperfect regions, respectively.

By applying an increment of equivalent plastic strain 
to the uniform zone ( d�A ), both regions are subjected to 
plastic deformation, but the amounts of deformations 
in these two regions are different. As deformation pro-
gresses, strains begin to concentrate gradually in the 
groove until the ratio of d�B to d�A exceeds 10. When 
this condition is met, the specimen’s deformation is 
confined in the groove region, and the limit strains are 
reached.

(8)
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t0
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2.2.1 � Computation of strain and stress in the uniform zone

To analyze stress and strain, a Cartesian reference frame is set 
so that its x, y, and z axes are parallel to the orthotropy axes 
RD, TD, and ND of the sheet, as illustrated in Fig. 1. The local 
coordinate system ntz is also attached to the groove region. 
The ‘n’ and ‘t’ axis coincide with the normal and longitudinal 
directions of the groove, respectively.

A plane stress condition and rigid plastic along with iso-
tropic hardening material, are the general assumptions that 
were employed in this research. It is also assumed that propor-
tional and monotonic strain increments along the orthotropy 
axes are applied to the uniform area, and therefore the x and y 
directions are principal. Hollomon’s power law was utilized to 
describe the material’s work hardening as follows:

where n is strain hardening exponent and K is strength coef-
ficient. The strain path in the uniform area is defined by

The stress ratio in zone ‘A’ is defined as

Finally, the strain increment and stress tensor in the uniform 
region are
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Fig. 1   Graphical representa-
tion of the M–K model in a 
schematic form
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The equivalent stress must be a homogeneous function of 
degree one [50]. Therefore, it is possible to rewrite the rela-
tion of equivalent stress in terms of stress ratio as follows:

The strain path is also determined in terms of stress ratio 
by calculating the strain increments from Eq. (7) and sub-
stituting them into Eq. (11) as follows:

Note that in Eqs. (14) and (15) the homogeneity of the 
equivalent stress function has been exploited allowing to 
use of the relative stresses �1A = 1 and �2A = � instead of 
using absolute stresses. By using a numerical approach to 
solve the following equation, the stress ratio in the uniform 
region corresponding to the strain path can be determined.

The accumulated equivalent plastic strain in each loading 
step can be calculated by summing the current or imposed 
equivalent plastic strain increment and the accumulated 
equivalent plastic strain up to, but not including, the cur-
rent increment of loading. In the uniform region for a given 
strain path � , combining Eqs. (1) and (14) and substituting 
the values of the stress ratio obtained from Eq. (16) and the 
accumulated equivalent plastic strain yields

The value of �2A is also determined using the stress ratio 
relation (Eq. (12)). The strain components in the uniform 
region are specified by substituting the stress components 
into the flow rule.

During plastic deformation, the groove orientation evolves 
as:

The stress and strain tensors are transformed to the ntz 
coordinate system using the rotation matrix [Q] through the 
following relations

where

(14)𝜎̃
(
𝜎1, 𝜎2

)
= 𝜎1𝜎̃(1, 𝛼) = 𝜎1h(𝛼).

(15)𝜌 =

𝜕𝜎̃

𝜕𝜎2
A

𝜕𝜎̃

𝜕𝜎1
A

|||||||𝜎1A=1,𝜎2A=𝛼
= g(𝛼).

(16)g(�) − � = 0.

(17)�1
A =

Y(�
A
)

h
(
�A

) .

(18)tan(� + d�) =
1 + d�A

1

1 + d�A
2

tan(�).

(19)

[
�A

]
ntz

= [Q]
[
�A

]
xyz
[Q]T

[
�A
]
ntz

= [Q]
[
�A
]
xyz
[Q]T

2.2.2 � Computation of strain and stress in the groove zone

In the imperfect zone, �nnB , �ntB , �ttB , and d�B are the unknown 
independent parameters. Four independent equations are 
required to calculate these parameters, which will be explained 
in the following.

The first equation is obtained by establishing a compatibil-
ity condition. The strain increments in both regions are consid-
ered to be the same along the groove's longitudinal direction.

The second and third equations are provided by the equi-
librium condition in the interface of the uniform and groove 
areas along the normal and longitudinal axis (n, t) as follows:

The ratio of current sheet thickness in regions ‘B’ to ‘A’ 
determines the instantaneous imperfection factor, which is 
formulated through the following relation

Combination of the equilibrium equations and Eq. (24) 
gives

Finally, the plastic work relation is expressed as

where 𝜎̃B is calculated by hardening law.
To determine the unknown variables, the nonlinear 

system of Eqs. (21), (25), (26), and (27) must be solved 
numerically. In this research, the well-known New-
ton–Raphson method was utilized.

2.3 � Numerical procedure for FLD calculation

In order to calculate the limit strains, a parametric program 
was written in MATLAB software. The material constants 

(20)[Q] =

⎡
⎢⎢⎣

cos� sin� 0

−sin� cos� 0

0 0 1

⎤
⎥⎥⎦
.

(21)d�B
tt
= d�A

tt
.

(22)FB
nn

= FA
nn

(23)FB
nt
= FA

nt
.

(24)f = f0exp
(
�B
z
− �A

z

)
.

(25)f�B
nn

= �A
nn

(26)f�B
nt
= �A

nt
.

(27)𝜎nn
Bd𝜀B

nn
+ 2𝜎nt

Bd𝜀B
nt
+ 𝜎tt

Bd𝜀B
tt
= 𝜎̃Bd𝜀

B
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(K, n), strain path ( � ), the initial imperfection factor ( f0 ), and 
the yield function’s anisotropy parameters are considered 
input variables. The flowchart in Fig. 2 depicts the calcula-
tion procedure. Initially, the stress ratio � corresponding to 
the strain path in region ‘A’ is found by numerical solving 
of Eq. (16). All stress and strain components and increments 
are set to zero. Then, a small equivalent strain increment 
( d�A = 0.0001 ) is imposed to the uniform region. The stress 
tensor in this region is identified using Eqs. (17) and (13). 
The strain increments are also computed by substituting the 
obtained stresses into the associated flow rule (Eq. (7)). The 
band orientation (θ) is updated at each increment of the plas-
tic deformation through Eq.  (18). By transforming the 
obtained stress and strain increments to ntz coordinate sys-
tem (Eq. (19)), the system of nonlinear equations (Eqs. (21), 
(25), (26) and (27)) can be established. The unknown param-
eters ( �nnB , �ntB , �ttB , and d�B ) of the groove region are deter-
mined by numerical solving of the system of equations using 
the Newton–Raphson method. This incremental calculation 
procedure continues until the condition d�

B

d�
A ≥ 10 is met. With 

attaining the necking point, the minor and major strains of 
the uniform region are stored. By varying the necking band 
angle (θ) from 0° to 90°, the calculation procedure is 
repeated. Finally, among the calculated major and minor 
strains, the ordered pair ( �A

1
 , �A

2
 ) is reported as a point on the 

FLD whose major strain  �A
1
 is minimal relative to θ. The 

FLD is fully characterized by changing the strain ratio from 
uniaxial tension ( � = −0.5 ) to equi-biaxial tension ( � = 1 ) 
and repeating the calculation procedure.

3 � Experiments

In this research, an AA3003-H19 sheet with a thickness 
of 1 mm was used in the experiments. Prior to mechanical 
testing, the samples were annealed at 415 °C for 2 h to 
increase formability.

3.1 � Uniaxial tensile test

The uniaxial tensile tests were accomplished to identify the 
strain hardening properties of AA3003-H19 metallic sheet 
as well as to acquire the input data for calibration of the 

Fig. 2   Flowchart of limit strains calculation

Fig. 3   Geometry and dimen-
sions of dog-bone shape sam-
ples for uniaxial tension
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BBC2008 yield criterion. The specimens for tensile testing 
were made in line with ASTM E8M at each 15° relative 
to the rolling direction (i.e., 0, 15, 30, 45, 60, 75, and 90). 
Figure 3 shows the schematic geometry of dog-bone shape 
samples for uniaxial tension. The length and width of the 
gauge section of the specimens are 70 and 12.5 mm, respec-
tively. Tensile testing was performed using a Zwick-Roell 
universal machine with a capacity of 100 kN at a crosshead 
speed 1 mm/min. The acquired stress–strain curves at dif-
ferent orientations with respect to the rolling direction are 
plotted in Fig. 4. The yield stresses were measured at 0.2% 
plastic strain. The experimental r values and normalized 
yield stresses obtained are listed in Table 1. The values of 
n and K reported in Table 1 are the coefficients of Hollo-
mon’s equation, which were characterized according to the 
calculation method proposed in the ASTM E 646-07 using 
stress–strain data collected from tensile testing along RD.

3.2 � Plane strain tension test

To characterize the yield stress for the plane strain state, the 
test procedure presented in [59] was utilized. This method 
has been developed based on the tension of notched speci-
mens with different widths (W). Figure 5 shows the geom-
etry of plane strain tensile specimens. As can be seen, all 
dimensions of the specimens except their width are kept 
constant.

An et al. [59] have demonstrated that in the tension of the 
notched specimens, if their width is large enough, then the 
plane strain condition is established in the middle region of 
them, and the strain distribution in this region is homogene-
ous. In this case, the distribution of strain in the area close 
to the notch is also independent of the width of the samples. 
Therefore, the width of the specimen can be decomposed 
into two terms as

Fig. 4   Experimental stress–strain curves

Table 1   Mechanical properties 
of AA 3003-H19

K n r0 r15 r30 r45 r60 r75 r90

227.8 0.0642 0.6 0.7 0.82 0.89 0.9 0.94 1.1
Y
0

Yref

Y
15

Yref

Y
30

Yref

Y
45

Yref

Y
60

Yref

Y
75

Yref

Y
90

Yref

Y
ps

0

Yref

Y
ps

90

Yref

1 0.994 0.994 1.019 1.058 1.09 1.103 1.109 1.215

Fig. 5   Geometry of samples for plane strain tensile test

Fig. 6   Force versus width of specimen obtained from plane strain 
tensile test



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44: 478

1 3

478  Page 10 of 16

where Wps is width of the portion of the sample which is 
under plane strain condition, and We is width of the notch-
affected zone. None of the values Wps  and We can be meas-
ured directly and accurately. The total measured force can 
be expressed as follows:

where Ft is the total force measured experimentally, Fe is 
the portion of total force which is expended to deform the 
notch-affected region, t is the material’s nominal thickness, 
and σps is the yield stress corresponding to the plane strain 
state. It should be noted that the value of Fe is independent 
of the width of the specimens [59]. Substituting Eq. (28) 
into Eq. (29) and some mathematical manipulations yields

where f ps equals to plane strain flow stress multiplied by 
material thickness, and C is a constant coefficient that repre-
sents notch effect. According to Eq. (30), the total measured 
force is linearly related to the specimen width. Therefore, 
by performing tension on samples with different widths, 
the total measured force versus width of specimens can be 
drawn. By applying a linear regression model to the obtained 
data, Eq. (30) is fully defined. Finally, the slope of the linear 
regression ( f ps ) represents the flow stress.

In this study, two sets of specimens with a width of 47, 
57, 67, and 77 mm in rolling and transverse directions were 
utilized. To decrease measurement errors, each test was con-
ducted three times, and the average findings were recorded 

(28)W = Wps + 2We

(29)Ft = �ps × t ×Wps + 2Fe

(30)Ft = f ps ×W + C
as experimental data. The Ft versus W diagram is plotted for 
samples in Fig. 6. The obtained plane strain yield stresses 
are listed in Table 1.

3.3 � Nakajima test

To specify the experimental limit strains of AA3003-H19 
sheet, a series of Nakajima tests were accomplished. In this 
test, a hemispherical punch is used to stretch the specimens 
with specific geometries. The stretching continues until the 
necking phenomenon occurs. A framework for executing 
the Nakajima test is documented in detail in ISO 12004-2 
standard. Figure 7 depicts the standard geometry of the 
specimens for the Nakajima test. By performing the Naka-
jima test on specimens of different widths (shown by W in 
Fig. 7), all points on the FLD from uniaxial (small value of 

Fig. 7   Geometry of specimens used in the Nakajima testes

Fig. 8   Nakajima samples after necking

Fig. 9   Measurement of deformed grids using a digital camera
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W) to equi-biaxial tension (completely circular specimen) 
can be determined. In this study, the width of specimens was 
selected to be 30, 55, 70, 90, 120, 145, and 180 mm, while 
the rest of the dimensions were maintained constant. The 
sample with a width of 180 mm was completely circular. 
Figure 8 illustrates the Nakajima samples after deformation. 
The specimen’s surface was electrochemically etched using 
a pattern of circular grids prior to carrying out the Nakajima 
tests. The diameter of the grids was 2.5 mm. During the 
stretching process, the circles deform and become ellipses. 
To determine the limit strains, the minor and major diam-
eters of the ellipses were measured after necking. A portable 
digital camera was used as a measurement probe. The meas-
urement probe was utilized to capture an image at different 
locations with appropriate magnification and resolution on 
the deformed samples, as shown in Fig. 9. Afterward, the 
minor and major diameters of the ellipse were computed 
using image processing.

4 � Results and discussion

4.1 � Identifying the coefficients of yield criteria

The anisotropy parameters included in the BBC 2008 yield 
function were determined by minimizing the error function 

(Eq. (5)) for AA3003-H19. The obtained parameters for 
BBC 2008-8p and BBC 2008-16p are tabulated in Tables 2 
and 3, respectively. Additionally, the parameters of Hill’s 48 
yield criterion for the material are listed in Table 4.

4.2 � Performance evaluation of the BBC 2008 
and Hill’s 48 yield criteria

The performances of Hill’s 48, BBC 2008-8p, and BBC 2008-
16p were evaluated in terms of material behavior prediction. 
For this purpose, the theoretical normalized yield stresses and 
r values reproduced by Hill’s 48 and BBC 2008 yield functions 
were plotted against the experimental data for AA 3003-H19 

Table 2   Calculated BBC 2008-8p (s = 1) anisotropy parameters for 
AA3003-H19

k l
(1)

1
l
(1)

2
m

(1)

1
m

(1)

2

4 0.495432 0.419413 0.538275 0.494236

m
(1)

3
n
(1)

1
n
(1)

2
n
(1)

3

0.540644 0.417487 0.405707 0.420149

Table 3   Calculated BBC 2008-16p (s = 2) anisotropy parameters for 
AA3003- H19

k l
(1)

1
l
(1)

2
m

(1)

1
m

(1)

2

4 0.366785 0.474964 0.375411 0.514606

m
(1)

3
n
(1)

1
n
(1)

2
n
(1)

3
l
(2)

1

0.575904 0.073479 0.224393 0.337517 0.206602

l
(2)

2
m

(2)

1
m

(2)

2
m

(2)

3
n
(2)

1

0.071855 0.918673 0.377792 0.408504 0.056061

n
(2)

2
n
(2)

3

0.624285 0.538078

Table 4   Anisotropy parameters 
of Hill’s 48 yield function for 
AA3003-H19

F G H N

0.6818 1.25 0.75 2.6852

Fig. 10   Distribution of theoretical normalized yield stress versus 
experimental data for AA 3003-H19

Fig. 11   Distribution of theoretical r values versus experimental data 
for AA 3003-H19
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in Figs. 10 and 11. As shown in Fig. 10, BBC 2008-16p 
exactly reproduces the experimental normalized yield stresses 
given in Table 1, while the reproduction using BBC 2008-8p 
shows small discrepancies. This is because the BBC 2008-16p 
contains more anisotropy parameters than BBC 2008-8p and 
is therefore more flexible. However, Hill's 48 cannot give an 
accurate prediction of yield stresses distribution. According 
to Fig. 11, only the BBC 2008-16p criterion can accurately 
capture the r values distribution, whereas none of the BBC 
2008-8p and Hill’s 48 criteria can precisely predict it.

The performances of the yield function were also quantita-
tively examined using the quality of fit method. This method 
was first proposed by Wexian [60] and was later developed 
by Leacock [61] to evaluate the accuracy of yield functions 
systematically. The comparative or relative root mean square 
deviation between the experimental data and predicted val-
ues is the basis of the quality of fit method and is formulated 
through the following relations

and

where Δr and Δ� referred to the comparative or rela-
tive deviations of r values and uniaxial yield stresses. In 
Eqs. (31) and (32), theoretical values do not have any super-
script, whereas the experimental data are labeled by the 
‘exp’ superscript. The number of experimental data is also 
denoted by ‘n.’ Figure 12 depicts the relative deviations of 

(31)Δr =

�∑n

i=1

�
r�i

− r�i

exp
�2
∕n

�
r0

exp + 2r45
exp + r90

exp
�
∕4

(32)Δ� =

�∑n

i=1

�
Y�i

− Y�i

exp
�2
∕n

�
Y0

exp + 2Y45
exp + Y90

exp
�
∕4

the r values and uniaxial yield stresses for BBC 2008 and 
Hill’s 48 yield criteria. As shown in Fig. 12, the relative 
deviations of r value and yield stress for BBC 2008-16p 
are lower than those for BBC 2008-8p and Hill’s 48 yield 
criteria. This evidences that the version with 16 parameters 
of the BBC 2008 yield criterion describes the anisotropic 
properties of AA 3003-H19 metallic sheets more accurately 
than BBC 2008-8p and Hill's 48. Therefore, utilizing the 
BBC 2008-16p criterion may improve the accuracy of the 
FLD prediction.

Figure 13 presents yield loci predicted by BBC 2008-16p, 
BBC 2008-8p, and Hill’s 48 yield criteria for AA 3003-H19. 
The experimental uniaxial yield strength along RD and TD 
is also marked in this figure with a filled black circle. As is 
seen, the yield surfaces provided by both of BBC 2008-8p 
and BBC 2008-16p criteria at points RD and TD are consist-
ent with the experimental data. In contrast, Hill’s 48 is con-
sistent with experimental data only in the point of uniaxial 

Fig. 12   Relative deviation of yield stress and r values

Fig. 13   Yield loci predicted by different yield functions for AA 3003-
H19

Fig. 14   Experimental versus theoretical FLD based on different yield 
functions for AA3003-H19
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tension in the rolling direction. Another interesting obser-
vation is the difference between the yield stresses predicted 
by BBC 2008-8p and BBC 2008-16p yield functions in the 
equi-biaxial tension region, which requires more experimen-
tal data or crystal plasticity simulations to validate this area.

4.3 � Comparison between experimental FLD 
and theoretical predictions

Figure 14 illustrates experimental and calculated FLD for 
AA 3003-H19 using various yield criteria and the M–K 
theory. The initial imperfection factor was chosen so that 
the theoretical value of limit strain for plane strain con-
dition ( � = 0 ) matched the experimental result. For all 
strain ratios, the value f0 = 0.998 was utilized to compute 
the limit strains.

According to Fig. 14, the predictions made by the M–K 
model combined with the three yield criteria for the left-
hand side of FLD are similar and have good conformity 
with the experimental data. In the other word, the yield 
function incorporated into the M–K theory has no impact 
on the FLD calculation of AA3003-H19 sheets for nega-
tive strain ratios ( 𝜌 < 0 ). This is in line with the findings 
of prior investigations on the M–K model [25, 32, 62, 
63]. On the other hand, a strong dependency between the 
computed limit strains and the employed yield criterion is 
observed for positive strain ratios ( 𝜌 > 0 ). Figure 14 shows 
that, when yield locus shape was expressed by BBC 2008-
16p yield criterion, the best conformity between experi-
mental limit strains and theoretical results was found 
for the right-hand side of the FLD. This result was to be 
expected since the BBC 2008-16p yield criterion repro-
duces the anisotropic behavior of the material more accu-
rately and therefore provides a more accurate prediction of 
the FLD. On the other hand, the use of the BBC 2008-8p 
and Hills 48 yield criteria underestimate and overestimate 
the right-hand side of the FLD, respectively. To justify 
this phenomenon, it can be referred to the research of Xu 
et al. [22] and Dasapa et al. [32]. They demonstrated that 
the curvature of yield surface in biaxial tension region 
significantly affects the results of FLD prediction for posi-
tive strain ratio so that a more round yield locus in biaxial 
tension region predicts higher limit strains[22, 32]. As 
illustrated in Fig. 13, Hill’s 48 and BBC 2008-8p yield 
criteria provide a more rounded and sharper yield sur-
face than BBC 2008-16p in the biaxial tension region, 
respectively. For this reason, the forming limits for posi-
tive minor strains predicted by Hill’s 48 and BBC 2008-8p 
are higher and lower, respectively, than those calculated 
by BBC 2008-16p.

4.4 � Influence of identification procedure 
on the prediction of FLD

The BBC 2008-16p was calibrated using two different ways 
to examine the influence of the identification procedure of 
anisotropy parameters used in the yield function on the FLD 
prediction. In the first case, the calibration was done only 
using r values and yield stresses collected from the uniaxial 
tensile testings (denoted by ‘without Yps’). In the second 
case, the plane strain yield stresses are incorporated into 
the calibration procedure in addition to uniaxial tensile test 
data (denoted by ‘with Yps’). The effect of the identifica-
tion procedure on the limit strains calculation is depicted in 

Fig. 15   Effect of identification procedure on the calculation of limit 
strains

Fig. 16   Impact of the plane strain yield stress on the yield loci shape
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Fig. 15. As can be seen, BBC 2008-16p calibrated without 
plane strain yield stresses overestimates the forming lim-
its for negative minor strains, whereas the right-hand side 
of FLD is not affected by the calibration method. To seek 
the reason, the predicted yield surface by BBC 2008-16p 
criterion was plotted in two cases with and without the use 
of plane strain yield stresses in the calibration procedure 
in Fig. 16. As is seen, failure to use the plane strain yield 
stresses in the calibration procedure of BBC 2008-16p crite-
rion gives a more rounded yield surface by this criterion and 
consequently causes to overpredict the limit strains in this 
case. According to Fig. 16, however, the use of plane strain 
yield stress in the calibration procedure has no considerable 
influence on the prediction of the yield surface in the second 
and fourth quadrants. It is possible to draw the conclusion 
the use of material properties acquired from uniaxial tensile 
testing alone is insufficient to calibrate anisotropy coeffi-
cients because the yield surface in the biaxial tension region 
is not accurately determined in this case [57].

5 � Conclusions

In this study, the capability of the BBC 2008 (8 and 16 
parameters) and Hill's 48 yield functions in computing the 
forming limits diagram of AA 3003-H19 metallic sheets 
were evaluated theoretically using the M–K model. The 
Levenberg–Marquardt approach was employed to optimize 
an error function for calibrating the anisotropy parameters of 
BBC 2008 yield function. The required material properties 
for the calibration procedure were provided by uniaxial and 
plane strain tensile testings. The ability of BBC 2008 and 
Hill’s 48 yield criteria to reproduce the anisotropic prop-
erties of AA 3003-H19 was evaluated. For this purpose, a 
comparison was made between the theoretical r values and 
yield stresses computed by the yield criteria and the experi-
mental data along different orientations relative to the rolling 
direction. The effect of the calibration procedure on the FLD 
prediction was also examined. To achieve the experimental 
FLD and verify the theoretical findings, a set of standard 
Nakajima tests were accomplished. The results revealed that:

•	 The 16-parameter version of the BBC 2008 yield crite-
rion can accurately capture the anisotropic properties of 
AA 3003-H19 metallic sheets, while BBC 2008-8p and 
Hill's 48 could not precisely describe them.

•	 For the negative strain ratios, the forming limits of 
AA3003-H19 sheets are unaffected by the yield criterion 
incorporated into the M–K model. In contrast, a strong 
dependency between the calculated limit strains and the 
employed yield function was found for the positive strain 
ratios.

•	 All three criteria of the BBC 2008-8p, BBC 2008-16p, and 
Hill’s 48 give identical results for the left-hand side of the 
FLD and correspond well with the experimental data.

•	 Using BBC 2008-16p yield function in M–K analysis gives 
the best conformity between experimental and theoretical 
limit strains for the right-hand side of the FLD. In contrast, 
BBC 2008-8p and Hills 48 yield criteria underestimate and 
overestimate the limit strains for positive strain ratios, respec-
tively.

•	 BBC 2008-16p calibrated without the plane strain yield 
stresses overestimates the FLD for positive strain ratios, 
whereas the calibration method has no impact on the left-
hand side of the FLD.

Appendix A

A more detailed description of each term of Eq. (8) is pre-
sented as follows:
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