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Abstract
As a critical content of condition-based maintenance (CBM) for mechanical systems, remaining useful life (RUL) prediction 
of rolling bearing attracts extensive attention to this day. Through mining the bearing degradation rule from operating data, 
the deep learning method is often used to perform RUL prediction. However, due to the complexity of operating data, it is 
usually difficult to establish a satisfactory deep learning model for accurate RUL prediction. Thus, a novel convolutional 
neural network (CNN) prediction method based on similarity feature fusion is proposed. In this paper, the similarity features 
are extracted based on the correlation between statistical features and time series. After sensitive feature screening, eligible 
features are applied to develop a health indicator (HI), which can be used to define the bearing failure stages and reduces the 
complexity of the CNN model. Subsequently, a one-dimensional CNN is established to predict the RUL of bearing, and the 
HI is utilized to train the prediction model. The proposed approach is verified by FEMTO bearing datasets and IMS bearing 
datasets. And the experimental results reveal the superiority and effectiveness of the feature fusion-based CNN method in 
constructing HI and accurate RUL prediction.
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1 Introduction

As one of the most essential components, rolling bearing 
is widely used in various mechanical systems, and its run-
ning state determines the machinery’s RUL. The failure 
of bearings can result in serious accidents and major eco-
nomic loss. Therefore, to ensure the safe and reliable opera-
tion of a mechanical system, RUL prediction of bearings is 
indispensable.

With the increasing complexity of sampling data, super-
vised data-driven methods have been extensively researched 
[1–3]. The core idea is to train neural network models using 
HI and RUL labels, which can then be used to predict the 
RUL of bearings [4–6]. Therefore, HI performance sig-
nificantly influences RUL prediction, and the construction 
of HI is generally based on monitoring signals. Different 

HI construction strategies can be divided into physical HI 
(PHI) and fusion HI (FHI) [7]. PHI can be obtained through 
a simple signal processing method, such as root mean 
square (RMS) and kurtosis of a bearing vibration signal, 
which contains some physical meanings. In [8], the RMS is 
employed as PHI to indicate the degradation trend of bear-
ings. Meanwhile, FHI is constructed by fusing or reducing 
the dimensionality of physical features, which can reflect the 
degradation process but has no real physical significance. 
For example, Gao et al. [9] extracted time-domain features 
and fused the data to build an HI; they then predicted the 
bearing RUL using the Metropolis–Hastings algorithm. In 
addition, Tian et al. [10] combined four selected features into 
one HI to characterize the life state. The above HI performed 
well and achieved good prediction. Based on these studies, 
this paper proposes a new HI construction method. First, the 
approach extracts similarity features based on the correla-
tion between statistical features and time-series data. Then, 
it combines the time–frequency domain features to build an 
HI, which can effectively mine useful degradation informa-
tion and represent the health states of bearings.

HI quality is an important factor affecting the RUL pre-
diction accuracy; another essential factor is the learning 
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capability of intelligent computational algorithms. With the 
improvement in computing power, deep learning (DL) [11], 
including long short-term memory (LSTM) [12, 13], deep 
belief network (DBN) [14], and CNN [15–17], has become 
a hot research topic. Ding et al. [18] considered the transi-
tion of different degradation stages and proposed one- and 
multi-stage iteration prediction models based on the LSTM 
neural network for RUL prediction. The experimental results 
showed the competitive performance of the LSTM neural 
network. DBN, one of the critical approaches for big data 
processing and analysis, can also be used to predict RUL. 
For example, Jason et al. [19] used DBN to predict the RUL 
of rotating equipment, which explore the self-taught feature-
learning capability of DBN. Among the various DL models, 
a CNN attracts special attention because of its feature extrac-
tion ability, which is widely used in recognition and detec-
tion problems in the field of computer vision. [20–22] In 
addition, 1-D CNNs have recently been successfully applied 
to speech recognition and document reading [23–25]; more-
over, the utilization of CNN-based models shows considera-
ble potential in RUL prediction [25–28]. Compared to a deep 
neural network, a CNN uses fewer parameters to achieve 
the same functionality or precision [29]. Cheng et al. [30] 
exploited the adoption of CNNs in predicting the bearing 
RUL, and the experimental results demonstrated a superior 
performance of the proposed CNN model. Hence, the cur-
rent paper focuses on constructing significant bearing HI 
which can be utilized to define the bearing failure stages. 
And proposes a 1-D CNN model to mine the underlying 
information of the HI, learning the degradation of bearings 
according to the HI and RUL labels. The model’s main func-
tion is to reveal the hidden dependence between an HI and 
training bearing RUL by using the feature extraction ability 
of CNNs for RUL prediction.

This study tests the bearing RUL by using two DL 
methods: a CNN and an LSTM network model, which are 
also applied to validate the effectiveness of the proposed 
approach.

The viability of the proposed approach is proved using 
the FEMTO bearing datasets [31] and the Intelligent Main-
tenance System (IMS) bearing dataset [32]. The following 
contributions can be summarized:

1. A related similarity (RS) feature construction approach, 
used for both time and frequency domains, is presented 
based on the similarity between the current data and 
original operating-point data. The RS features are built 
to mine valid degradation information, ranging from 0 
to 1, so that normalization can be omitted.

2. A special HI based on the RS feature and principal 
component analysis (PCA) dimension reduction is con-
structed. This can effectively illustrate the degradation 
in bearing operation.

3. A CNN model that inputs the HI of rolling bearings is 
presented, which improves the accuracy of RUL estima-
tions.

4. The potential of the proposed method is demonstrated 
using the experimental datasets. The results show 
that CNNs perform better than the LSTM prognosis 
approach.

The novelty of the proposed method includes (1) the HI 
based on the RS feature and PCA can effectively reflect the 
health status of bearings; and (2) the special HI significantly 
reduces the complexity of the CNN model and improves the 
accuracy of predicting the RUL of bearings.

The remaining paper is organized as follows. Section 2 
describes the proposed approach; Sect. 3 presents the experi-
mental verification of the proposed methodology and pro-
vides the results. Finally, Sect. 4 concludes the study.

2  Proposed approach

The framework of the proposed method is based on the 
run-to-failure data of rolling bearings: the time, frequency, 
and time–frequency domain features are first extracted to 
construct similarity features, and then sensitive features are 
screened from them. The HI using the data fusion method 
to construct is to characterize bearing degradation status. 
Finally, the bearing RUL is predicted using a data-driven 
model.

Figure 1 shows the flowchart of the proposed method. 
First, 23 features in the time, frequency, and time–frequency 
domains are extracted to form the characteristic time series 
of rolling bearing vibration signals. Then, the similar charac-
teristics of the time and frequency domains are constructed 
based on the Pearson correlation coefficient-which, together 
with the time–frequency domain features, constitute 14 bear-
ing degradation features. Next, the features are sorted by 
the Cori index according to monotonicity and tendency, 
and the features with scores exceeding the preset thresh-
old are selected. Using PCA, these features are combined to 
construct the HI. Finally, a CNN degradation model is con-
structed, and the HI is used as its input to predict the RUL of 
rolling bearings. The implementation process is detailed in 
Sects. 2 and 3. The RUL prediction method is verified using 
the whole life data of bearing vibration acceleration signals 
in FEMTO bearing datasets.

2.1  Data acquisition

In this paper, FEMTO bearing datasets [31] and IMS bearing 
datasets [32] have been used to analyze the degradation of 
the bearings and estimate their RUL. Details of the dataset 
are provided in Sect. 3.
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2.2  Feature extraction

For the vibration signal x = [x1, x2,…,xn] collected in each 
sampling period, 10 traditional time-domain statistical char-
acteristics are extracted (Appendix).

In the frequency domain, FFT transforms the time-
domain signal x = [x1, x2,…,xn] into the frequency-domain 

signal s = [s1,s2,…,snfft]. FFT is used to extract the com-
plete frequency spectrum of the time-domain signal, which 
is divided into four sub-band spectra, and the amplitudes 
of this spectrum and the four sub-band spectra are applied 
as five frequency-domain features. In the time–frequency 
domain, to obtain the nonlinear characteristics of the vibra-
tion signal more comprehensively, multilevel wavelet packet 

Fig.1  Process of remaining life CNN prediction method based on similarity feature fusion
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decomposition is used to extract the time–frequency fea-
tures. In this study, the Haar wavelet is used to decompose 
the vibration signal into a group of wavelet packet nodes 
through three-level wavelet packet decomposition, which 
divides the frequency axis into eight frequency bands, and 
the energy ratio of each band is exploited as eight time–fre-
quency features.

2.3  Similarity feature construction based 
on pearson’s correlation coefficient

Pearson’s correlation coefficient can better reflect the corre-
lation between feature time-series data, which is widely used 
in similarity measurement [33]. Hence, it is used as the basis 
for calculating time- and frequency-domain RS features, the 
calculation method is according to formula (1):

Here, R lies in the interval [-1,1]. When the Pearson cor-
relation coefficient is close to 1, the correlation between the 
x and y sequences is greater than the coefficient close to 
0. To describe the correlation between the features more 
directly, the absolute value of R is adopted to construct the 
RS features of the time and frequency domains. Let ft indi-
cate the feature series sampled at time t and f0 indicate the 
time series of the initial observation time; then, the RS fea-
tures can be calculated according to formula (2).

Type:
N – length of each feature time series;
f 0 – the average of {f i

0
}i=1∶N;

f t – the average of {f i
t
}i=1∶N.

(1)R =

∑N

i=1

�
xi − x

��
yi − y

�

�∑N

i=1

�
xi − x

�2 ∑N

i=1

�
yi − y

�2�1∕2

(2)RS =

���
�

∑N

i=1

�
f i
0
− f0

��
f i
t
− ft

����
�

�
∑N

i=1

�
f i
0
− f0

�2 ∑N

i=1

�
f it − ft

�2
�1∕2

If ft is equal to f0, RS is 1, and the bearing is in the initial 
health state. When t increases gradually, the time series and 
initial observation time series show a different trend. At this 
moment, RS decreases continuously until it reaches 0, and 
the bearing is in a state of degradation.

After the similarity feature calculation method is applied 
in 10 traditional time-domain features, one time-domain RS 
feature, named RS1, is acquired. Using the same method, we 
obtain five frequency-domain RS features, which are marked 
as RS2–RS6. We consider them and the eight time–fre-
quency domain features as the original feature set. All fea-
tures are shown in Table 1.

2.4  Sensitive features selection

In the original feature set, there are redundant features that 
cannot completely describe the life state of the bearings; 
therefore, the sensitive features is screened from the original 
feature set to select the features that can accurately reflect 
the degradation process of the bearing. To construct a suit-
able HI, the trend and monotonicity of the original feature 
are quantitatively evaluated. The trend can assess the linear 
correlation between the feature and observation time. The 
greater the trend, the more the feature tends to degrade over 
time, and the greater the correlation with the true value. 
Monotonicity can evaluate the nature of a feature’s increas-
ing or decreasing trend on the time axis. The greater the 
monotonicity, the better is the monotonicity of the feature; 
otherwise, the feature is oscillating.

For the feature sequence f = [f1,f2,…,fk] and time 
sequence t = [t1,t2,…,tk], ft is the corresponding degrada-
tion feature value at time t, where K is the largest sample 
number value. The specific calculation method of Trend is 
shown in Formula (3):

(3)Trend(F, T) =

���
�
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Table 1  Original feature set RS features Energy ratio features

Time-domain Frequency-domain Time–Frequency domain

RS1 RS of 10 classical time-domain features TF1 Energy ratio of (3,0)
RS2 RS of [0,12800] Hz TF2 Energy ratio of (3,1)
RS3 RS of [0,3200] Hz TF3 Energy ratio of (3,2)
RS4 RS of [3200,6400] Hz TF4 Energy ratio of (3,3)
RS5 RS of [6400,9600] Hz TF5 Energy ratio of (3,4)
RS6 RS of [9600,12800] Hz TF6 Energy ratio of (3,5)

TF7 Energy ratio of (3,6)
TF8 Energy ratio of (3,7)
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Type:
N – length of each feature time series;
F – the average of {fi}i=1∶K;
T  – the average of {ti}i=1∶K.
The specific calculation method of monotonicity is shown 

in formula (4):

Type:
dF–Differentiation of characteristic sequences.
Both trend and monotonicity are in the range [0, 1]. To 

measure the original features, this paper uses the Cori index 
to screen the sensitive feature. The specific calculation 
method is shown in formula (5):

The Cori index for each original feature is calculated 
according to the ranking of the Cori values, and the corre-
sponding features above the set threshold are screened out to 
form a sensitive feature set. Hence, features that have good 
representation capabilities of bearings are selected.

Feature extraction is carried out for time-series data 
within T time units, and N feature time series on a sensitive 
feature set constitute a feature matrix XT × N; then,Fi

{1∶T}
 is 

used to represent the feature time series of the ith column of 
XT × N.

2.5  HI construction based on PCA

To quantitatively evaluate the degradation state of the bear-
ings, the HI is constructed based on the whole bearing life 
cycle. In the HI construction process, PCA is a widely used 
method in data fusion and feature extraction [34], which 
can screen out the interaction information of features on 
sensitive feature sets. Through orthogonal transformation, 
the original features are projected to a few comprehensive 
features; therefore, a small amount of data can be used to 
represent the main information features implied by the input 
data to achieve dimensionality reduction. The HI construc-
tion approach based on PCA can be described as follows:

(1) To address the problem of inconsistent data weights 
caused by the excessive difference in sensitive feature 
dimensions, the maximum and minimum normalization 
method is used to normalize XT × N, which is indicated 
as XT×N

norm
.

(2) The covariance matrix C of XT×N
norm

 is identified.
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(5)Cori =
Trend +Mon
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(6)XT×N
norm

=
x −min(x)

max (x) −min(x)

  where Xi,are the variables of the data setXT×N
norm

 , and μ 
is the mean vector.

(3) The eigenvalue �i of C and the corresponding eigenvec-
tor vi are calculated, and the relationship is as follows.

  The eigenvalue is the variance of the first principal 
component (PC1), and the eigenvector is the column 
vector of the transformation matrix.

(4) The eigenvalues are sorted, the largest K eigenvalues 
are selected, and the corresponding K eigenvectors are 
used as row vectors to form the eigenvector matrix P.

(5) The data are converted to a new space constructed by K 
feature vectors, and Y{1:T} = [y1,y2,…,yT] is obtained 
through Y = PX, which is the principal component 
acquired by PCA fusion.

(6) The maximum and minimum normalization processing 
is performed on PC1, which is applied as a dimension-
less index that maps the result to 0–1. As the HI in this 
paper, PC1 does not have any physical meaning but 
has good monotonicity and trend, which can reflect the 
performance degradation trend of the rolling bearings 
more intuitively and significantly.

2.6  One‑dimensional CNN for RUL prediction

A CNN is a representative DL algorithm, which is a feed-
forward neural network inspired by the local receptive field in 
biological neurology. Among an increasing number of variants 
of the CNN model, a 1-D CNN is a suitable model for process-
ing 1-D signals in the industrial field [35].

In general, the one-dimensional CNN structure is mainly 
composed of the convolutional layer, the pooling layer, and the 
full connection layer, which exhibit the characteristics of local 
connection, weight-sharing, pooling, and multilayer structure 
[36].

(1) Convolutional layer
Frist is the input layer, which mainly includes the convolu-

tional layer shown in Fig. 2(a). Each convolutional layer con-
sists of a set of learnable kernels K (also known as the filter). 
The convolved feature is calculated by the dot product between 
the weight of the filter and the perceived region of input data, 
which can be expressed as:

(7)C =

n∑

i=1

(
(
Xi − �

)(
Xi − �

)T
)

(8)Avi = �ivi, i = 1, 2, 3,… , n
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where Xn
i
 is the input data in the first layer n. Kl

i,j
 and bl

j
 

denote the weight and bias vectors respectively. yl
i
 is the 

output of the jth feature map channel in the layer 1. f (·) is 
the nonlinear activation function that determines if the neu-
ron is awake. The Rectified Linear Unit (ReLU) is used for 
neurons in the convolutional layer and is widely employed 
in pattern recognition. Its ability to accelerate the conver-
gence and mitigate the vanishing gradient problem has been 
proven [35]. The ReLU can be represented as follows:

(2) Pooling layer
In the second part, the pooling layer can compress the 

data volume and improve the computing efficiency after the 
convolutional layer, which is shown in Fig. 2(b). The type of 
pooling layer includes maximum pooling, average pooling, 
random pooling, and sum area pooling. Since the maximum 
pooling can get faster convergence and improve generaliza-
tion, the maximum pooling is utilized in this paper, and its 
mathematical model can be represented as:

where yl
i
 and pl

i
 represent the channel input and output 

of the pooling layer. W represents the pooling window, 
which can slide with a certain step. ∩ represents the overlap 
between the pooling window and the channel output of relu. 
max(·) represents the operation that takes the max of input 
data.

(10)f (x) = max(0, x)

(11)pl
i
= max

(
w ∩ yl

i

)

(3) Fully connected layer
The third part is composed of a fully connected layer and 

is used to further extract the features and connect with the 
output layer after the convolutional layer and pooling layer. 
Figure 2 shows the above-described topology structure of 
CNN. The neurons in the fully connected layer are intercon-
nected according to the following calculation:

where yi and pi represent the output and input of the fully 
connected layer respectively. wi represents the weight matrix, 
and bi is the bias. f(·) is the activation function in the fully 
connected layer.

The prediction process of the bearing is based on 1-D 
time-series signals. The training model is affected by an 
accurate addition of labels to the data [37]. Therefore, after 
the segmented processing of the HI, RULs are added to the 
original data as labels by using the constructed HI value.

The run-to-failure data sample of the bearing is consid-
ered as the training set{xt, yt}, and the HI values are taken as 
the xt of the training set; the percentage of the bearing RUL 
at t is applied as the corresponding label yt. Assuming that 
RUL1 is the whole life of the bearing, the RUL at time t is 
represented as RULt. The calculation of the RUL percentage 
is as shown in formula (13):

When t is 0, yt is 1, which indicates that the bearing has 
just begun to degenerate. When yt is 0, it means that the bear-
ing has completely failed, and the RUL is 0 at the moment.

(12)yi = f
(
wi∗pi + bi

)

(13)yt =
RULt

RUL1

Fig. 2  One-dimensional CNN structure diagram
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The HI divided into 10 time steps and the RUL label as 
the 11th time step are directly input into the 1D-CNN model, 
and the output of the model is the predicted RUL value, 
which reflects the input vibration signal moment of the bear-
ing. The step size is set as 1 to train the CNN model. Assum-
ing that the HI includes 2803 values, the dimensions of the 
input sequence it will split are 2793 × 10. In this paper, the 
convolution kernel of the CNN model is set to 64, the kernel 
size is 2, and the pooling layer size is 2.

3  Experimental study and result discussion

Two datasets are used to validate the proposed approach: 
FEMTO bearing datasets [31] and IMS dataset [32]. First, 
the sensitive features are extracted from the raw data, and 
then an HI is constructed to train the CNN model for RUL 
estimation. The details of the datasets and the experiments 
are revealed in the following subsection.

3.1  Case study on the FEMTO bearing datasets

3.1.1  Data description

The bearing testbed is shown in Fig. 3. The proposed method 
is tested using the public FEMTO-ST bearing dataset from 
the PHM Data Challenge held by the Institute of Electri-
cal and Electronics Engineers (IEEE) in 2012, which cov-
ers the vibration acceleration data under three load condi-
tions (Table 2): (1)1800 rpm and 4000 N, (2)1650 rpm and 

Fig. 3  Data acquisition test platform of FEMTO bearing datasets

Table 2  FEMTO bearing datasets

Dataset Condition1 Condition2 Condition3

Learning set Bearing1_1 Bearing2_1 Bearing3_1
Bearing1_2 Bearing2_2 Bearing3_2

Testing set Bearing1_3 Bearing2_3 Bearing3_3
Bearing1_4 Bearing2_4
Bearing1_5 Bearing2_5
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7
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4200 N, (3)1500 rpm, and 5000 N. Under each working 
condition, there are two run-to-failure bearings, which are 
considered as training bearings, and the remaining bearings 
are considered as test bearings. The data sampling frequency 
is 25.6 kHz; sampling is performed every 10 s, with each 
sampling lasting for 0.1 s; and 2560 vibration data points 
are recorded at a time. The test bench and test description 
are detailed in reference [31].

To validate the proposed approach, Bearings 1_1, 2_1, 
and 3_1 are selected as the training sets, and 11 are randomly 

selected as testing sets, including 1_2 to 1_7, 2_2 to 2_5, and 
3_3.

3.1.2  Feature extraction and selection

The horizontal vibration signals of 14 bearings are pre-
processed and the original signals are filtered using the 
wavelet denoising method. To eliminate the influence of 
periodic changes and random fluctuations, the original 
features are processed with a moving average (MA) of 
a window 100; then, normalized and eliminated outliers 
are processed. Taking Bearing 1_2 as an example, the 

Fig. 4  Visualized image of 
initial features of bearing 1_2
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visualized image of the extracted and fused features is 
shown in Fig. 4.

The two indicators of the 23 features in Bearings 1_1 
and 1_2 are shown in Fig. 5.

The Cori index of the 14 features of Bearing 1_1 is 
calculated and sorted; the result is shown in Fig. 6. The 
threshold is set as 0.5. The features higher than the thresh-
old are TF5, TF1, TF6, TF3, TF4, and RS2, which form 
the sensitive feature set.
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3.1.3  HI construction

The result of the fusion of the features in the sensitive fea-
ture set based on PCA is shown in Fig. 7, which is the HI 
of Bearing 1_1.

The RMS features used to calculate the stop threshold of 
the rolling bearing test are compared to verify the effective-
ness of the HI. As mentioned in the International ISO 2372 
Mechanical Vibration Industry Standard, for medium-sized 
machinery, when the RMS of the vibration signal reaches 
2.0–2.2 g, it indicates that the equipment is in a dangerous 
state [38]. Figure 8 shows the vibration signal RMS and 

HI of Bearings 1_1 and 1_2 in the whole life cycle. Fig-
ure 8(a) shows that RMS cannot effectively characterize the 
performance degradation state of the bearing. For the HI 
constructed using this method, as shown in Fig. 8(b), the HI 
value scale range of the two bearings is roughly the same 
throughout the life cycle. Relative to Bearing 2, whose RMS 
cannot characterize the performance degradation state, HI 
can sense its early degradation and characterize its degrada-
tion state.

Figure 9 shows the HI constructed by the sensitive fea-
ture selection method for seven bearings. When the HI value 
exceeds 0.5, it means that the test bearing is in the normal 
state. When the HI value ranges from 0.2 to 0.5, the test 
bearing is in the initial degradation stage. When it is less 
than 0.2, the test bearing is in the rapid degradation stage 
until complete failure.

3.1.4  RUL prediction and comparison with different model

The proposed 1-D CNN model is used to predict the bear-
ing RUL, and the vibration signal acquired at each sampling 
time of Bearing 1_1 is utilized to construct the HI. After the 
HI is constructed, it is applied to train the CNN model and 
predict RUL. As shown in Fig. 10, the abscissa is the cur-
rent time and the ordinate is the RUL percentage. The figure 
shows that the RUL curve of the bearing predicted by the 
CNN model is close to the actual remaining life curve. When 
the observation time is approximately 10000S, the curve has 
evident fluctuations. Compared to the bearing HI, the results 
predicted by the feature fusion-based CNN method can per-
ceive the initial degradation of the bearing. The prediction 

Fig. 7  HI of bearing 1_1

Fig. 8  RMS and HI of bearings 1_1 and1_2
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result fluctuates up and down in the true RUL at the end of 
the lifetime, which is close to the truth RUL as a whole, 
showing a downward trend.

To verify the effectiveness and superiority of RUL pre-
diction acquired by the CNN model, the model is compared 
with the LSTM model and the Bi-LSTM model. LSTM 
is a special memory neural network that can consider the 
memory data of current and historical periods to achieve the 
prediction, which can extract time-series features after train-
ing and solve long-term dependence problems [39]. Similar 
to LSTM, Bi-LSTM is a corresponding variant of the new 
recursive network architecture; both of them function as 
solutions to long-term dependency problems [40].

Taking Bearings 1_3, 1_5, 1_7, 2_2, 2_4, and 3_3 as 
examples, the HIs are input into the trained CNN, LSTM, 
and Bi-LSTM to obtain the truth RUL fit curves and the 
predicted RUL values for each time point. This paper applies 
MA to smoothen the predicted curves to visually display 
the curve of the predicted RUL values acquired by the CNN 

model. The actual and predicted percentage of RUL curves 
are shown in Fig. 11. The result shows that the results pre-
dicted by the CNN model show a better fit to the real RUL 
compared to other models, which signifies that the proposed 
approach can appropriately predict the bearing RUL. The 
method is still effective for bearings’ RUL prediction under 
different working conditions.

To describe the prediction effect of CNN and LSTM mod-
els more accurately, the models are evaluated using mean 
absolute error (MAE), root mean squared error (RMSE), 
and maximum error (MAX), which are calculated as follows:

The approach proposed to predict RUL is compared with 
other methods. To indicate the advantage of the proposed 
feature-fusion HI at RUL prediction, this paper uses the 
RMS of bearing vibration signals as the HI to predict RUL 
by CNN, LSTM, and Bi-LSTM. Taking seven bearings, as 
illustrated, the RUL prediction error results of LSTM-HI, 
Bi-LSTM-HI, CNN-RMS, LSTM-RMS, Bi-LSTM-RMS, 
and our method are shown in Fig. 12. The proposed method 
outperforms the other methods. Most cases in predicting 
11 bearings’ RUL indicate that the proposed approach can 
achieve the lowest MAE, RMSE, and MAX errors. In par-
ticular, compared to the method using RMS, the feature 
fusion-based HI can appropriately predict the bearing RUL, 
and the prediction error is much lower than that of RUL 

(14)MAE =

(
n∑

i=1

|
|pi − yi

|
|

)

∕n

(15)RMSE =

√
1

n

∑n

i=1

(
pi − yi

)2

(16)MAX = max
(
||pi − yi

||
)

Fig. 9  Bearing HI under similar 
operating conditions

Fig. 10  Prediction effect map of bearing 1_1
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prediction based on RMS. The lower the error, the higher is 
the prediction ability of the method.

State-of-the-art comparison: In order to illustrate the 
advantage of the proposed method, the obtained results 
are compared with five other recent relevant methods on 
the FEMTO dataset. In particular, the sparse domain adap-
tion network (SDAN) in [41], the method based on time 
empirical mode decomposition (EMD) and temporal con-
volutional networks (TCN) in [42], the gated dual attention 
unit (GDAU) in [43], the multiscale convolutional neural 
network (MSCNN) in [44], and the deep separable convo-
lutional network (DSCN) in [45] are adopted and labeled as 
SDAN, EMD- TCN, GDAU, MSCNN and DSCN, respec-
tively. The comparison results are indicated in Fig. 13.

As shown in Fig. 13, the RMSE of the proposed approach 
is the smallest among the six methods, which means that 
the prediction accuracy of CNN-HI is greatly superior to 
other methods, and the proposed method achieves the best 
performance among all these methods.

3.2  Case study on the IMS bearing datasets

This dataset is provided by IMS, University of Cincinnati 
[46], and it is fully described on NASA’s website. IMS data-
sets are composed of three data subsets. The second subset is 

applied to verify the feature fusion-based CNN method, con-
taining 984 files, each of which comprises 20,480 data sam-
ples with a sampling frequency of 20 kHz. And the vibration 
data was collected every 10 min by a NI 6062E DAQ Card.

Unlike the FEMTO dataset bearings, the bearings in this 
dataset experience longer and more complicated degrada-
tion processes, which increases the reliability of this dataset 
and the difficulty of RUL prediction. Hence, the proposed 
method predicts the RUL of IMS bearings. The subset 
includes four bearings, named IMS 2_1 to IMS 2_4. IMS 
2_1 is selected as a training set, and IMS 2_2,2_3, and 2_4 
are used as testing sets. The prediction results are shown in 
Fig. 14, and the prediction errors are shown in Fig. 15.

A comparison of the life prediction results of the FEMTO 
and IMS datasets indicates that.

(1) The time- and frequency-domain similarity features 
constructed by this method consider the influence of 
time on the features and lay the foundation for con-
structing a suitable HI.

(2) Based on the HI constructed in this paper using the 
CNN model to predict the early degradation of per-
ceptible bearings, the HI constructed by this method 
can characterize the degradation state of bearings under 
similar operating conditions, which has a good gener-
alization capability verified by test bearings with dif-
ferent failure modes and failure degrees.

Fig.11  RUL prediction result: a bearing 1_3, b bearing1_5, c bearing1_7 d bearing2_2, e bearing2_4 and f bearing3_3
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Fig.12  prediction errors of 11 bearings: a MAE, b RMSE, c MAX error
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(3) The remaining life prediction method based on the 
CNN model has a better overall effect on predicting 
the bearing RUL than other neural network models and 
has a better prediction capability for 1-D time-series 
signals and relatively better prediction accuracy.

4  Conclusion

The construction of health factors directly impacts the 
accuracy of the remaining life prediction of bearings. In 
this study, an HI construction method based on the fusion 

Fig. 13  Comparison results 
with recent methods

Fig. 14  Percentage of life prediction of 3 bearings: a IMS 2_2, b IMS 2_3, c IMS 2_4
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Fig. 15  prediction errors of 3 bearings: a MAE, b RMSE, c MAX error
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of similarity features, combined with 1-D CNN, is pro-
posed to predict the RUL of rolling bearings. First, the 
time- and frequency-domain similarity features are con-
structed. Second, the Cori index is used to filter out the 
features with high monotonicity and trend from the three-
domain features to construct an HI that can effectively 
characterize the degradation trend of rolling bearings with 
universal applicability. Finally, the CNN prediction model 
is established to predict the RUL of rolling bearings under 
similar operating conditions, making maximum use of the 
effective information in the collected signals.

Appendix

The calculation method of 10 traditional time-domain sta-
tistical characteristics is as follows:

Serial number Time-domain feature Formula

1 Mean F
1
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n
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2
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�
1

n
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