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Abstract
A defective rolling bearing usually generates repetitive impulses often appears as an amplitude modulated signal, which 
contains fault feature. To assess the faulty bearings, a proper signal processing method is necessary to extract the fault infor-
mation from the periodic impulses submerged in heavy background noise and interference vibrations. This paper presents a 
new Combined Time–Frequency Method (CTFM) based on Morlet Wavelet Filter (MWF), Intrinsic Time-scale Decompo-
sition (ITD), and Teager-Kaiser (TK) energy operator to extract impulsive features for better evaluating bearing operating 
conditions. The MWF with predefined parameters (center frequency and bandwidth) is used to remove background noise 
from bearing vibration signal. The filtered signal, which is a multi-component signal, is decomposed into Proper Rotation 
Components (PRCs) through ITD method, followed by an error analysis to select the most significant PRCs in order to 
eliminate interference components. Then, the bearing vibration signal is reconstructed from the selected components and its 
energy is estimated using the TK operator. According to the maximum energy value, the power spectrum of the TK envelope 
or modulating signal is used for clear visualization of the Bearing Characteristic Frequencies (BCFs) as well as the optimal 
parameters of the Morlet filter are retained. To test its performance, the proposed CTFM is applied on simulated and experi-
mental bearing signals and discussed by comparing its performance to previous studies. The obtained results demonstrate 
the effectiveness of the CTFM in identifying BCFs.
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1  Introduction

Rotating machinery plays a significant role in various indus-
trial applications. It generally works under severe conditions 
making the key parts such as gears and bearings subject to 
faults. Generally, bearing defects may occur on the inner 
race, the outer race or the ball. During the passage of the 
rolling element over the defect, an impulse signal contain-
ing useful fault information is generated periodically with 
a time period corresponding to Bearing Characteristic Fre-
quencies (BCFs). These repetitive impulses appear as a very 
sharp rise that excites the high frequency resonance of the 
structure, where the bearing is mounted, and quickly decay 

due to the internal damping of the system, which enables 
the vibration signals to present the mechanism of ampli-
tude modulation [1]. The periodic impulses are short in time 
duration and usually contaminated by noise and other vibra-
tion interferences. Therefore, the effective extraction of the 
fault information from bearing signals becomes a challeng-
ing issue.

In recent years, a wide variety of signal processing 
methods have been proposed and applied to reduce noise 
components and extract useful information from bearing 
signals. Moreover, the bearing vibration signal is usually 
non-stationary, which requires more suitable methods such 
as wavelet transform [2]. Wavelet transform, introduced by 
Morlet in 1984, is one of the most powerful signal process-
ing techniques. It is widely used to analyze non-stationary 
signals due to its good time–frequency localization prop-
erties. Morlet wavelet is defined as a cosine function that 
decays exponentially on both sides, and its function shape 
is very much like an impulsive feature. Due to its similarity 
to the bearing impulse signal, it is widely used to detect the 
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periodical impulses that indicate the occurrence of bearing 
faults.

Morlet wavelet can be viewed as a filtering process that 
has the ability of separating the different features of the noise 
and the useful signal. However, the major challenge in this 
application is the proper optimization of the Morlet Wave-
let Filter (MWF) parameters: center frequency and band-
width, in order to achieve an optimal match with the signal. 
To select the most favorable pair of parameters, different 
techniques are developed and proposed to detect the impact 
signal with good time–frequency resolution. Nikolaou and 
Antoniadis [3] used an entropy-magnification combined fac-
tor to optimize parameters in a way that can analyze the 
modulation mechanism present in the impulsive response 
of faulty bearings. He et al. [4] optimized the wavelet filter 
by differential evolution to obtain the fault characteristic sig-
nal. Su et al. [5] proposed a hybrid method that combines 
optimal MWF and autocorrelation enhancement algorithm 
to enhance the periodic impulsive features and remove the 
residual noise, where the center frequency and bandwidth 
parameters are optimized by genetic algorithm. Jiang et al. 
[6] designed a denoising method to achieve an optimal 
match with the impulsive signals, where the modified Shan-
non wavelet entropy is used to optimize the shape and band-
width parameter of the Morlet wavelet. Also, the singular 
value decomposition is performed to select the appropriate 
transform scale. Zhang et al. [7] filtered the bearing vibra-
tions with an MWF whose bandwidth and center frequency 
parameters are determined using local mean decomposition 
and Shannon entropy criterion. Cao et al. [8] optimized the 
Morlet parameters using a modified algorithm based on 
the Shannon entropy and then extracted the impact signal 
through a modified adaptive method.

Actually, even without noise after filtering, the periodi-
cal impulses of the bearing are multi-component signals 
due to vibration interferences. Therefore, the best way is to 
decompose a multi-component signal into a sum of mono-
component signals to extract the useful information from the 
resulting signals. For this purpose, several decomposition 
techniques were adopted over the years, including Empirical 
Mode Decomposition (EMD) [9], Local Mean Decompo-
sition [10], and Intrinsic Time-scale Decomposition (ITD) 
[11]. The EMD and LMD methods can self-adaptively 
decompose the nonlinear and non-stationary signal into the 
sum of several components of intrinsic mode function and 
product function, respectively. However, some inevitable 
limitations often appear when using EMD and LMD, such 
as mode mixing and end effects. On the other hand, the ITD 
is a self-adaptive approach that has high decomposition 
efficiency and frequency resolution. The multi-component 
non-stationary signal is decomposed into a number of Proper 
Rotation Components (PRCs) and a trend component. The 
ITD can effectively overcome the limitations of EMD and 

LMD. As it only requires linear interpolation and has no 
need for a sifting process, the ITD method can extract useful 
features from vibration signals with higher efficiency and 
shorter computing time than EMD and LMD.

In the last few years, the ITD algorithm has been suc-
cessfully applied as a powerful tool to analyze the bearing 
vibration signals [12–14]. The selection of the most valu-
able PRCs is a very important step in the ITD approach. 
Although, some researchers consider only the first few rota-
tion components [15]. However, most studies, in this field, 
applied various selection criteria to discriminate whether the 
PRC is valuable or not, such as Lempel–Ziv complexity [12], 
weighted kurtosis [13], Shannon entropy [16], and Laplacian 
energy-based criterion [14]. In another application, the PRC 
with an instantaneous frequency fluctuating around the gear 
meshing frequency or its harmonics is selected as a sensitive 
mono-component for planetary gearbox fault diagnosis [17].

In fact, the impulsive bearing fault signal can be viewed 
as an amplitude modulated signal in the natural frequency 
resonance signal (the carrier) in which the modulating signal 
(the envelope) includes the frequency components associ-
ated with the characteristic frequency of the faulty bearing 
and harmonics. Therefore, the analysis of the envelope sig-
nal is an important task for extracting the BCF from the car-
rier frequency. In the last decades, the amplitude modulated 
signal is extracted using the envelope analysis [18] that is 
based on band-pass filtering of the bearing vibration signal. 
Unfortunately, the correct selection of the filters’ bandwidth 
is difficult. Recently, the envelope signal can be demodu-
lated using the Teager-Kaiser (TK) energy operator. The TK 
operator is an effective tool for analyzing nonlinear signals 
to extract the amplitude modulated signal and then, the fault 
characteristics. To transform the vibration signal in the TK 
domain in order to evaluate its energy measurement has been 
studied by several works [19–22].

This paper aims at transforming the reconstructed vibra-
tion signal resulting from the MWF and ITD into the TK 
domain to optimize the filter parameters to achieve impulse 
signal extraction for bearing condition monitoring. Firstly, 
the bandwidth and center frequency ranges of the MWF are 
defined to obtain the filtered signal. The multi-component 
resulting signal requires a mono-component decomposition 
(PRCs) using the ITD approach to eliminate the interfering 
vibrations. The most representative PRCs that contain rich 
information are identified to reconstruct the decomposed 
signal according to a proposed selection criterion based 
on error measure between the input and each decomposed 
mode. Then, the mono-component envelope signal, includ-
ing the BCF, is demodulated in the TK domain to provide 
us with the optimal Morlet filter and the characteristic 
frequency using power spectrum. Finally, simulated and 
real vibration signals, in the cases of inner race fault and 
outer race fault of rolling bearings, are used to evaluate the 
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effectiveness of the proposed CTFM over other techniques. 
The obtained results demonstrate that the proposed method 
can identify the optimal Morlet filter and also extract the 
periodic impulses hidden in noises and interferences in the 
time domain, and detect the dominating components (char-
acteristic frequency and its harmonics) in the frequency 
domain.

2 � Bearing faults

The vibrations produced by damaged bearing elements rep-
resent the most common problems in rotating machinery. 
The different faults occurring in a bearing can be classified 
according to the defective element as: Inner Race fault (IR), 
Outer Race fault (OR), and Ball fault (B). When the roll-
ing elements strike a localized fault on the inner or outer 
race and vice versa, an impulse signal is produced periodi-
cally with a time period corresponding to one of the BCFs 
(Fig. 1).

The BCFs, of a defective bearing, associated with inner 
race fault (fIR), outer race fault (fOR) and ball fault (fB) are 
related to the rotational frequency of the shaft, bearing 
geometry and defect location. They are calculated as follows:

where fr is the rotational frequency, d the ball diameter, D 
the pitch diameter, Z the number of balls and α the contact 
angle. Usually, the impulse signals at these fault frequencies 
are modulated by the high frequency carrier signal (reso-
nance), which results an exponentially decaying vibration, 

(1)fIR =
Zfr

2

(
1 +

d

D
cos(�)

)

(2)fOR =
Zfr

2

(
1 −

d

D
cos(�)

)

(3)fB =
Dfr

d

(
1 − (

d

D
cos(�))

2
)

as shown in Fig. 1. The key is to find periodic impulses 
hidden in the measured bearing signals. Therefore, a proper 
signal processing method, described in the next section, is 
necessary.

3 � Combined time–frequency method 
(CTFM)

3.1 � Principle

With a fault on a particular element of the bearing, a periodi-
cally impulsive signal at this element rotational frequency is 
produced, which may excite the resonances in the bearing. 
These generated impulses are often appear as an amplitude 
modulated signal that is usually submerged in background 
noise and other vibration interferences. Therefore, the 
extraction of the fault information contained in the periodi-
cally impacts has primary importance for the correct opera-
tion of the machine. For this purpose, CTFM is proposed.

Figure 2 represents the block diagram of our method. 
The proposed method can be divided into three major 
tasks, which are signal filtering, signal decomposition 
and signal demodulation. To this end, it combines the 
MWF, ITD, and TK energy operator in order to extract 
the modulating signal with the optimal center frequency 
and bandwidth of MWF. After reducing the background 
noise, the resulting signal is a multi-component signal 
which requires isolating each component before apply-
ing the TK transform. Through ITD, the filtered signal is 
decomposed into a series of components (PRCs) and the 
most significant PRCs are selected using a criterion based 
on the energy of error between the original signal and each 
decomposed component. Energy values above a thresh-
old line indicate the most representative PRCs, and are 
thus used in signal reconstruction. Then, the TK operator 
allows demodulating the reconstructed signal and calculat-
ing the energy of the obtained envelope by applying a new 
proposed indicator. The final result is the optimal MWF 

Fig. 1   Bearing geometry and 
impulse signal
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and the power spectrum representation of the envelope or 
demodulated signal having the largest energy value, which 
contains the BCFs.

3.2 � Optimal Morlet wavelet filter

3.2.1 � Continuous wavelet transform (CWT)

Wavelet transform is a kind of variable window technology, 
which uses a time interval to analyze the frequency compo-
nents of the signal in terms of a wavelet base function, called 
mother wavelet (Eq. 4).

where a and b denote the scale and shift parameters, respec-
tively, while the factor |a|−1∕2 is used to ensure energy 
preservation.

The mother wavelet must be compactly supported and 
satisfied with the admissibility condition as follows

where �̂(w) is the Fourier Transform (FT) of �(t).
Continuous wavelet transform is particularly suitable for 

non-stationary measures analysis. It is described as follows: 
let x(t) be the original signal; the CWT of x(t) is defined as 
follows:

where �∗(t) is the conjugate function of the mother wavelet 
�(t) . According to the convolution theorem and FT proper-
ties, Eq. 6 can be expressed as follows:

where X(f) and Ψ*(f) represent the FT of x(t) and ψ*(t), 
respectively, and F−1denotes the inverse FT.

(4)�(t) = |a|−1∕2�
(
t − b

a

)
a, b ∈ R, a ≠ 0

(5)∫
+∞

−∞

||�𝜓(w)||
2
∕|w|dw < +∞

(6)CWT(a, b) = |a|−1∕2∫
+∞
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x(t)�∗
(
t − b

a

)
dt

(7)Wb(a) =
�
1∕

√
a
�
F−1{X(f )Ψ∗(af )}

The CWT analyzes the signal at different scales. It can be 
regarded, from Eq. 7, as the signal passing through a band-
pass filter.

3.2.2 � Morlet wavelet filter

The CWT is defined as the inner product between the time 
signal and the translated and dialed mother wavelet function. 
Several standard families of wavelet base function can be used 
such as Haar, Daubechies, Coiflets, Morlet and Symlets [23], 
where different wavelets serve different purposes. The selec-
tion of an appropriate mother wavelet function is an important 
step and part of wavelet analysis for feature extraction from 
measured signals [24]. In this work, we use the complex Mor-
let wavelet according to the Nikolaou and Antoniadis [3], He 
et al. [4] and Su et al. [5] studies. The reason is the fact that 
the Morlet function has a similar shape to impulses caused by 
bearing faults.

The Morlet wavelet is suitable for continuous analysis and 
its formulation, in the time domain, is defined as a complex 
exponential function as follows:

where c denotes a positive parameter. It is typically chosen 
according to Eq. 9.

According to the above choice of c, the FT of the Morlet 
wavelet is defined as follows:

The Morlet wavelet has the wave shape of a Gaussian win-
dow in the frequency domain, where σ and fc represent the 
bandwidth and central frequency, respectively. This shape 
practically covers a frequency band in the range [fc-σ/2, 
fc + σ/2]. Thus we can build a MWF as follows:

(8)�(t) = ce−�
2t2ej2�fct

(9)c = �∕
√
�

(10)Ψ(f ) = Ψ∗(f ) = e−(�
2∕�2)(f−fc)

2

(11)WT
(
fc, �

)
= F−1{X(f )Ψ∗(f )}

Fig. 2   Principle of the proposed method
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Figure 3 shows the shapes of Morlet wavelet, in the fre-
quency domain, with different center frequency and a fixed 
σ value (Fig. 3a), and with different bandwidth filters and a 
fixed fc value (Fig. 3b). These shapes comprise rising and 
decaying parts, where the parameter σ balances their band-
widths. The parameters fc and σ must be adjusted to identify 
the impacts hidden in the noisy bearing signal. The selection 
procedure of their range is discussed in the next section.

3.2.3 � MWF construction

In the frequency range, there is a favorable pair of fc and 
σ parameters that provide an appropriate time–frequency 
resolution for the bearing signal. For specific values, the 
time signal resulting from Eq. 11 is considered to be analytic 
since the function Ψ is real. The modulus of this analytic 
result represents the envelope of the band-pass filtered signal 
(Eq. (12)).

The envelop analysis aims to separate the low-frequency 
information of the impulsive signal, the obtained envelope 
must be characterized to adjust fc and σ to construct an opti-
mal band-pass filter. The construction procedure will be 
detailed in Sect. 3.4.1.

In order to adjust the MWF parameters, certain conditions 
must be achieved. These conditions are formulated, accord-
ing to He et al. [4] and Su et al. [5], as follows:

•	 Firstly, the wavelet should satisfy the admissibility condi-
tion (Eq. 5) which is equivalent to the following require-
ment

	   As it is widely known, the Morlet wavelet does not sat-
isfy this zero-mean requirement. However, the mean can 
become infinitely small if the term fc∕� is sufficiently 
large. When fc∕𝜎 > 1.3 , there is 𝜓(0) < 5 × 10

−8 . There-
fore, the admissibility condition can be approximately 
satisfied, when 𝜎 < 1.3∕fc.

(12)c(t) = ||WT(fc, �)
||

(13)�(0) = ∫
+∞

−∞

�(t)dt = 0

•	 Then, according to the sampling theorem, the upper cut-
off frequency of MWF fc + 0.5� must satisfy

where fNyq = fs∕2 is the Nyquist rate and fs is the sam-
pling frequency of the signal.

	   Also, the lower cut-off frequency of MWF fc − 0.5� 
should be sufficiently large in order to reduce the interfer-
ence effects of the shaft harmonics, as follows:

where fr is the frequency of rotation of the shaft and N 
is an integer that should be sufficiently large in order to 
reduce the interference effects from the shaft harmonics. 
In this paper, it is typically chosen as 30.

•	 Finally, the bandwidth of the MWF must also be suffi-
ciently wide to fully extract the impulsive feature. Here, 
it is chosen as follows:

where fd is the Ball-Passing Frequency Inner-race (BPFI). It 
is the biggest one of the BCFs.

So, the optimal fc and σ of the MWF must meet the above 
conditions. They are summarized as follows:

Max Energy indicator (Eni)

Different bandwidths of the Morlet wavelet filters and 
several center frequencies can be established, respectively, 
with � ∈

[
3fd, 0.4fNyq

]
 and fc ∈

[
0.2fNyq, 0.8fNyq

]
 . The center 

frequency must coincide with a resonant frequency and 
the bandwidth should be chosen as large as necessary in 
order to include characteristic frequencies related to bear-
ing faults. The selection of optimal parameters is based on 

(14)fc + 0.5𝜎 < fNyq

(15)fc − 0.5� ≥ Nfr

(16)𝜎 > 3fd

(17)S.t.fc∕𝜎 > 1.3

(18)fc + 0.5𝜎 < fNyq

(19)fc − 0.5� ≥ Nfr

(20)𝜎 > 3fd

Fig. 3   Shapes of Morlet filter 
with: a Different bandwidths 
and b Different center frequen-
cies
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an energy indicator of the TK envelope. Before detailing 
the selection criteria, the multi-component filtered signal 
must be decomposed into mono-component signals using 
the ITD to select the significant components from other 
vibration components.

3.3 � Intrinsic time‑scale decomposition (ITD)

The ITD, proposed by Frei et al. [11], is a self-adaptive 
decomposition method especially suitable for nonlinear 
and non-stationary signals analysis. The ITD can decom-
pose an input signal into a series of oscillating modes (or 
PRCs), and a monotonic trend signal, called baseline. The 
latter is defined as a linearly transformed contraction of the 
input signal. In the decomposed PRCs, all local maxima 
and all local minima are strictly positive and negative, 
respectively. The decomposition procedure is repeated sev-
eral times, using the baseline signal as a new input, until 
the baseline becomes a monotonic function or a constant 
value. To obtain a PRC from an input signal, the procedure 
introduced as follows:

For a signal x(t), the operator L is defined as an operator 
extracting a baseline signal from the signal x(t) and the 
residual signal H is a proper rotation. More specifically, 
x(t) can be decomposed as follows:

where L(t) = Lx(t) is the baseline signal and H(t) = (1-L)x(t) 
denotes the proper rotation component. Let 

{
�k, k = 1, 2,…

}
 

be the local extrema of x(t), and �0 = 0 . Suppose that L(t) 
and H(t) are given over the interval 

[
0, �k

]
 , and x(t) is avail-

able on 
[
�k, �k+2

]
 . To simplify notation, let xk and Lk denote 

x(�k) and L(�k) , respectively. The baseline extracting opera-
tor, L, is defined as a piecewise linear function on the inter-
val 

[
�k, �k+1

]
 between adjacent extrema xk and xk+1 as follows:

where

and 0 < α < 1, usually α is around 0.5.
The proper rotation component, H, is expressed as 

follows:

Given the above definitions, the ITD algorithm can be 
described as follows:

(21)x(t) = Lx(t) + (1 − L)x(t) = L(t) + H(t)

(22)

Lx(t) = L(t) = Lk +
Lk+1 − Lk

Lk+2 − Lk

(
x(t) − xk

)
, t ∈

[
�k, �k+1

]
,

(23)Lk+1 = �

[
xk +

�k+1 − �k

�k+2 − �k
(xk+2 − xk)

]
+ (1 − �)xk+1,

(24)H(t) = Hx(t) = x(t) − Lx(t) = x(t) − L(t)

•	 Step1: Find the local extrema of the input signal x(t), 
denoted by xk, and the corresponding occurrence time 
instant �k,

•	 Step2: Define the baseline signal, L, of xk according to 
Eqs. 22 and 23,

•	 Step3: Extract the residual signal as PRC, H, according 
to Eq. 24,

•	 Step4: Treat L as the input signal, and repeat the above 
steps, until the baseline becomes a monotonic function 
or a constant value.

Finally, the signal x(t) is decomposed into a series of 
PRCs and a trend signal, as follows:

where p is the number of the decomposed PRCs.
The visual selection of the best oscillatory modes among 

all the obtained PRCs is often wrong. Therefore, the selec-
tion of the most significant modes is an important task that 
is studied in several works as shown in Sect. 1.

3.3.1 � Identifying significant PRCs

In this section, we propose to calculate the error vector 
between the original signal and its decomposed PRCs in 
order to find the best modes which must be as close as pos-
sible to the input signal. It can be calculated according to 
the following equation

where ei is the ith residual vector. For more clarity on this 
selection criterion, we have computed the energy of error 
(ei) that represents a very reasonable criterion for select-
ing the significant PRCs. Logically, its small values, after 
scaling, determine the closest PRCs to the original signal. 
Thus, the problem is to locate the valuable PRCs where the 
energy is minimal. To overcome this problem, a thresholding 
approach called “universal threshold” can be applied, which 
is inspired from the field of signal denoising. The universal 
threshold, proposed by Donoho and Johnston [25], is the 
most used threshold value in the literature, where it can be 
measured according to the following equation

where v and p denote the variance and the number of decom-
position modes, respectively.

This thresholding approach is based on estimating the 
statistical properties of the decomposed PRCs, such as the 
variance of normalized error values and the total number 
of decompositions. The calculated threshold value allows 

(25)x(t) =

p∑

i=1

Hi(t) + Lp(t)

(26)ei(t) = x(t) − Hi(t)

(27)T = v
√
2lnp
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us to choose the confidence limit. Any energy value below 
this confidence limit is considered to have a normal vari-
ance of statistical data and it represents the best PRCs. Due 
to the high level of variance for all energies that are above 
the confidence limit, the corresponding PRCs are therefore 
eliminated completely. After that, we perform signal recon-
struction by adding the selected PRCs.

The reconstructed impulsive signal is transformed in the 
TK domain in order to extract the envelope from the modu-
lated signal and thus obtain the optimized parameters of 
MWF according to an appropriate energy indicator.

3.4 � Teager‑Kaiser energy operator

The TK operator is a nonlinear operator which was first 
proposed by Teager for use in speech processing, and intro-
duced by Kaiser, in 1990, to track and analyze the signal 
energy [26]. It has a good adaptability to the instantaneous 
changes in signals and it is suitable for detecting impact 
characteristics in a modulated signal such as gear or bearing. 
For any continuous time signal x(t), the energy operator φ, 
in continuous form, is defined as follows:

where ẋ(t) = dx∕dt and ẍ(t) = dẋ∕dt . A discrete form of the 
TK operator, noted φd, is given as follows:

The TK operator is a tracking operator that provides an 
excellent time resolution. It is very easy to implement effi-
ciently because it requires only three consecutive samples of 
the measured signal. Its direct application over the bearing 
vibration signal can perform a more effective estimation of 
the instantaneous change in amplitude and frequency of the 
signal.

When a fault occurs in a bearing, a variation in energy 
appears in the time signal. For this purpose, an appropri-
ate indicator based on a product of energies is proposed as 
a principal criterion to optimize the parameters of MWF 
and extract the modulating signal that contains fault fea-
tures. The formulations and motivations of this indicator are 
defined in the following subsection.

3.4.1 � Parameters optimization

Generally, the vibration signal acquired from a defective 
bearing is represented as periodic impulses in the time 
domain and its energy increases around the resonance. By 
transforming the signal into the TK domain, the Energy 
distribution (Ed), established by Parseval’s theorem, can be 
computed to extract the feature of the bearing fault signals.

(28)φc[x(t)] = [ẋ(t)]2 − x(t)ẍ(t)

(29)φd[x(n)] = x2(n) − x(n + 1)x(n − 1)

The Parseval’s theorem refers to the result where the sum 
of square of a function is equal to the sum of the square of 
its transform. In the TK domain, the Parseval’s theorem can 
be defined as the energy of a function in the time domain is 
equal to the energy of its transform as follows:

where φi is the ith measurement, N is the number of samples 
or data points and ║ ║ denotes the norm operator.

On the other hand, the impulses generated by bearing 
faults can also be detected using the Energy factor (Ef). Ef is 
calculated by taking the kurtosis of the TK signal. Therefore, 
it shows high values as a factor of impulsiveness [18]. It is 
expressed as follows:

where � is the average of the TK signal.
The proposed indicator (En = Ed × Ef) is calculated for all 

resulting TK signals and the corresponding parameters of 
WMF with the high value of En are selected as the optimal 
parameters.

In summary, we must first define the bandwidth and cen-
tral frequency ranges with initial steps. We fix σ and scan 
all the center frequencies to determine the Morlet wavelet 
filters and then we calculate the filtered signals for all values 
of σ. After filtering, the signal must be decomposed into 
mono-component signals. Through the ITD, the signal is 
decomposed into several PRCs in which the most significant 
components are selected using the error energy between the 
filtered signal and the decomposed modes. We then com-
pute the TK signal or envelope for each pair of parameters 
(σ, fc) and its energy value (En). The obtained results are 
memorized. By comparing the different computed values, 
we obtain the optimal parameters which correspond to the 
maximum value of En. Finally, we calculate the power spec-
trum of the corresponding TK envelope in order to diagnose 
the bearing conditions. The CTFM algorithm can be sum-
marized in the following section.

3.5 � Algorithm CTFM

Input: bearing vibration signal

1.	 Define the initial ranges of bandwidth σ ∈ [σ1, σ2] and 
central frequency fc ∈ [fc1, fc2], and also choose the initial 
steps of bandwidth (i) and central frequency (j),

2.	 Given an initial value of σ that represents the lower 
bound of the bandwidth range (σ = σ1) and increase fc 

(30)Ed = ‖φi‖2∕N

(31)Ef =

N
N∑
i=1

�
�i − �

�4

�
N∑
i=1

(�i − �)2

�2
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from fc1 to fc2 with the step of j; the MWF is computed 
according to Eq. (11), the filtered signal is decomposed 
according to Eqs. (21) and (24), the best PRCs can be 
obtained from the error energy criterion to allow a per-
fect reconstruction of the impulsive signal, and then the 
TK envelope and its energy are obtained from Eqs. (29)-
(31),

3.	 Compute repeatedly as the above step (2) for the whole 
values of σ, it results in a series of TK signals,

4.	 Calculate energy values En,
5.	 Check maximum energy value and save the correspond-

ing pair of parameters (σ, fc) which are the optimal band-
width parameter and the optimal central frequency,

6.	 From the selected optimal parameters, we compute the 
power spectrum of the TK envelope to identify the bear-
ing characteristic frequencies.

Output: σ, fc and BCFs,

4 � Numerical simulation and experimental 
validation

4.1 � Simulation study

In this section, we are going to test the algorithm presented 
in the previous section on a simulated impulse response of 
a pulse train. The impulse response could be used to model 
the modulated signal of a faulty bearing by two harmonic 
frequencies with an exponential decay and is formulated as 
follows:

with

where α is the exponential decay frequency, f1 and f2 are the 
resonance frequencies, fd is the defect frequency or modula-
tion frequency.

(32)x(t) = e−�t
� (
sin

(
2�f1t

)
+ 1.2 × sin

(
2�f2t

))

(33)t
�

= mod
(
t, 1∕fd

)

Fig. 4   a Simulated signal with-
out noise and b Its spectrum, 
c Signal with noise and d Its 
spectrum, e Optimal Morlet 
filter, f Filtered signal
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The generated vibration signal, based on Eq. 32, and its 
frequency spectrum are shown in Fig. 4a and b, respectively. 
As illustrated in Fig. 4b, the dominant frequency compo-
nents of 3000 and 7000 Hz are corresponding to two reso-
nance frequencies. Figure 4c and d show the time domain 
and the frequency spectrum of the simulated signal with a 
Gaussian noise. Obviously, the periodic impulses shown in 
Fig. 4c cannot be clearly seen in the time domain compared 
with Fig. 4a. Note that, the identification of the periodic 
impacts is a major characteristic of the proposed method. 
For this purpose, the Morlet wavelet is applied to filter 
the original vibration signal with various values of σ and 
fc within ranges 

[
3fd, 0.4fNyq

]
 and 

[
0.2fNyq, 0.8fNyq

]
 , respec-

tively. At the same time, all filtered signals are decomposed 
by ITD and the dominant PRCs are selected using the error 
energy criterion with a confidence limit. The latter is plot-
ted in all figures by a red dot-dashed line. The PRCs with 
energy values below the threshold line are selected as the 
dominant PRCs and are then added to reconstruct the input 
signal. Finally, the reconstructed signal is demodulated by 
the TK operator in order to estimate the optimal parameters 

of MWF and extract the periodic impulses from the bearing 
vibration signal.

Figure 4f shows the filtered signal using the optimal 
MWF of Fig. 4e with σ = 3783 Hz and fc = 6942 Hz. These 
values are optimized by computing the energy indicator 
(En) of the envelope signal, as shown in Fig. 5. Accord-
ing to the maximum value of En, the optimal Morlet filter 
is selected with a wide bandwidth and a central frequency 
which is very close to the second resonance frequency of the 
simulated signal chosen as 7000 Hz. The five decomposed 
PRCs and the corresponding errors between each PRC and 
the original signal are plotted in Fig. 6a and b, respectively. 
By calculating the energy of each error, Fig. 7a shows that 
the original signal is reconstructed from the first PRC. The 
TK envelope of the reconstructed signal of Fig. 7b is then 
extracted and its power spectrum is illustrated in Fig. 8. 
Many frequency components are present; at the modulation 
frequency (100 Hz) and its harmonics.

Fig. 5   Optimal parameters of 
Morlet filter

Fig. 6   a PRCs, b Error between 
each PRC and original signal
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4.2 � Experimental test rig

The measurement of vibration applied to condition monitor-
ing and fault diagnosis requires different types and levels of 
equipment and techniques. These depend on the investment 
and available expertise.

The experimental measurements presented in this paper 
are entirely based on the vibration data obtained from 
the Case Western Reserve University Bearing Data Cen-
tre [27]. As shown in Fig. 9, the motor is connected to a 
dynamometer and torque sensor by a self-aligning coupling. 

The vibration signals were collected from an accelerometer 
mounted on the motor housing at the drive end of the motor. 
The data were obtained from the experimental system under 
the four different operating conditions: (1) Normal condition 
(NR); (2) with inner race fault; (3) with outer race fault and 
(4) with ball fault. The data is sampled at a rate of 12 kHz 
and the duration of each vibration signal was 10 s. More 
details about the experimental setup were reported in [27].

The bearings used in this study are deep groove ball bear-
ings manufactured by SKF. The specifications of the bearing 
are: ball diameter = 7.94 mm; pitch diameter = 39.04 mm; 

Fig. 7   a Energy of error, b 
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number of balls = 9; and contact angle = 0. Faults were 
introduced to the test bearings using electro-discharge 
machining method with different diameters: 0.018, 0.036, 
and 0.053 mm. The motor speeds during the experimental 
tests are: 1797, 1772, 1750 and 1730 rpm. Each bearing was 

tested under four different loads: 0, 1, 2, and 3 horsepower 
(hp). Load is applied using a dynamometer.

The characteristic frequencies of bearing faults can be 
calculated from the geometry of the bearing and the rota-
tional speed (Eqs. (1)-(3)). The bearing model and BCFs 
are listed in Table 1.

In this paper, vibration signals collected under four dif-
ferent loads and four different rotation speeds are used for 
investigations. They are acquired using accelerometers 
attached to the housing with magnetic bases, including the 
faults on the inner race and the outer race. The defect sizes 
are 0.018 mm and 0.053 mm for both inner race and outer 
race. According to Table 1, the characteristic frequencies of 
the inner race fault and the outer race fault are computed and 
listed in Table 2. Each signal has a large number of samples. 
To improve computing time, we must choose a number of 
samples that covers a sufficient number of complete rota-
tions. In this study, the motor speed is ranging from 1730 
to 1797 rpm, so the selection of a number of 4096 samples 
allows obtaining nearly 12 complete rotations, which is suf-
ficient for analysis without losing information on the system.

The vibration signals collected at 1797, 1772, 1750 and 
1730 rpm from the normal bearing and the defective bearing 

Table 1   Bearing model and BCFs in Hz

Bearing model BCFs (× rotational speed (rpm))

fIR fOR fB

SKF 6205-2RS JEM 0.0903 0.0597 0.0786

Table 2   BCFs of inner race and outer race

Load (hp) Rotation 
speed (rpm)

Rotation 
speed (Hz)

fIR (Hz) fOR (Hz)

0 1797 29.95 162.27 107.28
1 1772 29.53 160 105.78
2 1750 29.16 158 104.47
3 1730 28.83 156.22 103.28

Fig. 10   Vibration signals in 
time domain of normal bearing
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Fig. 11   Vibration signals in 
time domain of bearing with 
inner race fault
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with inner race fault and outer race fault are plotted, respec-
tively, in Figs. 10, 11 and 12. From these figures, the impulse 
responses cannot be directly identified except in the case of 
outer race fault where they are observed with background 
noise.

Generally, the experimentally measured signals are 
marred by noise. This noise produces several frequency 
components, on the frequency spectrum, which can lead 
to erroneous conclusions in the interpretation of the results 
(Figs. 13b, 14b, 15b, 16b, 17b, 18b, 19b and 20b).

The measured signals are processed by the proposed 
technique to extract the periodic impulses and therefore 
the fault information. First, the associated noise has been 
reduced by passing signals through Morlet filters with σ 
and fc values defined within reasonable parameter ranges 

selected previously. The resulting signals show periodic 
impulses, but certainly there is no indication of the optimal 
filter among them. For this purpose, the ITD is combined 
with the TK in order to estimate the optimal parameters of 
MWF. Due to the huge amount of results, we have decided 
to present only some of them, precisely those obtained with 
the optimal filters. Figures Figs. 13c, 14c, 15c, 16c, 17c, 
18c, 19c and 20c and Figs. 13d, 14d, 15d, 16d, 17d, 18d, 19d 
and 20d represent respectively some results of MWFs with 
optimized parameters and the corresponding filtered signals. 
The filtered signals obtained with the optimal filter clearly 
show the periodic impulses and obviously some noise can 
be seen in the figures.

After filtering, the obtained impulses of the bearing are 
multi-component signals which require decomposition into 

Fig. 12   Vibration signals in 
time domain of bearing with 
outer race fault
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Fig. 13   a Vibration signal of 
bearing with fault diameter of 
0.018 mm on the inner race, b 
Spectrum of (a), c spectrum of 
the optimal Morlet filter with 
fc = 3483 Hz and σ = 2397 Hz, d 
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mono-component signals to eliminate vibration interfer-
ences. Using the ITD process, a set of mono-components 
(PRCs) for each filtered signal is generated. For example, 
Figs. 21a, 22a and 23a and Figs. 21b, 22b, 23b illustrate, 
respectively, the PRCs and their corresponding errors, for 
bearing signals measured at 1797 and 1750 rpm with fault 
diameter of 0.018 mm on the inner race and the outer race.

Some PRCs may contain more information about the 
condition of the bearing than others. To select the most sig-
nificant PRCs, the energy of the error between the original 
signal and each oscillatory mode (PRC) is proposed here 
as a selection criterion. The computed energy values and 
the different threshold lines are shown in Figs. 24a, 25a, 
26a, 27a, 28a, 29a, 30a and 31a. The selection is performed 

by identifying the PRCs that have energy values below the 
threshold line. In most studied cases, the first PRC has the 
minimum energy value, so these modes are selected as sig-
nificant PRCs for signal reconstruction.

The reconstruction signals from the selected modes are 
displayed in Figs. 24b, 25b, 26b, 27b, 28b, 29b, 30b and 
31b. Compared with the input signal (filtered signal), it can 
be seen clearly that the impulses of bearings appear periodi-
cally with time periods.

After that, the TK of each reconstructed signal, in the 
defined ranges of bandwidth and center frequency, is used 
to adjust both σ and fc parameters to obtain an appropriate 
time–frequency resolution. According to the proposed indi-
cator (En), we can obtain the optimal parameters from the 

Fig. 14   a Vibration signal of 
bearing with fault diameter of 
0.018 mm on the inner race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 3438 Hz and σ = 2400 Hz, d 
Filtered signal
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Fig. 15   a Vibration signal of 
bearing with fault diameter of 
0.018 mm on the outer race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 3619 Hz and σ = 2396 Hz, d 
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calculated energy values. The σ and fc corresponding to the 
maximum value are the optimal bandwidth and the optimal 
center frequency, respectively. They are listed in Table 3 
for the bearing with inner race fault, and in Table 4 for the 
bearing with outer race fault. We found that the bandwidth 
frequency is wide and the center frequency is close to the 
resonance frequency.

Finally, the last step is presented for fault identification by 
applying the spectral analysis to evaluate the impulsive sig-
nal in the frequency domain by using the optimal MWF. Fig-
ures 32, 33, 34 and 35 represent spectra of vibration signals 
acquired from the different conditions of the bearing at four 
rotating speeds, with and without load. From these figures, 
many frequency components are clearly found at rotation 

frequencies (fr) and their multiples (2fr,…). The BCFs of the 
inner race and outer race could be also found at the calcu-
lated values of fIR and fOR for each condition (Table 2), and 
their harmonics (2fIR, 3fIR,… and 2fOR, 3fOR,…) are present 
in the frequency spectra. It is also noted in Figs. 32 and 33, 
only for bearing with IR fault, the presence of sidebands 
(spaced at fr) around the BCFs and their harmonics.

The vibration signals acquired from normal bearing at 
four shaft speeds with four loads are used for evaluating the 
performance of the proposed CTFM. After signal filtering, 
signal decomposition and signal demodulation using respec-
tively MWF, ITD and TK operator, the optimal Morlet filter 
is selected with the large value of σ in the bandwidth range 
and the small value of fc in its range, except for the bearing 

Fig. 16   a Vibration signal of 
bearing with fault diameter of 
0.018 mm on the outer race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 3558 Hz and σ = 2396 Hz, d 
Filtered signal
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Fig. 17   a Vibration signal of 
bearing with fault diameter of 
0.053 mm on the inner race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 2996 Hz and σ = 2400 Hz, d 
Filtered signal
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signal measured at 1730 rpm, where the central frequency 
is 1206 Hz. Figure 36 shows envelope spectra of TK signals 
of the four considered cases. It can be seen that the rota-
tion frequencies of the shaft (fr) and their multiples (2fr) 
can be found in the frequency spectra. As discussed above, 
the shaft rotational frequency can be clearly detected from 
a bearing running in normal and faulty conditions by using 
our method.

On the other hand, the obtained results prove that the 
proposed method could be effectively applied to extract use-
ful features from bearing vibration signals using optimal 
filters with wide bandwidths and center frequencies close to 

resonance frequencies compared to previous studies reported 
in [4, 28–30]. Where these studies were carried out with 
vibration signals collected under different bearing condi-
tions than those used in our study. However, the results listed 
in Table 5 show that our approach provides a significant 
improvement over previous results obtained on the same 
data [5]. Only the vibration signals acquired at 1772 rpm 
(1 hp) from normal bearing and faulty bearing with defect 
size of 0.018 mm on inner race and outer race are used for 
comparison, but these signals summarize the results of other 
vibration signals obtained from the three studied conditions 
(NR, IR, and OR) of the bearing operating under various 
rotational speeds and loads.

Fig. 18   a Vibration signal of 
bearing with fault diameter of 
0.053 mm on the inner race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 2949 Hz and σ = 2400 Hz, d 
Filtered signal
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Fig. 19   a Vibration signal of 
bearing with fault diameter of 
0.053 mm on the outer race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 3562 Hz and σ = 2396 Hz, d 
Filtered signal
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Fig. 20   a Vibration signal of 
bearing with fault diameter of 
0.053 mm on the outer race, b 
Spectrum of (a), c Spectrum of 
the optimal Morlet filter with 
fc = 3535 Hz and σ = 2397 Hz, d 
Filtered signal
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Fig. 21   a PRCs, b Error 
between each PRC and original 
signal of bearing with fault 
diameter of 0.018 mm on 
the inner race measured at 
1797 rpm and 0 hp
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Fig. 22   a PRCs, b Error 
between each PRC and original 
signal of bearing with fault 
diameter of 0.018 mm on 
the inner race measured at 
1750 rpm and 2 hp
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Fig. 23   a PRCs, b Error 
between each PRC and original 
signal of bearing with fault 
diameter of 0.018 mm on the 
outer race measured at 1797 
and 0 hp
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Fig. 25   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.018 mm 
on the inner race measured at 
1750 rpm and 2 hp
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Fig. 26   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.018 mm 
on the outer race measured at 
1797 rpm and 0 hp
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Fig. 24   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.018 mm 
on the inner race measured at 
1797 rpm and 0 hp
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Fig. 27   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.018 mm 
on the outer race measured at 
1750 rpm and 2 hp
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Fig. 28   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.053 mm 
on the inner race measured at 
1797 and 0 hp
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Fig. 29   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.053 mm 
on the inner race measured at 
1750 rpm and 2 hp
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Fig. 30   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.053 mm 
on the outer race measured at 
1797 rpm and 0 hp
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Fig. 31   a Energy of error, b 
Reconstructed signal of bearing 
with fault diameter of 0.053 mm 
on the outer race measured at 
1750 rpm and 2 hp
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5 � Conclusion

This study presents a new time–frequency methodology, 
called CTFM, which combines the MWF, ITD, and TK 
operator to optimize the Morlet filter parameters and detect 
periodic impulses hidden in a vibration signal delivered from 
a rolling bearing. Firstly, the bearing vibration signal is fil-
tered by MWF, with multiple values of σ and fc, to reduce 
the noise component. In the second step, the resulting signal 
is decomposed into a number of PRCs by the ITD process 

Table 3   σ and fc of bearing with inner race fault

Fault diameter 
(mm.)

Rotation speed 
(rpm)

Load (hp) σ (Hz) fc (Hz)

0.018 1797 0 2397 3483
1772 1 2400 3451
1750 2 2400 3438
1730 3 2400 3393

0.053 1797 0 2400 2996
1772 1 2400 2963
1750 2 2400 2949
1730 3 2400 2941

Table 4   σ and fc of bearing with outer race fault

Fault diameter 
(mm.)

Rotation speed 
(rpm)

Load (hp) σ (Hz) fc (Hz)

0.018 1797 0 2396 3619
1772 1 2396 3592
1750 2 2396 3558
1730 3 2397 3598

0.053 1797 0 2396 3562
1772 1 2396 3631
1750 2 2397 3535
1730 3 2398 3574

Fig. 32   Envelope power spec-
trum of the reconstructed signal 
of bearing with fault diameter of 
0.018 mm on the inner race

to eliminate interference components. Then, the signifi-
cant PRCs are performed using the error measure criterion 
between the filtered signal and each mode of decomposi-
tion. By choosing the universal thresholding, a high value of 
this criterion indicates an insignificant PRC which must be 
eliminated before reconstruction. The main purpose of sig-
nal reconstruction is to extract the impulse components from 
the vibration signal. Finally, the TK operator is applied to 
demodulate the reconstructed signal and compute its energy 
via the proposed indicator. The optimal parameters of the 
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Fig. 33   Envelope power spec-
trum of the reconstructed signal 
of bearing with fault diameter of 
0.053 mm on the inner race

Fig. 34   Envelope power spec-
trum of the reconstructed signal 
of bearing with fault diameter of 
0.018 mm on the outer race
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Fig. 35   Envelope power spec-
trum of the reconstructed signal 
of bearing with fault diameter of 
0.053 mm on the outer race

Fig. 36   Envelope power spec-
trum of the reconstructed signal 
of normal bearing
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Morlet filter are retained, according to the maximum energy 
value, and the corresponding envelope is transformed into a 
frequency spectrum to identify the BCFs.

The effectiveness of the proposed method is validated 
using a simulated vibration signal and experimental signals 
with different bearing conditions, different loads, several 
rotation speeds, and various sizes of faults. The obtained 
results show that the periodic impulses can be effectively 
extracted from the noisy input signals using the optimized 
MWF. Moreover, the frequency components correspond-
ing to BCFs and their multiples are clearly identified in the 
envelope spectra. Therefore, it is obvious that CTFM is more 
suitable for extracting periodic impulses, generating optimal 
Morlet filters, and providing all BCFs. The proposed CTFM 
with operator’s knowledge can improve the accuracy and 
efficiency of bearing condition monitoring.
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