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Abstract
A new six-degree-of-freedom dynamic model is established to more completely characterize the physical features of a bridge 
crane. Previous works on this type of crane control system have focused primarily on trajectory tracking and anti-sway of 
the cargo, but the problem of vertical vibration attenuation is rarely studied. Although this type of vibration has a much 
smaller amplitude than the other two horizontal vibrations, it has severe negative impacts on system durability due to fatigue 
failure, energy consumption level, and operational efficiency. In this study, a robust integral sliding mode control algorithm 
is designed based on Lyapunov and Barbalat criteria to ensure the convergence of the tracking errors to the origin. Conse-
quently, not only does the control law minimize the vertical vibration of cargo, but also it guarantees the conventional working 
requirements even when the system is influenced by external disturbances. The suitability of the proposed dynamic model 
and the effectiveness of the control algorithms are investigated by numerical simulations based on the system parameters of 
a real-work crane. On the one hand, the similarity of physical characteristics of the built model with the actual model can 
confirm the correctness of the model qualitatively and, on the other hand, through simulation of the system driven by the 
proposed controller and the traditional PID controller (whose characteristics are quite similar to that of the crane driver) 
tracking the given reference trajectory. With the influence of noise, the efficiency and feasibility of the whole work can be 
clearly realized. Therefore, the development of the model-based controller can be a premise for application in industrial 
crane platforms, especially for systems with high technical requirements.

Keywords  Robust control · Vibration control · Bridge crane · 3D crane · Sliding mode control

1  Introduction

Bridge cranes, including overhead cranes [1, 2] and gan-
try cranes [3, 4], are lifting and handling equipment with 
three translational directions of cargo movements. Unlike 
rotary cranes [5–9], bridge cranes are normally harnessed 
in static working location because of their good stability 
and high reliability. Controlling such an under-actuated 
crane is a wide topic that has attracted numerous research-
ers in recent decades [10]; most of whom have focused 
on anti-sway and tracking cargo positions [11]. To date, 
we have not found research addressing how to reduce 
the vertical oscillation of cargo. This fluctuation, which 
is derived from the elastic properties of the cable, steel 
structure, and hoisting equipment, causes a small ampli-
tude but very high wasted energy and jerk forces. Because 
the angle of the major force (the tension force in the cable) 
is very close to vertical orientation, this motion shortens 
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the steel construction life, lessens the crane’s productivity, 
and increases the level of consumed energy. Moreover, 
horizontal vibrations are relatively easy to suspend using 
a small external force, such as one applied by auxiliary 
workers, whereas vertical vibrations can only interfere 
with the hoist or self-extinguish due to the enormous dif-
ference between the cable tension force and the horizontal 
force.

Actual crane systems undergo many external distur-
bances, including the impacts of wind and railway con-
nection points, which change the friction coefficient. Fur-
thermore, inaccuracies in the measurement and estimation 
of the system parameters significantly affect the control 
quality. Many methods have been proposed and success-
fully applied to control the under-actuated crane systems, 
such as proportional–integral–derivative (PID) control, 
input shaping [12], feedback linearization [2, 13], dou-
ble-loop control [3, 14], and combined nonlinear controls 
[15, 16]. So-called sliding mode control [17–19] based on 
Lyapunov stability theory [20–22] has been developed and 
evaluated in numerous studies [11, 23, 24] and has various 
applications [25] because of its robustness and short finite-
time convergence. These advantageous properties make it 
a high-potential candidate to control bridge cranes.

This study discusses a new control problem of bridge 
cranes, suppressing the vertical vibration. To this end, we 
have developed a novel dynamic model with six degrees 
of freedom (DOF), including three main movements and 
three unexpected motions of cargo. On the basis of estab-
lished mathematical dynamics, a proper integral sliding 
mode controller (ISMC), which satisfies the working con-
ditions while overcoming the disturbances’ influences, is 
desired to control the system. Numerical simulations are 
given in Sects. 2 and 3 to investigate the accuracy of the 
dynamic model and the feasibility of the controller.

The fundamental contributions of this work are:

1.	 This study provides the analyses of the effects of the 
cargo's vertical vibrations based on the operational char-
acteristics of a real overhead crane. Subsequently, an 
approach to minimizing this type of oscillation by adopt-
ing robust nonlinear control is proposed.

2.	 Unlike previous crane researches which only dealt with 
up to 5-DOF dynamic models, a new 6-DOF model for 
complete crane dynamics is used to handle the men-
tioned control issue.

3.	 Applying stable and robust SMC not only guarantees 
cargo position tracking conditions, but also minimizes 
unwanted fluctuations. We hope this study can provide a 
fundamental idea for further research into more effective 
controllers and approaches in the future for this type of 
crane.

2 � Nonlinear 6‑DOF dynamic model

2.1 � System description

The physical model of an under-actuated indoor bridge crane 
is illustrated in Fig. 1. The novel system has six-DOF cor-
responding to six generalized coordinates, specifically the 
trolley position along the girder x(t), the angle of the hoist 
drum,�(t) , the displacement of the bridge along the rail y(t) 
in the global frame Ox0y0z0, the swing motions of the cargo 
in the Oxz and Oyz planes, and the vertical oscillation. Here, 
the first three generalized coordinates, x(t), y(t), and �(t) are 
considered as actuated states, and the last three, �x(t), �y(t), 
and �(t), are un-actuated.

In a real crane system, the vertical displacement of the 
cargo is mainly decided by the rotation angle of the hoist 
drum. But, there exists vertically fluctuating oscillation 
caused by the elasticity and deformation of the cables, 
rails, joints or bearings, and bridge frames. This oscilla-
tion is much smaller than other vibrations, but its impact 
on the energy consumption and life span of the system is 
significant, especially during the lifting process and when 
the two horizontal sways have large amplitudes. By pro-
posing a new generalized coordinate, �(t), which represents 
the vertical fluctuation of the cargo, this study develops a 

(a) Coordinate system in three-dimensional space

(b)   Sketch of physical model in Oxz plane

Fig. 1   Physical model of a bridge crane
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dynamic model-based control law that minimizes the men-
tioned oscillation as well as inherits the characteristics of 
controllers of the previous researches [1, 2].

The actuated movements generate the precise position of 
the cargo inside the working space; in contrast, the un-actu-
ated motions are undesired. The major objectives of control 
are to satisfy the tracking conditions and shorten the phase 
and amplitude of oscillations. The system consists of three 
masses: the cargo, the trolley with hoist, and the bridge, 
which are denoted as mc, mt, and mb, respectively. Depend-
ing on the particular working conditions and type of handled 
cargo, the carrying equipment is adjusted and its mass can be 
significant. In these cases, both the masses of the cargo and 
the lifting equipment are related to mc. Here, Δ� denotes the 
initial elongation, and ke refers to the equivalent elastic coef-
ficient. Jd , and rd represent the moment of inertia and radius 
of the payload-hoisting drum. The damping coefficients 
bm, bb, bt , and br represent the friction forces associated with 
movements of the hoisting mechanism, bridge, trolley, and 
the friction inside wire rope, respectively. �1 , �2 , and �3 are 
active control inputs generated by the trolley, bridge moving, 
and payload-lifting mechanisms, respectively.

2.2 � Dynamic modeling

In the scope of this research, the investigated moving range 
of cargo in an indoor bridge crane is small compared with 
the crane’s whole operating range. Thus, the dynamic model 
is established with the following assumptions:

•	 The movement of cargo in the y-direction (along the 
cable drum) caused by lifting the load is ignored.

•	 The ratio transmission of the cable pulley is 1.
•	 The deformation and horizontal vibration of the steel 

structure are much less than those in the vertical direc-
tion, and the equivalent elastic coefficient, ke , is consid-
ered to be unchanged.

•	 The cargo is considered to be a mass point, and the rota-
tional motions around its axes are ignored.

The kinetic energy of the system, which considers the 
motions of the cargo in the working space, is computed as:

where Tt = 0.5mtẋ
2 and Tb = 0.5mbẏ

2 are the kinetic energies 
of the trolley and the entire bridge crane (including trolley). 
Tr = 0.5Jd𝜑̇

2 is the kinetic energy of the rotary motion of the 
payload-hoisting drum. The kinetic energy Tc of the cargo 
is given as:

(1)T = Tc + Tt + Tb + Tr,

(2)Tc = Tcx + Tcy + Tcz,

where Tcx , Tcy , and Tcz are, respectively, the kinetic energy 
corresponding to the motions in x, y, and z directions that 
are computed as

It is noted that in case the cargo was hung directly on the 
hoist drum, the length of the rope is not a fixed constant but 
it changes a small amount, rd�x , depending on the swing 
angle in xOz plane even when � is a constant. At the same 
time, this change also makes the cargo move up and down a 
distance, rd cos �y sin �x . Therefore, potential energy is given 
as:

The expenditure energy is formulated as:

The physical features of the indoor bridge crane are char-
acterized for full-state variables �s =

[
x y � �x �y �

]T  . 
The calculations are based on the Euler–Lagrange equation:

where Qi is the force corresponding to the generalized coor-
dinates �i.

The system dynamics are provided in matrix form as:

where �̇s and 𝛘̈s are the first-order and second-order time 
derivatives of the system states, respectively; the input vec-
tor � =

[
�s 0 0 0

]T  with �s =
[
�1 �2 �3

]T  ; the mass 
matrix �(�s) = �T (�s) is positive definite (PD); 𝐂(𝛘s, 𝛘̇s) 
represents a Coriolis and centrifugal matrix; � is a damping 

Tcx =
mc

2

⎛⎜⎜⎜⎝
ẋ +

⎛⎜⎜⎜⎝

�
𝛿̇ + rd(𝜑̇ + 𝜃̇x)

�
sin 𝜃x

+
�
𝛿 + Δ𝛿 + rd𝜃x + rd𝜑

�
×𝜃̇x cos 𝜃x − rd𝜃̇x sin 𝜃x

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

2

,

Tcy =
mc

2

⎛
⎜⎜⎝

ẏ +
�
𝛿̇ + rd(𝜑̇ + 𝜃̇x)

�
cos 𝜃x sin 𝜃y

+
�
𝛿 + Δ𝛿 + rd𝜃x + rd𝜑

�
×
�
𝜃̇y cos 𝜃x cos 𝜃y − 𝜃̇x sin 𝜃x sin 𝜃y

�
+

⎞
⎟⎟⎠

2

,

Tcz =
mc

2

⎛⎜⎜⎝

�
𝛿 + Δ𝛿 + rd𝜃x + rd𝜑

��
𝜃̇x sin 𝜃x cos 𝜃y

�
+rd𝜃̇x cos 𝜃x − cos 𝜃x cos 𝜃y

�
𝛿̇ + rd(𝜑̇ + 𝜃̇x)

�
+
�
rd𝜃x + 𝛿 + Δ𝛿 + rd𝜑

�
𝜃̇y cos 𝜃x sin 𝜃y

⎞⎟⎟⎠

2

.

(3)
Π = rdmcg cos �y sin �x +

1

2
ke(�)

2

− mcg(rd� + rd�x + � + Δ�) cos �x cos �y.

(4)Φ =
1

2
bm𝜑̇

2 +
1

2
br𝛿̇

2 +
1

2
btẋ

2 +
1

2
bbẏ

2.

(5)

d

dt

(
𝜕T

𝜕𝜒̇i

)
−

𝜕T

𝜕𝜒i

= −
𝜕Π

𝜕𝜒i

−
𝜕Φ

𝜕𝜒̇i

+ Qi (i = {1, 2,… , 6}),

(6)𝐌(𝛘s)𝛘̈s+𝐁𝛘̇s+𝐂(𝛘s, 𝛘̇s)𝛘s+𝐆(𝛘s) = 𝐔,
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coefficient matrix; and �(�s) denotes a gravity vector. The 
equations representing these matrices are provided as:

The elements of �(�s) , 𝐂(𝛘s, 𝛘̇s) , � , and �(�s) are pro-
vided in the “Appendix”.

2.3 � Dynamic simulations

In this study, both the dynamic characteristics and the effi-
ciency of the controller are investigated through simulations 
in Simulink, a MATLAB-based graphical programming 
environment for modeling, simulating, and analyzing multi-
domain dynamical systems. Understandably, they can allow 
control of the system in the real-time, complex, or frequency 
domains. On the other hand, they can also connect to the 
workspace, MATLAB 3D simulation, even allow control of 
realistic robot models.

The primary interface of Simulink is a graphical block 
diagramming tool and a customizable set of block librar-
ies. Simulink offers tight integration with the rest of the 
MATLAB environment and can either drive MATLAB or 
be scripted from such an environment. The differential equa-
tions in Simulink are solved by numerical methods, such 
as Runge–Kutta, Bogacki–Shampine, and backward Euler. 
Simulink can also easily extract graphs for simulations of 
dynamic systems in real time by connecting signal channels 
with output windows (Scope).

From Simulink, the data can be easily collected to the 
workspace directly for processing and analyzing. Addition-
ally, Simulink also provides numerous available libraries or 
blocks for data processing.

�(�s) =

⎡⎢⎢⎢⎢⎢⎢⎣

m11 0 m13 m14 0 m16

0 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

0 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66

⎤⎥⎥⎥⎥⎥⎥⎦

,

� =

⎡⎢⎢⎢⎢⎢⎢⎣

b11 0 0 0 0 0

0 b22 0 0 0 0

0 0 b33 0 0 0

0 0 0 b44 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

𝐂(𝛘s, 𝛘̇s) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 c13 0 c15 c16
0 0 c23 c24 c25 c26
0 0 0 c34 c35 0

0 0 c43 c44 c45 c46
0 0 c53 c54 c55 c56
0 0 0 c64 c65 0

⎤⎥⎥⎥⎥⎥⎥⎦

, 𝐆(𝛘s) =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

g3
g4
g5
g6

⎤⎥⎥⎥⎥⎥⎥⎦

,

In this section, numerical simulations are implemented 
to investigate the physical and dynamical characteristics 
of the entire system, which experiences different external 
forces. Through observing the variation of physical param-
eters under the influence of different conditions, it is pos-
sible to conclude with relative accuracy the reliability and 
accuracy of the qualitative dynamics model. This is impor-
tant because it is directly related to the validation of the 
controller designed in the following Section. To end this, 
a practical indoor bridge crane, a 5-ton R&M QX modu-
lar double-girder crane from Ace Industries, Inc, was uti-
lized. The system parameters are provided as: mc = 5,000 kg, 
mb = 2,316.5 kg, mt = 371.9 kg, rd = 0.31 m, Jd = 180 kg m2, 
bt = 310 Nm/s, bb = 350 Nm/s, bm = 170 Nm/s, br = 260 Nm/s, 
g = 9.81 m/s2, ke = 300,000 N/m, and Δ� = 0.01 m.

(a) (b)

(c) (d)

(e) (f)

Fig. 2   Actuated states with initial values of angles and axial vibration

(a) (b)

(c) (d)

(e) (f)

Fig. 3   Oscillations with initial values of angles and axial vibration
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The dynamical simulations were carried out in two cases 
to characterize the crane features, as illustrated in Figs. 2, 
3, 4, 5 and 6.

In the first case, the kinematic properties of the system 
with the influences of the initial values of the cable angle 

and the vertical vibration of cargo are simulated in Figs. 2 
and 4.

The initial values of the state variables are selected from 
their working ranges, such as the working spans and the lift-
ing height. For the first case of simulation, these values are 
chosen as x = 5 (m) , y = 7 (m) , � = 5 (rad),�x = 7◦ , �y = 5◦ , 
� = 5 × 10−3 m (Fig. 3). This simulates the case where the 
cargo is pulled vertically in two vertical planes (Oxz, Oyz), 
and the cable is stretched from its equilibrium position (simi-
lar to the case where the motors of all mechanisms have just 
stopped moving). The purpose of this process is to investi-
gate the effects of deflection angles and cable extensions on 
crane motion.

The initial un-actuated states cause the vibrations (Fig. 3) 
and variations in the actuated state variables (Fig. 2). The 
trolley moved from the position of 2.5–2.75 m in a period of 
15 s because the cargo was much heavier than the mass of 
the trolley. The energy of the gravity potential was largely 
transformed into kinetic energy for movement of the trolley, 
and the vibration of the cargo, �x , occurred for a short period 
of approximately 5 s (Fig. 3a). The swing of the cargo �y 
occurred for 8 s (Fig. 3c) and resulted in oscillation of the 
bridge displacement around the position of 7 m (Fig. 2c).

With the effects of the two swings and the elasticity of 
the cable, the complicated vertical vibration is illustrated 
in Fig. 3e.

In the second case, Fig. 4 describes the pulses of the force 
inputs, which affected the crane, and the system response 
is depicted in Figs. 5 and 6. All initial values of the un-
actuated states were set to zero, with the pulses of the input 
exciting forces, playing almost the same role as the forces 
�1, �2, �3 acting on the actuated part of the system, given in 
the period from 4 to 6 s (Fig. 4). The trolley and bridge were 
moved from the positions of 5 m and 7 m to 7 m and 7.8 m, 
respectively. The pulses generated the vibration of the cargo 
�y , until the end of the survey time (Fig. 6c). Meanwhile, 
the angle �x was both deflected and made to vibrate due to 
complex motions, as shown in Fig. 6a. The vertical vibration 
is illustrated in Fig. 6e.

The vertical vibrations of the cargo appeared in both sim-
ulation cases, but the phase and amplitude of this vibration 
were much larger when the hoisting mechanism suddenly 
started.

3 � Controller development

3.1 � Nonlinear controller design

To design an integrated controller that satisfies the overall 
tracking conditions, the system dynamic was divided into 
actuated and un-actuated parts by decoupling as follows:

Fig. 4   The pulse input forces given to the system

(a) (b)

(c) (d)

(e) (f)

Fig. 5   Actuated states with the pulses of actuated forces

(a) (b)

(c) (d)

(e) (f)

Fig. 6   Oscillations with the pulses of actuated forces
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where �a =
[
x y �

]T  is the actuated state vector; 
�u =

[
�x �y �

]T  is the un-actuated state; and the block 
matrices �11(�s) , �12(�s) , �21(�s) , �22(�s) , �11 , �22 , 
𝐂11(𝛘s, 𝛘̇s) , 𝐂12(𝛘s, 𝛘̇s) , 𝐂21(𝛘s, 𝛘̇s) , 𝐂22(𝛘s, 𝛘̇s) , �1(�s) , and 
�2(�s)  a r e  g i v e n  a s : 

�11(�s) =

⎡⎢⎢⎣

m11 0 m13

0 m22 m23

m31 m32 m33

⎤⎥⎥⎦
, �12(�s) =

⎡⎢⎢⎣

m14 0 m16

m24 m25 m26

m34 m35 m36

⎤⎥⎥⎦
,

The integral sliding surface �s(t) =
[
��(t) ��(t) �� (t)

]T 
is defined as:

where the matrices of the controller coefficients are: 
�1 = diag

(
�1a, �1b, �1c

)
, �2 = diag

(
�2a, �2b, �2c

)
,

�3 = diag
(
�3a, �3b, �3c

)
, �4 = diag

(
�4a, �4b, �4c

)
 and 

𝜇ia, 𝜇ib, 𝜇ic > 0 (i = {1, 2, 3, 4})  .  �̃a = �a − �at  a n d 
�̃u = �u − �ut are the tracking error vectors, with the tar-
get value vectors �at , �ut being �at =

[
xt yt �t

]T  and 
�ut =

[
�xt �yt �t

]T . Here, xt, yt,�t, �xt, �yt, �t are the refer-
ence values of these corresponding state variables, and the 
states of vibration should converge to zero.

(7)
𝐌11(𝛘s)𝛘̈a+𝐌12(𝛘s)𝛘̈u+𝐁11𝛘̇a

+𝐂11(𝛘s, 𝛘̇s)𝛘̇a+𝐂12(𝛘s, 𝛘̇s)𝛘̇u+𝐆1(𝛘s) = 𝐔s,

(8)
𝐌21(𝛘s)𝛘̈a+𝐌22(𝛘s)𝛘̈u+𝐁22𝛘̇u

+𝐂21(𝛘s, 𝛘̇s)𝛘̇a+𝐂22(𝛘s, 𝛘̇s)𝛘̇u+𝐆2(𝛘s) =0,

�21(�s) =

⎡
⎢⎢⎣

m41 m42 m43

0 m52 m53

m61 m62 m63

⎤
⎥⎥⎦
, �22(�s) =

⎡
⎢⎢⎣

m44 m45 m46

m54 m55 m56

m64 m65 m66

⎤
⎥⎥⎦
,

�11 =

⎡⎢⎢⎣

b11 0 0

0 b22 0

0 0 b33

⎤⎥⎥⎦
, �22 =

⎡⎢⎢⎣

b44 0 0

0 0 0

0 0 0

⎤⎥⎥⎦

𝐂11(𝛘s, 𝛘̇s) =

⎡⎢⎢⎣

0 0 c13
0 0 c23
0 0 0

⎤⎥⎥⎦
, 𝐂12(𝛘s, 𝛘̇s) =

⎡⎢⎢⎣

0 c15 c16
c24 c25 c26
c34 c35 0

⎤⎥⎥⎦
,

𝐂21(𝛘s, 𝛘̇s) =

⎡⎢⎢⎣

0 0 c43
0 0 c53
0 0 0

⎤⎥⎥⎦
, 𝐂22(𝛘s, 𝛘̇s) =

⎡⎢⎢⎣

c44 c45 c46
c54 c55 c56
c64 c65 0

⎤⎥⎥⎦
,

�1(�s) =
[
0 0 g3

]T
, �2(�s) =

[
g4 g5 g3

]T
.

(9)𝛇s(t) =
̇̃𝛘a + 𝛍1𝛘̃a + 𝛍2

𝜏

∫
0

𝛘̃adt + 𝛍3𝛘̃u + 𝛍4

𝜏

∫
0

𝛘̃udt,

Lemma 1  The control law is designed as follows (10) 
will satisfy the sliding condition, and the integral sec-
ond-order sliding surface is asymptotically stable since 
� = diag

(
�a, �b, �c

)
 is PD. Here, �a, �b, �c belonging to 

the diagonal matrix � are the controller coefficients. Here, 
the control signal is computed as.

The matrices �Σ(�s) , �1Σ(�s) , 𝐂2Σ(𝛘s, 𝛘̇s) , and �Σ(�s) in 
control law (10) are formulated as follows:

The vector of sign function ���(�s) is defined as:

and

This controller is designed based on some approaches 
taken in some previous studies such as [26–28].

Proof  The Lyapunov candidate function is chosen as 
follows:

Differentiating this function with respect to time yields:

From the decoupled Eqs. (7) and (8), the mathematical 
model is inferred as follows:

(10)

𝐔s =

⎧
⎪⎪⎨⎪⎪⎩

−𝛌𝐬𝐠𝐧(𝛇s) +𝐌
Σ
(𝛘nl)𝛘̈at −𝐆Σ(𝛘s)

−𝐌
Σ
(𝛘nl)𝛍1

𝜏∫
0

�
𝛍2𝛘̃a + 𝛍4𝛘̃u

�
dt

−𝐌
Σ
(𝛘nl)

�
2𝛍1 + 𝛍2 + 𝛍T

1
𝛍1

�
𝛘̃a

−𝐌
Σ
(𝛘nl)

�
𝛍3 + 𝛍4 + 𝛍1𝛍3

�
𝛘̃u + 𝐂1Σ(𝛘s)𝛘̇a

⎫
⎪⎪⎬⎪⎪⎭

,

(11)�Σ

(
�s

)
= �11

(
�s

)
−�12

(
�s

)
�−1

22

(
�s

)
�21

(
�s

)

(12)
𝐂1Σ(𝛘s) = +𝐁11+𝐂11(𝛘s, 𝛘̇s)

−𝐌12(𝛘s)𝐌
−1
22
(𝛘s)𝐂21(𝛘s, 𝛘̇s),

(13)
𝐂2Σ(𝛘s, 𝛘̇s) = +𝐂12(𝛘s, 𝛘̇s) −𝐌12(𝛘s)𝐌

−1
22
(𝛘s)𝐁22

−𝐌12(𝛘s)𝐌
−1
22
(𝛘s)𝐂22(𝛘s, 𝛘̇s),

(14)�Σ(�s) = +�1(�s) −�12(�s)�
−1
22
(�s)�2(�s).

(15)���(�s) =
[
sgn

(
��(t)

)
sgn

(
��(t)

)
sgn

(
�� (t)

) ]T
.

(16)sgn(𝜁(t)) =

⎧⎪⎨⎪⎩

+1 if 𝜁(t) > 0

0 if 𝜁(t) = 0

−1 if 𝜁(t) < 0

.

(17)Υ(t) = 0.5�T
s
(t)�s(t).

(18)Υ̇(t) = �̇T
s
(t)�s(t).
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Given  t ha t  t he  b lock  symmet r i c  ma t r ix 
�22(�s) is  PD, the matr ix of the component [
�11(�s) −�12(�s)�

−1
22
(�s)�21(�s)

]
 is computed as:

Set: �Σ(�s) = �11(�s) −�12(�s)�
−1
22
(�s)�21(�s).

The masses mt , mb and the initial Jd are positive, then this 
diagonal matrix �Σ(�s) = �T

Σ
(�s) is PD. Consequently, the 

second-order time derivatives of the actuated state vectors 
are computed as:

where �1Σ(�s) , 𝐂2Σ(𝛘s, 𝛘̇s) , and �Σ(�s) are provided as Eqs. 
(12), (13), and (14), respectively.

From Eqs. (9), (18), (19), (10), and (22), it is calculated 
that:

The sign of function Υ̇(t) is similar to the function:

The controller coefficient matrix is PD 
(
�T ≻ 0

)
 because 

� ≻ 0 , and �
Σ
(�s) ≻ 0 . The matrix �T�−1

Σ
(�s) is PD (

�T�−1
Σ
(�s) ≻ 0

)
 .  Then the quadrat ic  funct ions 

�T
s
(t)�T�−1

Σ
(�s)�s(t) and �T

s
(t)�1�s(t) are always positive or 

equal to zero, and the first-order derivative function Υ̇∗(t) is 
always non-positive 

(
Υ̇∗(t) ≤ 0

)
 and 

(
Υ̇(t) ≤ 0

)
 since t → ∞ . 

This is based on the fact that �1 is PD. Consequently, 
(Υ(t) ≤ Υ(0)) ; thus, the sliding surfaces belonging to vector 
�s(t) are bounded and �2

�
(t), �2

�
(t), �2

�
(t) decrease as t → ∞ . In 

this case, the sliding mode surfaces �
�
(t), �

�
(t), �

�
(t) are sta-

ble in the Lyapunov sense. On the basis of Barbalat’s Lemma 
[29], the functions �

�
(t), �

�
(t), �

�
(t) approach zero (

�
�
(t) → 0, �

�
(t) → 0, �

�
(t) → 0

)
 . Eventually, the state vari-

ables, �s , will be consolidated to their reference values when 
t → ∞.

This is the end of the proof of Lemma 1.� □

(19)𝛘̈u = −𝐌−1
22
(𝛘s)

[
𝐌21(𝛘s)𝛘̈a + 𝐁22𝛘̇u +𝐆2(𝛘s)

+𝐂21(𝛘s, 𝛘̇s)𝛘̇a + 𝐂22(𝛘s, 𝛘̇s)𝛘̇u

]
,

(20)

⎧
⎪⎨⎪⎩

�
𝐌11(𝛘s) −𝐌12(𝛘s)𝐌

−1
22
(𝛘s)𝐌21(𝛘s)

�
𝛘̈a

−𝐌12(𝛘s)𝐌
−1
22
(𝛘s)

�
𝐁22 + 𝐂22(𝛘s, 𝛘̇s)

�
𝛘̇u

−𝐌12(𝛘s)𝐌
−1
22
(𝛘s)

�
𝐂21(𝛘s, 𝛘̇s)𝛘̇a +𝐆2(𝛘s)

�
+𝐁11𝛘̇a+𝐂11(𝛘s, 𝛘̇s)𝛘̇a+𝐂12(𝛘s, 𝛘̇s)𝛘̇u+𝐆1(𝛘s)

⎫
⎪⎬⎪⎭
= 𝐔s.

(21)
�11(�s) −�12(�s)�

−1
22
(�s)�21(�s) = diag

(
mt, mb, Jd

)
.

(22)
𝛘̈a= −𝐌−1

Σ
(𝛘s)𝐂1Σ(𝛘s)𝛘̇a −𝐌−1

Σ
(𝛘s)𝐂2Σ(𝛘s, 𝛘̇s)𝛘̇u

+𝐌−1
Σ
(𝛘s)𝐆Σ(𝛘s) +𝐌−1

Σ
(𝛘s)𝐔s ,

(23)Υ̇(t) =
(
−�sign

(
�s(t)

))T
�−1

Σ
(�s)�s(t) − �T

s
(t)�1�s(t).

(24)Υ̇∗(t) = −�T
s
(t)�T�−1

Σ
(�s)�s(t) − �T

s
(t)�1�s(t).

For an indoor bridge crane, the external disturbances 
and the internal uncertainties are considered as a com-
posite disturbance, which mostly affects the actuated 
part and causes inaccuracy in the control process with 
the increase of vibrations. The time-varying function of 
the disturbances, ��(t) =

[
��1(t) ��2(t) ��3(t)

]T  , which 
directly affect the system, is as follows:

where �̃1(�s) = �1(�s) + �𝛼(t).

Lemma 2  If the time-varying composite function ��(t) is 
bounded ||�𝛼(t)|| ≤ ⌢

�𝛼 =

[
⌢

𝛿𝛼1
⌢

𝛿𝛼2
⌢

𝛿𝛼3

]T
 , the robustness of 

the designed controller overcomes the disturbance’s influ-
ences. Eventually, the sliding surface is asymptotically sta-
ble [26–28] and the tracking errors and the un-actuated 
variables converge to zero.

Proof  On the basis of Eqs. (10), (18), (22), and (25), it is 
computed that:

and

From the calculations in Lemma 1, it is derived that:

because

(25)
𝐌11(𝛘s)𝛘̈a+𝐌12(𝛘s)𝛘̈u+𝐁11𝛘̇a

+𝐂11(𝛘s, 𝛘̇s)𝛘̇a+𝐂12(𝛘s, 𝛘̇s)𝛘̇u+𝐆̃1(𝛘s) = 𝐔s,

(26)

Υ̇(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝐌−1
Σ
(𝛘s)

�
𝐂1Σ(𝛘s)𝛘̇a + 𝐂2Σ(𝛘s, 𝛘̇s)𝛘̇u −𝐆Σ(𝛘s)

�

+

⎧⎪⎪⎨⎪⎪⎩

−𝐌
Σ
(𝛘nl)

�
𝛍3

̇̃𝛘u + 2𝛍1
̇̃𝛘a

�
− 𝐆̃Σ(𝛘s) − 𝛌sign(𝛇s)

−𝐌
Σ
(𝛘nl)

��
𝛍4 + 𝛍1𝛍3

�
𝛘̃u +

�
𝛍2 + 𝛍T

1
𝛍1

�
𝛘̃a

�
+𝐌

Σ
(𝛘nl)𝛘̈at + 𝐂1Σ(𝛘s)𝛘̇a + 𝐂2Σ(𝛘s, 𝛘̇s)𝛘̇u

−𝐌
Σ
(𝛘nl)

𝜏∫
0

�
𝛍1𝛍2𝛘̃a + 𝛍1𝛍4𝛘̃u

�
dt

⎫⎪⎪⎬⎪⎪⎭
×𝐌−1

Σ
(𝛘s) + 𝛍1

̇̃𝛘a + 𝛍2𝛘̃a + 𝛍3
̇̃𝛘u + 𝛍4𝛘̃u − 𝛘̈at

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

Υ̇(t) =

((
−�2sign

(
�s(t)

))T
�−1

Σ
(�s)�s(t) − �T

s
(t)�1�s(t)

−
(
�Σ(�s) − �̃Σ(�s)

)T
�−1

Σ
(�s)�s(t)

)
,

(28)Υ̇(t) ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−

��
𝜆asgn

�
𝜁𝛼(t)

�
− 𝛿𝛼1

�𝜁𝛼(t)
mt

�

−

��
𝜆bsgn

�
𝜁𝛽(t)

�
− 𝛿𝛼2

�𝜁𝛽(t)
mb

�

−

��
𝜆csgn

�
𝜁𝛾 (t)

�
− 𝛿𝛼3

�𝜁𝛾 (t)
Jd

�

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,

(29)Υ̇(t) ≤
⎛⎜⎜⎝
−

⎡⎢⎢⎣

𝜆a 0 0

0 𝜆b 0

0 0 𝜆c

⎤⎥⎥⎦

⎡⎢⎢⎣

sgn
�
𝜁𝛼(t)

�
sgn

�
𝜁𝛽(t)

�
sgn

�
𝜁𝛾 (t)

�
⎤⎥⎥⎦
+

⎡⎢⎢⎣

𝛿𝛼1
𝛿𝛼2
𝛿𝛼3

⎤⎥⎥⎦

⎞⎟⎟⎠

T

× NA,
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where NA =

⎡⎢⎢⎢⎣

1

mt

0 0

0
1

mb

0

0 0
1

Jd

⎤⎥⎥⎥⎦

⎡
⎢⎢⎣

��(t)

��(t)

�� (t)

⎤
⎥⎥⎦
.

If the controller coefficients are selected which satisfy the 
conditions:𝜆a >

⌢

𝛿𝛼1 , 𝜆b >
⌢

𝛿𝛼2 , 𝜆c >
⌢

𝛿𝛼3 , it is ensured that 
the time derivative of the Lyapunov function is non-positive (
Υ̇(t) ≤ 0

)
 since t → ∞ . This is based on the fact that:

and

Set 
⌢

𝜆a1 = 𝜆a −
⌢

𝛿𝛼1 , 
⌢

𝜆b2 = 𝜆b −
⌢

𝛿𝛼2 , and 
⌢

𝜆a3 = 𝜆a −
⌢

𝛿𝛼3 
then

Integrating this equation produces

It can then be inferred that

and

(30)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−

��
𝜆asgn

�
𝜁𝛼(t)

�
− 𝛿𝛼1

�𝜁𝛼(t)
mt

�
≤ −

�
𝜆a −

⌢

𝛿𝛼1

���𝜁𝛼(t)��
mt

−

��
𝜆bsgn

�
𝜁𝛽(t)

�
− 𝛿𝛼2

�𝜁𝛽(t)
mb

�
≤ −

�
𝜆b −

⌢

𝛿𝛼2

����𝜁𝛽(t)
���

mb

−

��
𝜆csgn

�
𝜁𝛾 (t)

�
− 𝛿𝛼3

�𝜁𝛾 (t)
Jd

�
≤ −

�
𝜆c −

⌢

𝛿𝛼3

����𝜁𝛾 (t)
���

Jd

,

(31)Υ̇(t) ≤
⎛
⎜⎜⎜⎝

−

�
𝜆a −

⌢

𝛿𝛼1

��𝜁𝛼 (t)�
mt

−
�
𝜆b −

⌢

𝛿𝛼2

��𝜁𝛽 (t)�
mb

−

�
𝜆c −

⌢

𝛿𝛼3

��𝜁𝛾 (t)�
Jd

⎞
⎟⎟⎟⎠
.

(32)Υ̇(t) ≤
⎧⎪⎨⎪⎩
−

⌢

𝜆a1

��𝜁𝛼(t)��
mt

−
⌢

𝜆b2

���𝜁𝛽(t)
���

mb

−
⌢

𝜆a3

���𝜁𝛾 (t)
���

Jd

⎫⎪⎬⎪⎭
≤ 0.

(33)

t

�
0

Υ̇(t)dt ≤
t

�
0

⎧⎪⎨⎪⎩
−

⌢

𝜆a1

��𝜁𝛼(t)��
mt

−
⌢

𝜆b2

���𝜁𝛽(t)
���

mb

−
⌢

𝜆a3

���𝜁𝛾 (t)
���

Jd

⎫⎪⎬⎪⎭
dt.

(34)

lim
t→∞

t

∫
0

⎧⎪⎨⎪⎩
+

⌢

𝜆a1

��𝜁𝛼(t)��
mt

+
⌢

𝜆b2

���𝜁𝛽(t)
���

mb

+
⌢

𝜆a3

���𝜁𝛾 (t)
���

Jd

⎫⎪⎬⎪⎭
dt < ∞,

Because

it is clear that ��(t) ∈ L1 , ��(t) ∈ L1 , and �� (t) ∈ L1 with 
mt > 0 , mb > 0 , and Jd > 0.

Furthermore,

and, Υf (t) ∈ L∞.
On the other hand,Υ̇(t) = �̇T

s
(t)�s(t) ≤ 0 . Then, 𝜁̇𝛼(t) ∈ L∞ , 

𝜁̇𝛽(t) ∈ L∞ , and 𝜁̇𝛾 (t) ∈ L∞.
According to the above evidences, it is clear that the func-

tion ��(t) , ��(t) , and �� (t) are asymptotically stable based on 
Barbalat’s Lemma [29]. The functions ��(t) , ��(t) , and �� (t) 
approach zero as the time approaches infinity, that is the 
lim
t→∞

��(t) = 0 , lim
t→∞

��(t) = 0 , lim
t→∞

�� (t) = 0 . Consequently, all 
of the tracking conditions are satisfied.

This ends the proof of Lemma 2.� □

(35)

⎧
⎪⎪⎨⎪⎪⎩

lim
t→∞

t∫
0

⌢

𝜆a1
�𝜁𝛼 (t)�
mt

dt < ∞, lim
t→∞

t∫
0

⌢

𝜆b2
�𝜁𝛽 (t)�
mb

dt < ∞,

lim
t→∞

t∫
0

⌢

𝜆a3
�𝜁𝛾 (t)�
Jd

dt < ∞,

(36)

Υ(0) ≥ Υ(t) +

t

�
0

⎧
⎪⎨⎪⎩

⌢

𝜆a1

��𝜁𝛼(t)��
mt

+
⌢

𝜆b2

���𝜁𝛽(t)
���

mb

+
⌢

𝜆a3

���𝜁𝛾 (t)
���

Jd

⎫
⎪⎬⎪⎭
dt

≥
t

�
0

⎧
⎪⎨⎪⎩

⌢

𝜆a1

��𝜁𝛼(t)��
mt

+
⌢

𝜆b2

���𝜁𝛽(t)
���

mb

+
⌢

𝜆a3

���𝜁𝛾 (t)
���

Jd

⎫
⎪⎬⎪⎭
dt,

(37)

Υf (t) ≤ Υf (0) −

t

�
0

⎧
⎪⎨⎪⎩
+

⌢

𝜆a1

��𝜁𝛼(t)��
mt

+
⌢

𝜆b2

���𝜁𝛽(t)
���

mb

+
⌢

𝜆a3

���𝜁𝛾 (t)
���

Jd

⎫
⎪⎬⎪⎭
dt

≤ Υf (0) ≤ ∞,

Fig. 7   The pulse input given to the system (Case 1)
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3.2 � Numerical implementation and analysis

In this section, numerical simulations are performed for the 
controller in two cases of interference effects at different 
times, specifically when the cargo is being moved or sta-
tionary. Here, the simulations for the proposed controller 
are compared with traditional PID control, which is similar 

to the system controlled by the workers through joystick, 
to see the efficiency. The performance of the controller is 
investigated and illustrated in Figs. 7, 8, 9, 10, 11 and 12. In 
the figures, the state variables of the ISMC and PID controls 
are shown in the continuous violet line and the dashed green 
line, respectively.

In Figs. 8 and 9, the system is controlled by the given 
controller designed in Lemma 1. With the horizontal move-
ment distance being 3 m and the desired angle of the hoist-
ing drum being 12 rad, the cargo can reach its target posi-
tion within 12 s (Fig. 8). All of the tracking conditions are 
satisfied. The movement velocities are in the working range 
of the actual crane before converging to zero. Moreover, the 
angles of the swings �x, �y are directly reduced in a short 
time and are limited to an amplitude of approximately 1° 

(a) (b)

(c) (d)

(e) (f)

Fig. 8   Actuated states controlled by ISMC (Case 1)

(a) (b)

(c) (d)

(e) (f)

Fig. 9   Suppressing vibrations by ISMC (Case 1)

Fig. 10   The pulse input given to the system (Case 2)

(a) (b)

(c) (d)

(e) (f)

Fig. 11   Actuated states controlled by ISMC (Case 2)

(a) (b)

(c) (d)

(e) (f)

Fig. 12   Suppressing vibrations by ISMC (Case 2)
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(Fig. 9), which can be compared with the swing angles with 
PID control.

The vertical vibration associated with the lifting action 
of the crane exists in only one phase before being directly 
stopped. After the state variables have converged to the 
reference values, the system undergoes the effects of the 
disturbance, as given in Fig. 7. The disturbances cause the 
deflections of the cargo position and also the swing angles. 
However, all the state values are recovered to their reference 
points via the robustness of the ISMC in about 3 s (Fig. 8). 
This number represents superiority with PID control with 
the recovery time being in the range from 8 to 10 s.

In the second case, the designed ISMC controlled the 
system under the influences of the disturbances, as shown 
in Fig. 10. All of the system states were forced to their ref-
erence values in Fig. 11, despite the composite disturbance 
impacts on the system in the period from 4 to 6 s. The track-
ing conditions were satisfied by the robust control law, with 
the target points of the trolley, bridge, and hoisting cable 
being 11 m, 12 m, and 13 rad, respectively. Afterward, the 
achieved velocities were consolidated to zero. Three residual 
oscillations were reduced during the operation of the mecha-
nism and suspended when the cargo reached its target point.

During operation, the crane is affected by many factors 
such as uncertainties as well as disturbances, such as move-
ment through rail joints, sudden changes in frictional condi-
tions, alignment, Inaccuracies, or impact loads in the mecha-
nisms. All of them are considered as variable external pulse 
forces acting on the mechanisms, as shown in Figs. 7, 10.

Apparently, although the pulse of disturbances (Figs. 7 
and 10) in both cases of controlling were higher than the val-
ues in the dynamical simulation (Fig. 5), the amplitudes and 
time periods of the three residual vibrations are significantly 
shortened (Figs. 9, 12). The swing angles and vertical vibra-
tions were limited despite the operations of the mechanisms 
and the effect of disturbances while the ISMC was focusing 
on ensuring the tracking position of the cargo.

It can be clearly observed that in all simulation cases, 
the SMC controller exhibits shorter convergence times of 
actuated variables and smaller control errors. Moreover, all 
horizontal oscillations and vertical fluctuation are actively 
quenched within a short period of time. Also, the devia-
tion from the desired trajectory of the cargo, trolley, and 
bridge are smaller when subjected to external disturbances 
under the controlling of robust ISMC. In short, the control 
quality of the system is greatly improved with an ISMC 
controlled system when compared to a PID controller or 
manual control. This can serve as a premise and foundation 
for the application of this idea and solution to crane systems 
in practice.

4 � Conclusion

In this study, a new problem in bridge crane control, sus-
pending the vertical vibration of cargo, is discussed. A 
novel 6-DOF mathematical model, which illustrates the 
highly nonlinear dynamical behavior of such cranes, is 
established. On the basis of the dynamics, a robust integral 
sliding mode controller (ISMC) for an under-actuated crane 
is appropriately developed. Not only does the controller 
accurately drive the cargo to its reference displacement, but 
it also limits the undesired states of vibrations during the 
movements and forces them to zero at the target point of 
the cargo. The technical properties of this novel dynamic 
model with the designed ISMC controller are investigated 
by numerical simulations. Through results, it can be clearly 
seen the ISMC's effectiveness and significant superiority 
in control quality compared to traditional PID or manual 
control, especially the ability to suppress oscillations. This 
has great significance in improving efficiency and reducing 
energy consumption when operating the crane. Therefore, 
the concept and the constructed algorithm may have prom-
ising potential for application in industrial crane systems.

Appendix

The elements of the mass matrix �
(
�s

)
 are given as:

m11 = mc + mt, m13 = m31 = mcrdS�x,

m14 = m41 = mcC�x(� + Δ� + rd�x + �rd),

m16 = m61 = mcS�x, m22 = mb + mc,

m23 = m32 = mcrdS�yC�x,m26 = m62 = mcS�yC�x,

m24 = m42 = −mc

((
� + Δ� + rd� + rd�x

)
S�xS�y − rdC�xS�y

)
,

m25 = m52 = mc(� + rd� + rd�x + Δ�)C�xC�y,

m34 = m43 =
1

2
(� + Δ� + rd�)(1 − C2�y)mcrdS2�x,

m33 = Jd + 2mcr
2
d
− mcr

2
d
C2�x − mcr

2
d
C2�y + mcr

2
d
C2�xC

2�y,

m35 = m53 =
1

2
(� + Δ� + rd�)(1 − C2�x)mcrdS2�y,

m36 = m63 = 2mcrd − mcrdC
2�x − mcrdC

2�y + mcrdC
2�xC

2�y,
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Each element of the matrix �
(
�s, �̇s

)
 is given as:

m44 = mc(C
2�x + C2�y − C2�xC

2�y)(rd� + � + Δ�)2,

m45 = m54 =
(
r2
d
�2 + �2 + Δ�2 + 2rd�� + 2�Δ� + 2rd�Δ�

)
× mcC�xC�yS�xS�y,

m46 = m64 =
1

2
(� + Δ� + rd�)(1 − C2�y)mcS2�x,

m55 = mc(C
2�x + C2�y − C2�xC

2�y)(rd� + � + Δ�)2,

m56 = m65 =
1

2

(
� + Δ� + �rd

)(
1 − cos2 �x

)
mcS2�y,m66 = mc.

c13 = mcrd𝜃̇xC𝜃x, c26 = mc

(
𝜃̇yC𝜃xC𝜃y − 𝜃̇xS𝜃xS𝜃y

)
, c33 = 0,

c14 = mc

(
C𝜃x

(
𝛿̇ + rd𝜃̇x + rd𝜑̇

)
− (𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x)𝜃̇xS𝜃x

)
,

c15 = 0, c16 = mc𝜃̇xC𝜃x, c23 = mcrd𝜃̇yC𝜃y,

c24 = mc

((
𝛿̇ + 2rd𝜃̇x + rd𝜑̇

)
S𝜃xS𝜃y − 2rd𝜃̇yC𝜃xC𝜃y

+(𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x)(𝜃̇x + 𝜃̇y)C𝜃xS𝜃y

)
,

c25 = mc(C𝜃y
(
𝛿̇ + rd𝜑̇ + rd𝜃̇x

)
− S𝜃y𝜃̇y(𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x),

c45 = (𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x){(𝛿 + Δ𝛿 + rd𝜑)mc𝜃̇xS2𝜃yC
2𝜃x

+ (𝛿 + Δ𝛿 + rd𝜑)mc𝜃̇yS2𝜃xC
2𝜃y − 𝜃̇x(𝛿 + Δ𝛿)mcS2𝜃y

+
1

2
(𝛿̇ + rd𝜑̇)mcS2𝜃xS2𝜃y} − mcrd𝜑𝜃̇xS2𝜃y,

c54 =
1

2
mc(rd𝜑 + 𝛿 + Δ𝛿 + rd𝜃x)(2𝛿𝜃̇xC𝜃yS𝜃yC

2𝜃x

− 𝜃̇yΔ𝛿S(2𝜃x) − 𝛿𝜃̇yS(2𝜃x) − rd𝜑𝜃̇yS(2𝜃x)

+ 2𝛿𝜃̇yC𝜃xS𝜃xC
2𝜃y + 2Δ𝛿𝜃̇xC𝜃yS𝜃yC

2𝜃x

+ 2Δ𝛿𝜃̇yC𝜃xS𝜃xC
2𝜃y + 2rd𝜑̇C𝜃xS𝜃yC𝜃yS𝜃x)

+ 2𝛿̇C𝜃yS𝜃yC𝜃xS𝜃x + 2rd𝜑𝜃̇xC𝜃yS𝜃yC
2𝜃x

+ 2rd𝜑𝜃̇yC𝜃xS𝜃xC
2𝜃y,

c35 =
1

2
mcr

2
d
𝜑̇S2𝜃y +

1

2
mcrd 𝛿̇S2𝜃y + mcr

2
d
𝜑𝜃̇yC

2𝜃y

− mcrd𝛿𝜃̇y − mcrdΔ𝛿𝜃̇y + mcrdΔ𝛿𝜃̇yC
2𝜃y + mcrd𝛿𝜃̇yC

2𝜃y

− mcrd𝛿𝜃̇yC
2𝜃yC

2𝜃x − mcrdΔ𝛿𝜃̇yC
2𝜃yC

2𝜃y − mcr
2
d
𝜑𝜃̇y

− mcrd 𝛿̇S𝜃y cos 𝜃yC
2𝜃x − mcr

2
d
𝜑𝜃̇yC

2𝜃yC
2𝜃x

− mcr
2
d
𝜑̇S𝜃yC𝜃yC

2𝜃x + mcr
2
d
𝜑𝜃̇xC𝜃yS𝜃yC𝜃xS𝜃x

+ mcrd𝛿𝜃̇xC𝜃yS𝜃yC𝜃xS𝜃x + mcrdΔ𝛿𝜃̇xC𝜃xS𝜃yC𝜃yS𝜃x,

c44 = mc(rd𝜑 + 𝛿 + Δ𝛿)(2𝛿̇C2𝜃y + 2𝛿̇C2𝜃x − 𝛿𝜃̇xS2𝜃y)

+ 2rd𝜑𝜃̇xC𝜃xS𝜃xC
2𝜃y − rd𝜑𝜃̇xS(2𝜃x) − 𝛿𝜃̇yS(2𝜃y)

+ 2rd𝜑̇C
2𝜃y + 2Δ𝛿𝜃̇yC𝜃yS𝜃yC

2𝜃x − rd𝜑𝜃̇yS(2𝜃y)

− Δ𝛿𝜃̇yS(2𝜃y) + 2𝛿𝜃̇yC𝜃yS𝜃yC
2𝜃 + 2rd𝜑̇C

2𝜃x

− 2𝛿̇C2𝜃xC
2𝜃y − 2rd𝜑̇C

2𝜃xC
2𝜃y + 2rd𝜑𝜃̇yC𝜃yS𝜃yC

2𝜃x)

+ 2𝛿𝜃̇xC𝜃xS𝜃xC
2𝜃yx + 2𝛿𝜃̇xC𝜃xS𝜃xC

2𝜃y − Δ𝛿𝜃̇xS(2𝜃x),

c46 = mc

(
(𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x)(𝜃̇xC

2𝜃x + 𝜃̇xC
2𝜃y)

−𝜃̇x cos
2 𝜃x + 𝜃̇yC𝜃xS𝜃yC𝜃yS𝜃x

)
,

c53 = mcrd

(
𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x)(𝜃̇yC

2𝜃y + 𝜃̇yC
2𝜃x

−𝜃̇yC
2𝜃y + 𝜃̇xC𝜃yS𝜃xS𝜃xS𝜃y

)
,

c34 =
1

2

(
𝛿̇ + rd𝜑̇

)(
1 − C2𝜃y

)
mcrdS2𝜃x@−

(
𝛿 + Δ𝛿 + rd𝜑

)
mcrd𝜃̇x

+
(
𝛿 + Δ𝛿 + rd𝜑

)(
1 − C2𝜃y

)
mcrd𝜃̇xC

2𝜃x

+
(
𝛿 + Δ𝛿 + rd𝜑

)
mcrd𝜃̇yC𝜃xC𝜃xC𝜃yS𝜃y,

c43 = +mcr
2
d
𝜑𝜃̇xC

2𝜃y + mcrd𝛿𝜃̇xC
2𝜃xC

2𝜃y + mcrd𝛿𝜃̇x

− mcrd𝛿𝜃̇xC
2𝜃xC

2𝜃y − mcrdΔ𝛿𝜃̇xC
2𝜃x

− mcr
2
d
𝜑𝜃̇xC

2𝜃xC
2𝜃y + mcr

2
d
𝜑𝜃̇xC

2𝜃x + mcrdΔ𝛿𝜃̇yC
2𝜃y

− mcr
2
d
𝜑𝜃̇yC𝜃xS𝜃yC𝜃yS𝜃xC

2𝜃ymcrdΔ𝛿𝜃̇xC
2𝜃x

+ mcrd𝛿𝜃̇yC𝜃xS𝜃yC𝜃yS𝜃x + mcrdΔ𝛿𝜃̇yC𝜃xS𝜃yC𝜃yS𝜃x,

c55 =
1

2
mc(rd𝜑 + 𝛿 + Δ𝛿 + rd𝜃x)(2𝛿̇C

2𝜃x + 2𝛿̇C2𝜃y

− 𝛿𝜃̇xS(2𝜃x) − 𝜃̇yS(2𝜃y) + 2rd𝜑̇C
2𝜃x + 2rd𝜑̇C

2𝜃y

− Δ𝛿𝜃̇xS(2𝜃x) − Δ𝛿𝜃̇yS(2𝜃y) − 2𝛿̇C2𝜃xC
2𝜃y

− 2rd𝜑̇C
2𝜃xC

2𝜃y − rd𝜑𝜃̇xS(2𝜃x) − rd𝜑𝜃̇yS(2𝜃y)

+ 2rd𝜑𝜃̇xC𝜃xS𝜃xC
2𝜃y + 2𝛿𝜃̇yC𝜃yS𝜃yC

2𝜃x

+ 2𝛿𝜃̇xC𝜃xS𝜃xC
2𝜃y + 2Δ𝛿𝜃̇yC𝜃yS𝜃yC

2𝜃x

+ 2𝜃̇xC𝜃xS𝜃xC
2𝜃y + 2rd𝜑𝜃̇yC𝜃yS𝜃yC

2𝜃x),

c56 = mc

(
𝛿 + Δ𝛿 + rd𝜑 + rd𝜃x)(𝜃̇yC

2𝜃x + 𝜃̇yC
2𝜃y

−𝜃̇yC
2𝜃xC

2𝜃y + 𝜃̇xC𝜃xC𝜃yC𝜃yS𝜃x

)
,
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where C� = cos (�) , S� = sin (�).
The elements of the damping matrix � are given as:

The components of the gravity vector, �
(
�s

)
 , are com-

puted as:
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