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Abstract
In structural applications, laminated composites are typically the best choice for providing a high strength-to-weight ratio. 
The composite laminates, on the other hand, are susceptible to the first ply failure (FPF), which can result in delamination, 
matrix cracking, and fiber breaking. As a result, it is critical to map the FPF of laminated composites against the uncertainty 
in material properties. In this paper, we presented a framework based on coupled statistical modeling and failure criteria to 
perform sensitivity analysis corresponding to the FPF of laminated composites. The practically relevant randomness in mate-
rial properties (elastic modulus, shear modulus, Poisson’s ratio, and mass density) is enforced by utilizing the Monte Carlo 
random sampling method. The FPF of a laminated composite subjected to random material properties is evaluated using five 
failure criteria: maximum strain, maximum stress, Tsai-Hill, Tsai-Wu, and Hoffman. Such a random sampling-based dataset 
is used to train and validate the random sampling high dimensional model representation (RS-HDMR) metamodel and Gauss-
ian process regression (GPR) model. To ensure sound generalization capabilities, the models are rigorously cross-validated. 
With sufficient confidence in the constructed models, the models are further utilized to perform the variance-based sensitivity 
analysis. It is worth mentioning that observations from both models in terms of parameters with the highest sensitivity (for 
the first-order polynomial function) are comparable. The RS-HDMR metamodel is further used to perform the second-order 
polynomial function-based sensitivity analysis, wherein the sensitivity index for the most sensitive parameter is observed to 
be very low when compared with the observations of first-order polynomial function-based sensitivity analysis. The numeri-
cally quantifiable outcomes of the present study will serve its purpose in the bottom-up design of the laminated composites.
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List of  symbols
Π  Total potential energy
U  Total strain energy
V   Total work potential due to external 

forces
d�  Incremental displacement

qz  Load intensity (transverse) of laminate
�  Stress component
�  Strain vector
�x, �y, �z  Displacement terms
�x and �y  Rotational components at matrix level
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�x and �y  Rotational components at the nodal 
level

kx, ky and kxy  The curvature of the reference plane
D̃  Displacement resultant
M̃  Moment resultant
T̃   Transverse shear resultant
[A], [B]  and [D]  Extensional, flexural extensional, and 

flexural stiffness matrix
�e
j
  Shape function

u  Displacement
�0
x
, �0

x
and �0

xy
  Strain in the reference plane

� and η  Axis of the principal coordinate system
k  Stiffness
� and�  Local natural coordinates of the 

element
P0,P1...P7  Generalized degree of freedom (DOF)
si  Shape function of node
[J]  Jacobian matrix
�x and �y  The rotational component in x and y 

directions in each node
u0, v0 andw0  Displacement variables for laminated 

plate
θ  Ply-orientation angle
E1  Longitudinal elastic modulus of 

elasticity
E2  Transverse elastic modulus of elasticity
G12  Shear modulus along a longitudinal 

direction (first and second plane)
G13  Shear modulus along the transverse 

direction (first and third plane)
G23  Shear modulus in the second and third 

plane
ρ  Mass density
μ  Poisson’s ratio
Ns  Sample size
yi  Actual model
▵

yi  Predicted model
yi  Mean data
J(x)actual  Actual response of the model
J(x)predicted  Predicted response model
Vt  Total variance
VP  Partial variance
Sa  Global sensitivity index

1 Introduction

The failure of composite structures has alarmed significant 
attention and challenges among the research community. 
It is difficult to construct a reliable and robust composite 
structure unless the failure of such structure is properly 

addressed. Due to inherent anisotropy in composition and 
structure, the uncertainty in its structural behavior is una-
voidable [1]. It leads to the variability in modes of failure 
of such structures. The material parameters such as elastic 
modulus, density, Poisson’s ratio, and geometric param-
eters such as length, orientation, and thickness are critical 
in identifying system uncertainty in structural analysis. The 
literature suggests several approaches for identifying system 
uncertainty, including the probabilistic approach [2–5], the 
non-probabilistic approach [6–8], the stochastic finite ele-
ment method [9, 10], the perturbation method [11, 12], and 
meta-modeling [13–17]. The means of uncertainty quan-
tification reported in the past are limited in corroborating 
with the recent advancements in computational technology; 
hence, novel techniques are developed by the academic and 
industrial research community. Kam and Jan [18] are among 
the pioneers in modeling first-ply failure, wherein they uti-
lized the finite element (FE) method along with the layer-
wise linear displacement theory to formulate the FPF of a 
multilayered composite plate. In another study, Reddy and 
Pandey [19] reported the deterministic approach to design 
the failure of the system by utilizing tensor-based failure 
criteria. A few notable previous studies investigated the 
probabilistic approach used in the first-ply failure (FPF) of 
the laminated composite [20–24], using the crude Monte 
Carlo simulation (MCS) [25], stochastic FE method, and 
perturbation method.

The concise literature review revealed that implementing 
computationally efficient metamodels for large-scale char-
acterization of FPF of laminated composites is not exten-
sively explored. In their recent studies, only a few groups 
used metamodeling for FPF analysis of different structures 
[26, 27]. Metamodels are functionally designed programs 
to fit a specific set of data. The utilization of metamod-
els ensures the complete characterization of the system by 
performing high-end stochastic analysis while keeping the 
computational cost and time-in check [28–30]. The proba-
bilistic investigations generally struggle to counter the curse 
of dimensionality. As the system becomes more complex, 
the curse of dimensionality makes designing the model 
more critical; other performance issues, such as computa-
tional cost and model modification, induce inherent chal-
lenges as the system's complexity grows. To mitigate these 
challenges, the present study incorporates the high-dimen-
sional model representation (HDMR) metamodel to carry 
out the large-scale MCS-based stochastic investigation of 
FPF of the laminated composite. HDMR is generally con-
sidered for modeling physical problems with a high number 
of input and output parameters having high-dimensional 
correlations. The two commonly used HDMRs are random 
sampling (RS) and cut-HDMR [31]. The functional differ-
ences in the RS-HDMR and cut-HDMR can be attributed 
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to the selection of sample points for model construction 
[31–34]. The utility of HDMR has been in practice in vari-
ous domains, such as Boussaidi et al. [35] incorporated 
the RS-HDMR and Gaussian process regression (GPR) to 
compute the vibration spectra by considering molecular 
potential energy surfaces. In another study, Chowdhury 
et al. [36] evaluated the piece-wise continuous function by 
using the HDMR metamodel to map the partial and total 
involvement of the input variables with distinct responses. 
Similarly, Shorter et al. [37] and Miller et al. [38] reported 
the application of HDMR to assess the correlation between 
the input and output of the chemical kinematic models 
from a set of multivariable data in a biological network 
structure. RS-HDMR belongs to a wider class of methods 
known as polynomial chaos expansion (PCE) [39], wherein 
both PCE and RS-HDMR use the orthonormal basis func-
tion. The difference in PCE and RS-HDMR lies in evaluat-
ing the coefficients. The PCE utilizes the Stieltjes proce-
dure [40] to assess the orthonormal polynomial functions, 
whereas, in the RS-HDMR, we used the Pearson coefficient 
index and Spearman coefficient index [47] to evaluate the 
orthonormal polynomial functions. A few research groups 
have reported the successful implementation of HDMR 
metamodel in different domains [41–46]. We utilized the 
MATLAB-based GUI of RS-HDMR prepared by Zeihn and 
Tomlin [47], which is one of the best models to cope with 
nonlinear datasets with a higher number of input variables. 
It should be noted that the RS-HDMR directly provides us 
with model validation parameters such as relative accuracy 
(RA) and coefficient of correlation (R2). The model also 
offers variance-based global sensitivity indices for first-and 
second-order polynomial functions along with the meta-
model validation parameters. To address the inherent chal-
lenges of GUI, we performed the benchmarking of the RS-
HDMR model with a separate Gaussian process regression 
(GPR) model using the same dataset used for construct-
ing the RS-HDMR model. The prediction capabilities and 
final responses of both models (RS-HDMR and GPR) are 
compared in terms of error analysis and sensitivity indices. 
Subsequently, the distribution of failure loads derived from 
both models is compared to ensure the predictive accuracy 
of the RS-HDMR model.

The sensitivity analysis is carried out to determine 
the relative inf luence of the input variables on the 
considered physical phenomenon. The research com-
munity frequently utilizes it to establish the impor-
tance of the significant parameters in determining the 
desired responses [48, 49]. For instance, Azadi et al. 
[50] conducted the sensitivity analysis for carbon/
epoxy composite, and they observed that the displace-
ment amplitude is highly sensitive in assessing low-
cycle fatigue of the composites. Similarly, Thapa et al. 

[51] identified the sensitive parameters in progressive 
failure load analysis by performing the global sensitiv-
ity analysis. Tafreshi [52] performed the shape sensi-
tivity analysis to investigate the design of the shapes 
of an anisotropic material by utilizing the boundary 
element method. Similarly, throughout a wide range 
of research disciplines, a few research groups have uti-
lized sensitivity analysis to reveal the critical informa-
tion of the desired system [53–56]. Due to hefty input 
variables and low-order parametric correlations, the 
RS-HDMR expansion used in the stochastic first-ply 
failure model design is highly useful. Moreover, the 
RS-HDMR observations are validated with the GPR 
model observations, which are found to be in good 
agreement. The scientific contribution of this study is 
to take layer-wise (8 layers) uncertain material prop-
erties into account and conduct a probabilistic inves-
tigation to determine the first ply failure load using 
five different failure criteria, namely maximum strain 
criterion, maximum stress criterion, Tsai-Hill crite-
rion, Tsai-Wu criterion, and Hoffman criterion. It is 
noticed from the brief literature review that the role of 
parametric interactions is scarcely reported in the past 
while performing the sensitivity analysis. To mitigate 
this lacuna, we proposed the RS-HDMR-based frame-
work to perform the variance-based sensitivity analysis 
of the FPF of the eight-layer laminated composite plate 
in a computationally efficient manner. We compared 
the deliverables of RS-HDMR with the observations 
offered by the GPR model to determine the computa-
tional accuracy of the proposed RS-HDMR-based sen-
sitivity analysis framework. The current study will aid 
in the bottom-up design of laminated composites for 
application-specific deployments.

2  Mathematical formulation

The finite element analysis for the FPF load of a can-
tilever laminated composite plate is considered in the 
present study. The governing equation for a multilayered 
laminated composite is developed from the minimum 
total potential energy theorem [19], which further allows 
us to define the structural analysis based on FE mod-
eling. The total potential energy of a body is the sum-
mation of total energy due to the body's strain and total 
work potential due to external forces. The total potential 
energy can be stated as follows

The total energy due to strain (U) can be defined as

(1)Π = U + V
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The total work potential (V) can be stated as

qz is the load intensity (transverse). The final stress vector 
can be expressed as,

The displacement parameters of the cantilever plate are 
formulated as

where �x , �y , �z signify the displacements at the mid-plane, 
�x and �y are the rotational components. Stress–strain rela-
tion is stated as

The stress–strain relation in the form of a matrix can be 
formulated as

The force resultant of the lamina can be stated as

The stress resultants are as follows

(2)U =
1

2 ∫
�

{u}T{�}d�

(3)V = ∬
A

[u]T
[
q
]
dA

(4){q} =
{
0 0 qz 0 0

}T

(5)[F] = [�][D]

(6)�x(x, y, z) = �x0(x, y) − z�x(x, y)�x(x, y)

(7)�y(x, y, z) = �y0 (x, y) − z�y(x, y)�y(x, y)

(8)�y(x, y, z) = �z0(x, y) = �z(x, y)

(9)
�x =

��x0

�x
− z

�2�y0

�x2
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��y0

�y
− z

�2�y0

�y2
,

�xy =
��x0
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Tdz

 while implementing first-order shear deformation theory 
(FSDT) using FE-based approach, the variables for displace-
ment and the rotational component are expressed as,

Considering the shape functions ( �e
j
 ) of the same order for 

the entire domain, the generalized equation can be defined as

Based on FSDT, the displacement and rotational compo-
nents in Eqs. (13a)–(13e) can be defined as

(12a)(
∼

D
xx
,
∼

D
yy
,
∼

D
xy
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∫
−

h

2

{�
x
�
y
�
xy
}dz

(12b)(
∼

M
xx
,
∼

M
yy
,
∼

M
xy
) =

h

2

∫
−

h

2

{�
x
�
y
�
xy
}zdz

(12c)(
∼

T
xx
,
∼

T
yy
) =

h

2

∫
−

h

2

{�
xz
�yz}zdz

(13a)u0(x, y, t ∶ �) =

m∑
j=1

uj(t ∶ �)�e
j
(x, y)

(13b)v0(x, y, t ∶ �) =

m∑
j=1

vj(t ∶ �)�e
j
(x, y)

(13c)w0(x, y, t ∶ �) =

m∑
j=1

wj(t ∶ �)�e
j
(x, y)

(13d)ϕx(x, y, t ∶ �) =

m∑
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S1
j
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j
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m∑
j=1

S2
j
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Finally, the resultant matrix due to transverse shear, stress 
(in-plane), and moment in terms of [A], [B], and [D] matrix 
is expressed as

The force matrix derived by Eq. (16) is used to determine 
the first ply failure of the laminated composite plates using 
different failure criteria. The detailed mathematical under-
standing of the five failure criteria, viz., maximum strain 
criterion, maximum stress criterion, Tsai-Hill criterion, Tsai-
Wu criterion, and Hoffman criterion is explained in section 
SM.1 of the supplementary material.

2.1  Finite element formulation

The FE modeling is performed for a laminated composite plate 
by considering an iso-parametric quadratic plate element. Each 
element comprises eight nodes with five degrees of freedom 
(DOF), wherein three DOF are translational, and two are rota-
tional. The FE model has mid-surface nodes. An interpolation 
polynomial function can define the elemental and nodal rela-
tion as

(17a)[T̃] = [A]{y}

(17b)[D̃] = [B]{k} + [A]{𝜀0}

(17c)[M̃] = [D]{k} + [B]{𝜀0}

(18)u(�,�) = P0 + P1� + P2� + P3�
2 + P4�� + P5�

2 + P6�
2� + P7��

2

The shape function 
−

S
i
 for the FE-based model is stated as

The coordinates of � and � are presented in Fig. 1.
The efficiency of the shape function is stated as

The coordinates of the element at any point are formu-
lated as

The interrelation between the coordinates of displacement 
and DOF of nodes is stated as

(19)
S̄i =0.25[(1 + 𝜍𝜍i)(𝜍𝜍i + 𝜑𝜑i − 1)

(1 + 𝜑𝜑i)] (for i = 1, 2, 3 and 4)

(20)S̄i = 0.5[(1 + 𝜑𝜑i) (1 + 𝜍2)] (for i = 6 and 8)

(21)S̄i = 0.5[(1 + 𝜍𝜍i) (1 + 𝜑2)] (for i = 6 and 8)

(22)
8∑
i=1

S̄i = 1,

8∑
i=1

𝜕 S̄

𝜕𝜑
= 0,

8∑
i=1

𝜕 S̄

𝜕𝜍
= 0

(23)x =

8∑
i=1

S̄ixi and y =

8∑
i=1

S̄
i
yi

(24)

u =

8∑
i=1

S̄iui, v =

8∑
i=1

−

S
i
vi,w =

8∑
i=1

S̄iwi,𝜙x =

8∑
i=1

S̄i𝜙xi, and 𝜙y =

8∑
i=1

S̄i𝜙yi

Fig. 1  Coordinate system of the laminate in matrix, elemental and nodal level
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The shape function in the form of a Jacobian matrix is 
stated as

As it is well established that performing the large-scale 
(MCS-based) FE simulations renders a huge computational 
cost, the integration of metamodels such as RS-HDMR and 
GPR greatly reduces the computational expense and draws 
a detailed understanding of the failure behavior of the mate-
rial system. The matrix size-dependent computational cost 
of conducting FEM simulations is provided in section SM.4 
of the supplementary material.

2.2  Machine learning models

In the present study, we utilized two different machine learn-
ing models, random sampling-high-dimensional model rep-
resentation (RS-HDMR)) and (Gaussian process regression 
(GPR) to map the failure criteria-specific stochastic first-ply 
failure load of the laminated composite plates. The meth-
odology adopted to conduct the present study is illustrated 
in Fig. 2.

In this regard, the eight input parameters (refer to 
Table 1) are considered for the individual eight layers 
of the FE model, which lead to the 64 input variables. 
Each layer has stochastic material properties except for 

(25)
[
S̄i,x
S̄i,y

]
= [J]−1

[
S̄i,𝜍
S̄i,𝜑

]
and [J]−1 =

[
x, 𝜍 x,𝜑

y, 𝜍 y,𝜑

]

the composite's total thickness (t). Therefore, 64 mate-
rial parameters are identified, and the total thickness 
of the material is considered the 65th input variable. 
The stochasticity in the 65 input variables is enforced 
by performing random sampling (MCS based), wherein 
the mean values of the input parameters are perturbed 
within ± 10% stochastic variation (as per the industry 
standards). In this way, the random samples are con-
structed and fed to the FE analysis to calculate the 
responses in terms of FPF load derived by employing 
five failure criteria (refer to subsections SM1.1 to 1.5 
of supplementary material). The dataset generated by 
the MCS-based FE analysis is used to train and validate 

Fig. 2  Algorithm to analyze the stochastic failure analysis incorporating the RS-HDMR approach

Table 1  Range of input parameters under the stochastic effect

Input parameters Lower bound Upper bound Mean

θ (degree) 41.5,− 49.5 49.5,− 41.5 45,− 45
E1 (Pa) 124 × 109 152 × 109 138 × 109

E2 (Pa) 8.01 × 109 9.79 × 109 8.96 × 109

G12 (Pa) 6.39 × 109 7.81 × 109 7.01 × 109

G13 (Pa) 6.39 × 109 7.81 × 109 7.01 × 109

G23 (Pa) 2.55 × 109 3.12 × 109 2.84 × 109

μ 0.27 0.33 0.30
ρ(kg∕m3) 1440 1760 1600
t (m) 4.5 ×  10−3 5.5 ×  10−3 5.0 ×  10−3
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the machine learning models considered in the present 
study.

In the case of RS-HDMR, the convergence study of 
the appropriate sample size for model construction is 
performed, wherein the sample size (Ns) for training the 
model is increased from lower to higher (Ns = 32, 64, 
128, 256, 512, 1024, and 2048) to check the convergence 
of sample size which is appropriate for the model con-
struction and results in permissible predictive accuracy. 
It is to be noted that in the case of RS-HDMR, variance 
reduction methods are responsible for reducing the error 
associated with the model. The predictive accuracy of 
the constructed models is validated by the out-of-fold 
(separately derived) 2100 samples for which MCS-based 
FE analysis is performed to evaluate the FPF. A detailed 
understanding of the mathematical background of the 
RS-HDMR is provided in section SM.2 of the supplemen-
tary material. The observations of the RS-HDMR model 
are compared with the outcomes of the GPR model. The 
GPR model is constructed with the same 2100 samples 
where holdout cross-validation is used while training 
the model. In the holdout cross-validation, at each itera-
tion, Nh (512, 1024, and 2048) samples are held out of 
the total sample space (N = 2100) as the training data, 
whereas the remaining samples (N–Nh = 1588, 1076, 
and 52) are used to validate the trained model. Such a 
simultaneous training–testing scheme ensures the sound 
generalization capability of the model and prevents the 
model from under-fitting or over-fitting. While training 
the GPR model, the “Matern 5/2” kernel function is uti-
lized by enforcing the isotropic kernel and constant basis 
function. The detailed mathematical background of the 
GPR model is presented in section SM.3 of the supple-
mentary material.

2.3  Sensitivity analysis

The observations derived from the metamodels (RS-
HDMR and GPR) are utilized to perform the sensitiv-
ity analysis. The sensitivity analysis offers the relative 
significance of considered parameters on the desired 
responses. The variance-based sensitivity analysis is 
performed for the deliverables of the RS-HDMR model, 
whereas the relative coefficient of variation-based sen-
sitivity analysis is performed for the deliverables of the 
GPR model.

2.3.1  RS‑HDMR driven variance‑based sensitivity analysis

A global variance-based sensitivity analysis is conducted 
to evaluate the relative significance of the individual 

input parameters on the FPF of the considered composite 
plate. A variance-based method [57] is conceptualized in 
the RS-HDMR model. The partial variances are calcu-
lated in the expansion of the output (refer to subsection 
SM.2.1 of supplementary material) to statistically ana-
lyze the overall variance for independently distributed 
random uniform variables.

The total variance ( Vt ) is obtained by

The partial variance ( Vp ) for individual parameters can 
be obtained by

The global sensitivity indices [57] can be expressed as

The variance-based sensitivity analysis utilized in the pre-
sent model (refer to Fig. 2) is particularly useful for the ran-
dom input variables. The variance-based sensitivity analysis 
is carried out for the output function’s first- and second-order 
interactions.

2.3.2  GPR‑driven coefficient of variation (CV)‑based 
sensitivity analysis

The coefficient of variation (CV)-based sensitivity analy-
sis is one of the most effective and practiced approaches 
to define the relative significance of the involved control 
variables [16, 17, 28, 29]. The individual parametric CV is 
estimated by normalizing the corresponding standard devia-
tion (si) with the mean (mi) of the response (as shown in 
Eq. (29)).

The total coefficient of variation (TCV) is evaluated as 
follows-

where n denotes the number of control variables (n = 65 in 
the present study). The individual sensitivity indices are 
obtained by the relative coefficient of variation (RCV), 
wherein the individual CV’s are normalized by TCV as 
follows-

(26)Vt = E(f − f0) =
∑
i

Vti
+
∑
i<j

Vtij
+ ...+Vti...n

(27)Vp = ∫
[0,1]l

(fi1...il )
2dxi1 ...dxil where p = i1, i2...il

(28)Sa =
Vp

Vt

(29)CVi =
si

mi

(30)TCV =

n∑
i=1

CVi
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2.4  Model validation

The constructed metamodel is further validated by analyzing 
the individual model's relative accuracy (RA) and the coef-
ficient of determination (R2). The formulation of the coef-
ficient of determination [8] is stated as

Here, yi, and yi signifies the actual model, predicted 
model, and mean of actual data. In Eq. (33), it is assumed 
that all the parameters are influential in evaluating the 
model's efficiency. The relative accuracy of the model [8] 
is evaluated as

J(x)actual and J(x)predicted are the FE response and cor-
responding predicted response of the RS-HDMR model, 
respectively. The current model is designed with 65 input 

(31)RCVi =
CVi

TCV
where,

n∑
i=1

RCVi = 1

(32)R2 = 1 −

∑n

i=1
(yi − yi

▵)2∑n

i=1
(yi − yi

−)2

(33)RA(%) = 1 −
|||||
J(x)predicted − J(x)actual

J(x)predicted

|||||

variables. The parameters are chosen based on the num-
ber of layers in the laminated composite plate. There are 
eight layers of the composite with a ply orientation angle 
[45◦,−45◦, 45◦,−45◦]s . Each layer has 8 structural material 
properties, as stated in Table 1 of the manuscript, which 
leads to the 64 input parameters. The material's total thick-
ness is considered the 65th input parameter in the present 
study.

3  Result and discussion

In the present study, an eight-layered laminated composite 
plate with ply orientation [45◦,−45◦, 45◦,−45◦]s is con-
sidered to study the FPF analysis of an AS/3501 graphite-
epoxy laminated plate. The material properties utilized to 
perform the FPF are presented in Table 2.

The present study first reports the MCS-based deter-
ministic observations of the FPF of laminated composite. 
It is followed by a stochastic investigation using the RS-
HDMR and GPR metamodels. Prior to diving deep into the 
deterministic and stochastic FPF analysis, the responses 
are validated with the values reported in the previous lit-
erature (refer to Tables 3 and 4). The size configuration 
of the considered plate in the present study is 1 m long, 

Table 2  Material properties of carbon-epoxy-based laminated composite plate [58][45◦,−45◦, 45◦]

E1  (GPa) E2  (GPa) G12  (GPa) G13  (GPa) G23 (GPa) µ ρ (kg∕m3)

138 8.96 7.10 7.10 2.84 0.30 1600

Table 3  Validation of present 
FE-based model with previous 
literature [19]

Mesh size Comparison Failure criteria

Max. strain Max. Stress Tsai-Hill Tsai-Wu Hoffman

(2 × 2) Reddy and Pandey [19] 2854.40 2947.68 2788.80 2886.72 2850.24
Present study 2948.47 3061.84 2886.78 2923.72 2904.98

(4 × 4) Reddy and Pandey [19] 2164.32 2268.64 1803.84 2218.88 2156.80
Present study 2486.54 2421.34 1846.86 2031.58 2216.93

(8 × 8) Reddy and Pandey [19] 1908.16 1940.48 1530.40 1917.76 1905.76
Present study 2192.66 2023.53 1641.13 2195.57 2061.86

Table 4  Validation for partially 
clamped laminated composite 
plates under concentrated 
transverse load [59]

Failure theory [0◦∕90◦]s [00
2
∕90◦]s

Kam et al. [59] Present FEM Kam et al. [59] Present FEM

Max. strain 64.94 64.70 108.26 109.10
Max. stress 76.04 75.07 122.86 120.64
Tsai-Hill 64.03 64.70 107.06 109.10
Tsai-Wu 68.30 66.03 112.77 110.64
Hoffman 63.60 64.57 106.45 108.90
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1 m wide, and 5 mm thick. The FEM-based determin-
istic model used in the present analysis is verified and 
validated [19], 59 in Table 3 and Table 4. The valida-
tion of three-layered T300/5208 graphite-epoxy laminate 
with [45◦,−45◦, 45◦] ply orientation angle is presented in 
Table 3, whereas Table 4 presents the convergence study 
for a 4-layered [0◦∕90◦]s and 6-layered [0◦

2
∕90◦]s laminated 

composite plate for the present FE model with Kam et al. 
[59]. The deterministic finite element results are in good 
agreement with the past published literature [19, 59].

3.1  Stochastic analysis

With adequate confidence corroborated in the present study's 
responses derived from the FE model, the systematic inves-
tigation of the stochastic FPF of the laminated composite 
plate is carried out in detail. At first, the model construc-
tion and validation exercise are reported for both the models 
(RS-HDMR and GPR) in the following paragraphs. Then 
the models' capabilities are compared in the latter part of 
this section.

Fig. 3  Coefficient of determination analysis ( R2 ) for first- and second-
order polynomial function with different sample sizes and different 

failure criteria, viz., a Maximum strain criterion (F1), b Maximum 
stress criterion (F2), c Tsai-Hill criterion (F3), d Tsai-Wu criterion 
(F4), e Hoffman criterion (F5)
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3.1.1  RS‑HDMR model construction and validation

The RS-HDMR model is constructed by considering the dif-
ferent sizes of sample space (Ns). The goodness of fit of the 
individual model is assessed by observing the corresponding 
coefficient of correlation (R2) value. The comparison of R2 
values of different models (constructed with the differently 
sized sample spaces, Ns = 32, 64, 128, 256, 512, 1024, and 
2048) for the individual response is illustrated in Fig. 3. As 
mentioned earlier, the RS-HDMR model is constructed up 
to second-order interactions between the input variables. In 
Fig. 3, a three-dimensional bar graph is illustrated to display 
the transition of coefficient of correlation (R2) with respect 
to first- and second-order polynomial functions correspond-
ing to the different sizes of sample space. The zeroth-order 
term can be calculated by the mean of output. The x-axis 
represents the order of the polynomial functions. The y-axis 
(vertical line) represents the percentage of coefficient of 
correlation. The z-axis represents the different sample 
sizes considered to analyze the efficiency of the model. It 
is observed from the three-dimensional plots furnished in 
Fig. 3 that as the sample size increases, the R2 of the models 
improve proportionally.

It is also evident that the sample space with 2048 sam-
ples results in a comparatively efficient model in terms of 
the R2 value. Both the first- and second-order component 
functions are represented in a single figure to identify 
and observe the trend of the model at varying sampling 
points. It is perceived that the maximum strain criterion 
results in a relatively lower R2 value (however, the R2 is 
close to 100%) as compared to the other failure criteria. 
Despite the promising observations from the comparison 
of R2 values, the observations obtained from the RS-
HDMR model are further validated by comparing the 
relative accuracy of the individual models. In this regard, 
the relative accuracy (RA) in the RS-HDMR-predicted 
response and FEM-derived response is obtained. The 
accuracy analysis is performed by considering three dif-
ferent modes, viz., 1%, 5%, and 10%, wherein 1% means 
that the dataset consists of the MCS-driven perturbation 
of ± 1% in the mean values of the considered parameters; 
likewise, the 5% and 10% can be perceived.

Such detailed error analysis not only reveals the pre-
dictive capability of the constructed metamodel for the 
out-of-fold unknown samples but also provides the meas-
ure of the uncertainty in the prediction of the responses 
associated with the practically relevant uncertain vari-
ations in the input parameters. The observations drawn 
from the accuracy analysis are presented in Fig. 4 in the 
form of three-dimensional bar plots with distinct colors. 
The relative accuracy and its three modes (1%, 5%, and 
10%) are represented in percentage. It is evident from 
the error analysis (refer to Fig. 4) that for Ns = 2048, 

the relative accuracy is highest for each failure crite-
ria considering the first- and second-order polynomial 
functions.

3.1.2  GPR model construction and validation

The GPR model is constructed by utilizing the 2100 
(Ns) samples constructed by the coupled MCS-based FE 
analysis. The model is enforced with the holdout cross-
validation while training, wherein the Nh (Nh = 512, 
1024, and 2048) samples are used as the training data at 
a time, and the remaining samples (Ns-Nh = 1588, 1076, 
and 52) are utilized to validate the constructed model. 
The goodness of fit and predictive accuracy of the con-
structed model is assessed by observing the scatter plots 
and error analysis.

The scatter plots indicate the close-fitting of the GPR 
model when 2048 samples are used to train the model, 
and 52 samples are used to validate the model, as illus-
trated in Fig. 5. It is evident from Fig. 5 that the GPR 
model shows a promising fit regardless of the responses 
(F1-F5). In the scatter plot corresponding to F1, the 
sample points are comparatively much spread (from the 
linear line) compared to the scatter plots of the other 
responses, similar to the case of RS-HDMR (which 
shows less R2 value). To assess the predictive accuracy 
of the GPR model, the percentage error in the predicted 
responses is determined and distributed using the prob-
ability density function (pdf) plots depicted in Fig. 6. 
Figure 6 shows that when the GPR model is trained with 
2048 samples, regardless of the responses, the model 
has a likelihood of minimum (within ± 10%) percentage 
error in the predictions. The sample size-dependent rela-
tive accuracy of the GPR model is compared with the 
relative accuracy obtained from the RS-HDMR model 
(refer to Fig. 7). It is evident from Fig. 7 that the relative 
accuracy of the RS-HDMR is in the vicinity of the GPR 
model, especially for the case of the models trained with 
the 2048 samples (refer to Fig. 7c).

This indicates that even though the RS-HDMR model 
is not cross-validated, it is capable of providing sound pre-
dictions. With this understanding, we further compared the 
deliverables (large-scale predictions) from both models.

3.1.3  Comparison of RS‑HDMR with GPR

With the sufficient confidence established by the model veri-
fication illustrated in Sects. 3.1.1 and 3.1.2, we further com-
pared the predictions made by both models. In this regard, 
the randomly distributed 10,000 samples are constructed 
(with the same ± 10% parametric variation) for which the 
responses (F1-F5) are predicted by RS-HDMR and GPR 
model. The comparison of the predicted responses with the 
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original MCS-based FE outcomes is performed in terms of 
their probabilistic distribution (refer to Fig. 8).

The pdf of the RS-HDMR and GPR predicted responses 
almost follows the distribution of the MCS-based FE-driven 
responses, which indicates that the prediction capabilities 
of the RS-HDMR and GPR models are comparable. In the 
next stage, the sensitivity analysis is performed to highlight 
the relative significance of the individual parameters on the 
responses. In this regard, the variance-based sensitivity anal-
ysis is performed by utilizing RS-HDMR model and relative 
coefficient of variation (RCV)-based sensitivity analysis is 
performed by utilizing the GPR model. The detailed math-
ematical background of both the sensitivity analysis tech-
niques is presented in Sects. 2.4.1 and 2.4.2. The sensitivity 
indices obtained from both the approaches are compared 
in Fig. 9. It is worth noting that, despite the functional dif-
ferences in both approaches (variance-based and relative 

coefficient of variation (RCV)-based sensitivity analysis), 
the observations drawn are the same. Figure 9 illustrates 
that regardless of the failure criteria the highly significant 
input variables indicated by the variance-based sensitivity 
analysis are supported by the corresponding sensitivity allo-
cated by the RCV-based sensitivity analysis. It is observed 
from the sensitivity analysis performed by using both the 
approaches that the thickness of the laminated plates (x65) is 
observed to be the most significant parameter regardless of 
the considered response, also apart from x65 majorly higher 
sensitivity is observed in the ply orientation (x1-x8) for all 
the responses (F1-F5).

The comparison of summation of the first-order sensitiv-
ity indices obtained by both the sensitivity approaches (vari-
ance-based and relative coefficient of variation (RCV) based 
sensitivity analysis) is furnished in Table 5. It is observed 
that the maximum strain criterion results in the highest col-
lective sensitivity index in the case of RCV-based sensitiv-
ity analysis, whereas the variance-based sensitivity analysis 
resulted in the highest collective sensitivity index for the 
case of Tsai-Hill criterion.

Fig. 4  The variation in relative accuracy (RA) of the first-order and 
second-order function RS-HDMR-predicted FPF by considering dif-
ferent failure criteria (F1-F5) with respect to the change in the sample 
size

◂

Fig. 5  Scatter plots for training and test data samples against MCS and GPR responses for different failure criteria (F1-F5)
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As stated above that despite the total thickness of lami-
nated plates, the ply orientation angles are observed to be 
relatively the most significant parameters. For instance, 
the ply orientation angle in the 3rd layer (x3) is observed 
as the most significant parameter in obtaining the failure 
load determined by the maximum strain theory (F1) (refer 
to Fig. 9a). Similarly, the ply orientation angle for the 8th 
layer (x8) dominates other input parameters in determining 
the failure load by the maximum stress theory (F2), Tsai-Hill 
theory (F3), Tsai-Wu theory (F4), and Hoffman theory (F5) 
(refer to Fig. 9b–e).

It is to be noted that the comparison of individual models’ 
verification and their deliverables presented in the preced-
ing paragraphs establishes the computational ingenuity of 
the responses obtained by the RS-HDMR. With this under-
standing, further, the second-order polynomial functions of 
the RS-HDMR model are utilized to perform the prediction 
for the newly constructed unknown 10,000 samples (as car-
ried out for the analysis shown in Fig. 8). The predictions 

of second-order polynomial function-based RS-HDMR are 
compared with original MCS-based FE responses (refer to 
Fig. 10). Similar to the predictions made by the first-order 
polynomial function-based RS-HDMR model, the second-
order polynomial function also depicts the closeness in the 
predictions when compared with the distribution of the 
MCS-based FE responses. The observations drawn from the 
second-order polynomial function-based sensitivity analysis 
are presented in Fig. 11, wherein the x- and z-axes represent 
the two variables contributing simultaneously and the y-axis 
represents the failure load corresponding to the second-order 
polynomial function.

Figure 11a–e depicts the plots corresponding to the influ-
ence of the two most sensitive parameters on the failure load 
determined for a particular failure criterion, derived from the 
second-order polynomial functions-based sensitivity analy-
sis. As an outcome of the second-order polynomial func-
tion-based sensitivity analysis, the two most sensitive input 
parameters are revealed for each case of considered failure 

Fig. 6  Error analysis for GPR model for optimum sample sizes for different failure criteria (F1-F5)
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Fig. 7  Relative accuracy analy-
sis for GPR and RS-HDMR 
model at different sample sizes 
for different failure criteria 
(F1-F5)

Maximum stress criterion (F1) Maximum strain criterion(F2) Tsai-Hill criterion (F3) Tsai-Wu criterion (F4) Hoffman criterion (F5)

RS-HDMR 

(a) (b) (c) (d) (e)
GPR

(f) (g) (h) (i) (j)

Fig. 8  PDF comparison between RS-HDMR and GPR for 2048 samples for different failure criteria (F1-F5)
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criteria. Such as, in the case of the failure load (F1), the ply-
orientation angle for the 3rd (x3) and 4th layer (x4) has the 
highest collective sensitivity (refer to Fig. 11a), whereas the 
ply-orientation angle for 4th layer (x4) and transverse elastic 

modulus for 4th layer (x20) dominates while the determina-
tion of failure load (F2) (refer to Fig. 11b). Likewise, for 
failure load (F3), the highest collective sensitivity is found 
for the transverse elastic modulus of the 3rd layer (x19) and 
transverse shear modulus of elasticity of the 5th layer (x37) 
(refer to Fig. 11c). In the case of failure load (F4), the first 
layer of the transverse shear modulus of elasticity (x33) and 
Poisson’s ratio of the 6th layer (x62) is observed as the most 
sensitive parameters (refer to Fig. 11d). Lastly, the failure 
load (F5) is highly influenced by the 6th (x6) and 8th layer 
(x8) of the ply-orientation angle (refer to Fig. 11e).

The sensitivity indices obtained from the first-order poly-
nomial and second-order polynomial functions are compared 
(for the first five highly ranked variables or variable combi-
nations) for all the responses (F1-F5) in Fig. 12. It is evident 
from the comparison of sensitivity indices that the first-order 
terms possess relatively higher sensitivity when compared 
to the second-order terms.

Fig. 9  Sensitivity analysis of input parameters based on RS-HDMR and GPR machine learning models for different failure criteria (F1-F5)

Table 5  Comparison of collective sensitivity index of RCV-based 
sensitivity analysis (GPR) and variance-based sensitivity analysis 
(RS-HDMR)

Failure criteria GPR RS-HDMR
TCV =

∑n

i=1
CVi

∑
Si

Maximum strain criterion 72.52 70.16
Maximum stress criterion 62.00 81.42
Tsai-Hill criterion 66.10 89.12
Tsai-Wu criterion 66.80 88.67
Hoffman criterion 66.77 88.26
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4  Conclusions

In the present article, the stochastic first-ply failure load 
analysis of an eight-layered AS/3501 graphite-epoxy lami-
nated plate with ply orientation [45◦,−45◦, 45◦,−45◦]s is 
performed by considering five different failure criteria, viz. 
(a) Maximum strain criterion, (b) Maximum stress criterion, 
(c) Tsai-Hill criterion, (d) Tsai-Wu criterion, and (e) Hoff-
man criterion. The eight input parameters (ply-orientation 
angle, elastic moduli, shear moduli, Poisson ratio, and mass 
density) are considered for the individual eight layers of the 
FE model, which leads to the 64 input variables. Along with 

these 64 input variables, the composite plate's total thickness 
(t) is randomly varied.

The randomness in the structural and material input prop-
erties of the composite plate is introduced by integrating the 
Monte Carlo simulation (MCS) with the conventional finite 
element method (FEM) approach. Further, the individual FE 
models are constructed by enforcing these 65 input condi-
tions to calculate the responses in terms of first-ply failure 
load by considering the five different failure criteria. The 
random sampling-high-dimensional model representa-
tion (RS-HDMR) model is utilized to conduct the detailed 
stochastic analysis of the first ply failure of the laminated 

Fig. 10  Pdf for second-order 
polynomial functions of RS-
HDMR and MCS for 2048 
samples for five different failure 
criteria (F1-F5)
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Fig. 11  RS-HDMR component function for variance-based sensitiv-
ity analysis for second-order function. a the collective influence of x3 
(ply orientation angle for 3rd layer) and x4 (ply orientation angle for 
4th layer) on the failure load determined by maximum strain crite-
rion, b collective influence of x4(ply orientation angle for 4th layer), 
and x20 (transverse elastic modulus for 4th layer) on the failure load 
determined by maximum stress criterion, c collective influence of 

x19 (transverse elastic modulus of 3rd layer) and x37 (transverse shear 
modulus of elasticity of 5th layer) on the failure load determined 
by Tsai-Hill criterion, d collective influence of x33 (1st layer of the 
transverse shear modulus of elasticity) and x62 (Poisson’s ratio of 6th 
layer) on the failure load determined by Tsai-Wu criterion, e collec-
tive influence of the 6th (x6) and 8th layer (x8) of the ply-orientation 
angle on the failure load determined by Hoffman criterion
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composite plate. The predictive accuracy of the model is 
assessed on the basis of the relative accuracy of the pre-
dicted responses. We also verified the model’s accuracy by 
comparing the outcomes of the RS-HDMR model with the 
GPR model.

Such MCS-based metamodeling of the physical prob-
lem mitigates the computational expenses associated with 
the large-scale MCS-based FE models, and at the same 
time, the constructed models can be used for the in-depth 
investigation of the material’s behavior. With adequate 
confidence in the developed RS-HDMR model, the model 
is further deployed to perform the variance-based sensitiv-
ity analysis to obtain the relative significance of the con-
sidered input parameters. The global sensitivity analysis 
of the input parameters is performed by using both first- 
and second-order polynomial functions. It is observed 
the first-order polynomial functions of the RS-HDMR 
model dominate the second-order polynomial functions 
in determining the sensitivity indices. The first-order poly-
nomial functions-based sensitivity analysis revealed that 
the laminated composite's thickness and ply-orientation 
angle are the most sensitive parameters in determining 

the failure load, regardless of the failure criteria utilized. 
Subsequently, the influence of the two most significant 
parameters on the failure load derived from the individual 
failure criteria is investigated by performing the second-
order polynomial functions based on sensitivity analysis.

The RS-HDMR model-based framework proposed in 
the present study demonstrates the successful integra-
tion of the MCS, FEM, and RS-HDMR. The exceptional 
computational efficiency of the developed metamodel 
reveals deep insights into the first-ply failure of the lami-
nated composite plate, which would otherwise remain 
unexplored due to the exorbitant nature of performing the 
large-scale MCS-based FE simulations. The findings of the 
present study provide critical information about the design 
paradigm of the laminated composite plate.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40430- 022- 03674-w.
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