
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44:113 
https://doi.org/10.1007/s40430-022-03404-2

TECHNICAL PAPER

Heat transfer enhancement of two‑phase droplet flow in microtube: 
a phase‑field simulation study

V. C. Teixeira1  · F. S. Forte Neto1 · G. M. Guerra2 · A. G. B. da Cruz1

Received: 15 April 2021 / Accepted: 3 February 2022 / Published online: 4 March 2022 
© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2022

Abstract
Using the Navier–Stokes–Cahn–Hilliard model coupled with the energy equation, we investigate the heat transfer enhance-
ment of two-phase immiscible droplet flow through a co-flow droplet formation device in a dripping regime. Numerical 
results show a significant heat transfer enhancement at the position of the droplet. The effect of droplet size and flow rate on 
the heat transfer of two-phase flow is analyzed and suggests an optimal flow rate ratio that produces the best thermal trans-
port. A flow-type parameter, which describes the relative strength of stretching and rotation rates, is extracted to represent 
the recirculation strength in the two-phase droplet flows. At last, we indicate a capillary number in which the heat transfer 
enhancement achieved the best results when considering the pressure loss over the microtube.

Keywords Droplets · Phase-field model · Heat transfer enhancement · Co-flowing microtube

List of symbols
Nu   Nusselt number
Ca  Capillary number
Pe  Peclet number
Re  Reynolds number
�  Velocity vector (m/s)
p  Pressure (Pa)
T  Temperature (K)
Tb  Bulk mean temperature (K)
Tw,z  Wall temperature (K)
R  Microchannel radius ( �m)
m  Mobility (m3.s/kg)
Q  Volumetric flow rate ( �l/s)

cv  Specific heat capacity at constant volume (J/kg K)
k  Thermal conductivity (W/m K)
v̄  Average velocity (m/s)

Greek symbols
�  Phase-field variable
�  Chemical potential (J/m3)
�  Viscosity (Pa.s)
�  Density (kg/m3)
�  Flow rate ratio
�  Surface tension (N/m)
�  Temperature coefficient (N/m K)
λ  Mixing energy per unit length (J/m)
�  Interfacial thickness (m)
�  Mobility tuning parameter (m.s/kg)
�  Dimensionless temperature

Subscript
c  Continuous phase
d  Dispersed phase

1 Introduction

Two-phase flows of immiscible liquids appear in the context 
of several applications. Flows involving deformable drop-
lets and slugs in a liquid carrier phase have the potential of 
enhancing heat transfer in microfluidic devices, as presented 
by Fischer et al. [1] and Bordbar et al. [2] in their study 
of thermal convective enhancement of microchannel heat 
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sinks for electronics cooling. They observed that the drop-
lets transport in a continuous phase, an enhanced convec-
tive thermal transport occurs as a result of blockage effects 
between subsequent droplets, causing vorticity rates and 
velocity distribution in the liquid slugs (see, e.g., Muzychka 
et al. [3]). Works related to the dynamics of temperature-
actuated droplets have focused mainly on the generation 
and transport of liquid droplets (see, e.g., [4–6]). Most of 
these works have restricted their investigations through 
T-junctions and flow-focusing droplet formation devices that 
account for the effects of temperature-dependent viscosity 
and interfacial tension on the velocity and volume change 
(see [6, 7]), and rapid mixing within individual droplets [8]. 
Khater et al. [9] emphasized in their study that the physical 
behavior of dispersed droplets in response to a temperature 
change or heating source placed downstream far from the 
droplets ejection section requires further research on char-
acterizing droplets thermal behavior within microchannels.

The main characteristic of two-phase droplet flows is the 
presence of a deformable interface separating the immiscible 
phases. Two-phase structures in immiscible fluids flows are 
subject to a high degree of topological change of the fluid 
interfaces (e.g., coalescence or breakup of droplets). Such 
topological changes make the interface tracking a challeng-
ing task (see [10, 11]). Difficulties in simulating the topolog-
ical evolution of deformable interfaces come from the fact 
that its movement follows a material description, while the 
transport process is predicted from spatial descriptions; to 
merge these two frameworks are not straightforward (Santra 
et al. [11]). Standard strategies for tracking interfaces are the 
front-tracking method (see, e.g., [12–15]), sharp interface 
methods such as volume-of-fluid [2, 16, 17] and level-set 
[18–20]), and diffuse interface method (see [21, 22]); each 
one presenting advantages and drawbacks in representing the 
interface. As emphasized by Santra et al. [11], for example, 
the level-set and volume-of-fluid methods cannot handle 
the rapid spatial change in the micro-scale topology of the 
liquid interface. Standard treatments of two-phase droplet 
flows consider the interface between two phases as discon-
tinuity surfaces. In contrast, the diffuse interface method 
assumes a three-dimensional transition zone separating 
the two phases; the material properties characterizing the 
bulk phases and interfacial forces vary smoothly. The dif-
fuse interface method uses free energy for describing the 
interface that depends on the intermolecular forces of the 
components (Santra et al. [11]). The diffuse interface method 
provides a consistent thermodynamic formulation, which 
allows capturing topological changes; see Gurtin et al. [21]. 
Further, the diffuse interface method allows for the modeling 
of interfacial phenomena without a priori assumptions on 
the shape of the moving interface, which is represented by a 
thin, smooth transition layer; this is achieved by introducing 
a phase-field variable, which requires an evolution equation.

In this view, the Cahn–Hilliard equation [23, 24] or its 
non-conservative counterpart the Allen–Cahn equation [25] 
are commonly used to describe the dynamic evolution of the 
phase-field variable. When coupled to the Navier–Stokes 
equations, introduce interfacial stress given by the chemical 
potential and the gradient of the phase-field parameter (see 
Gurtin et al. [21]).

P h a s e - f i e l d  m o d e l i n g  b a s e d  o n  t h e 
Navier–Stokes–Cahn–Hilliard has been used for captur-
ing the interfacial phenomena of multicomponent and 
multiphase flow within microfluidics, including droplet 
dynamics in unbounded flow, such as droplet formation and 
breakup; see, e.g., [26–31] or the presence of solid bounda-
ries. De Menech [26] studied modeling of droplet breakup 
in a microfluidic T-shaped junction with a phase-field model 
in the hydrodynamic regime where capillary and viscous 
stresses dominate over inertial forces within microfluidic 
devices. In a recent study by Bai et al. [32], a three-dimen-
sional droplet generation in a flow-focusing microchannel 
is studied by performing a phase-field method based on the 
Navier–Stokes equations coupled with the Cahn–Hilliard 
equation. These works have studied the dynamics of gen-
eration and transport of droplets in T-junction, co-flowing, 
and contraction-expansion microfluidic devices. Analysis of 
droplets transport within microfluidics is complicated due 
to the need for three-dimensional simulating of droplets. 
According to Khater et al. [9], most of the droplet generation 
and transport are limited to two-dimensional simulations 
aiming to study heat transfer enhancement and characterize 
internal vortices in liquid plugs in microchannels and within 
the droplets through the Marangoni effect (see, e.g., [1, 33]).

In this work, we study the thermal behavior of two-phase 
droplet transport within a co-flowing microtube subjected to 
a temperature change. Further, we analyze the effect of two-
phase droplet frequency in terms of the flow rate ratio and 
recirculation between droplets on the heat transfer enhance-
ment. For that, we use an axisymmetric phase-field model 
based on the Navier–Stokes–Cahn–Hilliard equations cou-
pled with the heat equations for simulating droplets transport 
in the co-flowing microchannel.

The model is solved using a mixed finite element method 
implemented in the software COMSOL Multiphysics. Then, 
the model is applied to investigate the effects of the droplets 
dynamics on the temperature distribution within the micro-
channel. Further, we study the thermal convective enhance-
ment within microchannel by the vortices in the continuous 
phase due to liquid–liquid interfaces. We assume a simpli-
fied model by considering droplets formation in a co-flowing 
microchannel and heat transfer as a Graetz problem.

We have structured the remainder of this work as follows. 
In Sect. 2, we introduce the problem definition and math-
ematical modeling for the two-phase flow. Then, in Sect. 3, 
we describe the numerical details to solve the physical 
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problem using a mixed finite element implementation in the 
COMSOL Multiphysics. We present results and discussions 
in Sect. 4 and the conclusion in Sect. 5.

2  Problem definition and phase‑field 
equations

2.1  Geometry of co‑flowing microtube

We adopted a co-flowing microtube geometry to reproduce 
a droplet two-phase flow regime studied by Fischer et al. [1]. 
The co-flowing liquid stream controls the generation and 
transport of dispersed droplets in a dripping regime (see, 
e.g., [34]), such that hydrodynamic forces are employed to 
control the pinching of the liquid–liquid interface, modify-
ing the size of the droplets, and generation frequency. The 
geometry of the cylindrical microchannel, which comprises 
two aligned capillary tubes, is shown in Fig. 1), with the 
radius of the carrier cylindrical microchannel and injection 
capillary tube are R = 500 μ m and ri = 0.2R , respectively. 
The total length is 50R to ensure full thermal development 
of droplet two-phase flow, which can also ensure the fully 
developed flow in the case of single-phase flow. The wall 
temperature distribution of the microtube is set to be 300 K 
for −30R < z < 0 and 340 K for 0 < z < 20R , respectively.

Driven by pressure loads, the dispersed droplets (phase 
2) flow into the continuous liquid (phase 1). A train of drop-
lets is formed, detached, and immersed into the isothermic 
region of the capillary tube, −30R < z < 0 . As they move 
with the continuous liquid, the flow develops around the 
droplets deforming the interface between the two phases and 
their surrounding, immiscible liquid. After that, the train 
of droplets enters into the thermally developing region of 
the microtube. Heat transfer of a single-phase-laminar flow 
in the cylindrical microchannel follows the classical Graetz 
problem; see, e.g., [35].

2.2  Phase‑field equations

We apply a particular version of the Navier–Stokes–Cahn–Hill-
iard equations introduced in Gurtin et al. [21], which were 
originally developed for predicting separation of two-phase 
binary fluids, to study the following physical process occurring 
in the co-flowing cylindrical microchannel (Fig. 1): Droplet 

dynamics (formation, breakup, coalescence, and transport), 
convective heat transfer, and two-phase flow of immiscible 
liquids. In short, we use the phase-field model based on the 
Cahn–Hilliard equation to capture the interface between drop-
let and continuous phase. The Navier–Stokes and continuity 
equations are solved to simulate the flow field. Thus, the gov-
erning equations are given by

which must be solved for the gross velocity field � , pressure 
p, phase-field variable � , and chemical potential � ; where 
�̇ =

(
𝜕�

𝜕t
+ � ⋅ grad�

)
 denotes the material-time derivative, 

� denotes the Laplacian operator, and m is the mobility. The 
term � grad� accounts for surface tension force on the inter-
face between two phases.

In addition, we coupled the phase-field model to the energy 
equation,

to describe thermal effects and temperature-dependent 
capillary, where T, cv , k are, respectively, the temperature 
field, specific heat capacity at constant volume, and thermal 
conductivity.

In the phase-field specialization, we assume that the two-
phase fluids are immiscible except in a small interfacial region 
between the phases, which allows mixing and constituents dif-
fusion (see [36]). Furthermore, the liquid phases are treated as 
incompressible with no phase change and mass transfer across 
the interface (see., e.g., [22]). The mass density � of fluid in 
each phase is calculated as a smooth function of the phase-field 
variable � by

which allows the unmixed liquids to have different mass den-
sities, �c and �d ; where subscripts d, c refer to dispersed and 
continuous phases, with �d = −1 and �c = 1 . In a similar 
way, the fluid viscosity � , specific heat capacity at constant 

(1)

𝜚�̇� = −grad p + div
�
𝜈(grad 𝐯 + (grad 𝐯)⊤)

�
+ 𝜇grad𝜑,

div𝐯 = 0,

d
𝜕𝜑

𝜕t
+ 𝐯 ⋅ grad𝜑 = mΔ𝜇,

𝜇 = f �(𝜑) − 𝜆Δ𝜑,

⎫
⎪⎪⎬⎪⎪⎭

(2)�cv

(
�T

�t
+ � ⋅ gradT

)
= div

(
k grad T

)
,

(3)� =
(1 − �)

2
�d +

(1 + �)

2
�c,

Fig. 1  Geometric model of the 
axisymmetric microtube in the 
co-flowing configuration
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volume cv , and thermal conductivity of fluid in each phase 
are calculated as follows:

The Cahn–Hilliard Eq. (13,4 ) describes the transport of � , 
which is predicted on assuming that the free-energy density 
is given by a double-well potential with wells at �d = −1 
and �c = 1 as:

where λ is the mixing energy per unit of length that can be 
related to the surface tension � and interfacial thickness � 
as [37]

Following Bai et al. [32] and Lim and Lam [38], we assume 
that the mobility is constant and given by

where � is a positive parameter representing a mobility tun-
ing that controls the magnitude of the diffusivity of the phase 
field. Thus, a large enough value of � is required to retain a 
constant interfacial thickness but small enough so that the 
convective term is not overdamped [38].

In the advective Cahn–Hilliard Eq. (13 ), m�� represents 
a term that minimizes the free energy of the system, which 
includes higher-order derivatives of � , designed to keep 
the interface compact. Note that m�� vanishes as m goes 
to zero, which gives a pure advective transport equation as 
in the level set method. However, the numerical solution 
with m�� = 0 is unstable and of small practical use in most 
cases. This diffusion term is analogous to numerical dif-
fusion that stabilizes the numerical schemes and improves 
mass conservation.

The system of Eqs. (1) and (2) introduced above must 
be supplemented with physically appropriate boundary and 
initial conditions. The geometry of the co-flowing microtube 
is assumed to be axisymmetric, as shown in Fig. 1. We there-
fore adopt the top half of the geometry as a two-dimensional 
axisymmetric domain. We impose a symmetry boundary 
condition at the centerline of the microtube domain. We 
set uniform velocities ud and uc and temperature Tw1

 to the 
inlet boundary conditions for the continuous and dispersed 
phases, while the outflow boundary condition with a fixed, 
zero-pressure constraint p0 = 0 , and zero fluxes are imposed 
to the outlet (see, e.g., [39–41])

(4)

� =
(1 − �)

2
�d +

(1 + �)

2
�c, cv =

(1 − �)

2
cvd +

(1 + �)

2
cvc ,

k =
(1 − �)

2
kd +

(1 + �)

2
kc,

(5)f (�) =
λ

4�2
(�2 − 1)2.

(6)λ =
3
√
2

4
��.

(7)m = ��2,

 where � is the outward-pointing unit vector normal to the 
boundary. Further, we impose the no-slip, zero velocity 
� = � at the tube wall. Following Fischer et al. [1], we set a 
temperature distribution as a step function along the micro-
channel wall, 300 K on the isothermal entrance section and 
increased to 340 K on the heated section, as shown in Fig. 1. 
Furthermore, we assume that the liquid thermal behaviors 
are in thermal equilibrium with the wall at the liquid–solid 
interface (see, e.g., Gad-el-Hak [42] and Rosengarten et al. 
[43]). For droplet generation, the phases are set as �d = −1 
and �c = 1 at the inlet for dispersed and continuous, respec-
tively. As a consequence, the dispersed phase flow forms a 
train of droplets; the droplets size and length between drop-
lets can be adjusted by changing the flow rates Qc when 
�c = 1 and Qd when �d = −1 . The flow rate ratio � is defined 
as � = Qd∕Qc and is used to control the droplets frequency 
generation.

We identify key controlling parameters of dispersed drop-
lets generator. As in Khater et al. [9], these groups include 
the physical properties and flow rates of dispersed and 
continuous phases and the dimensions of microchannel. In 
our analysis, we will adopt three non-dimensional groups, 
say the Reynolds number Re = 𝜚cv̄cR∕𝜈c , capillary number 
Ca = 𝜈cv̄c∕𝜎 , and flow rate ratio � = Qd∕Qc . These groups 
are calculated from the dimensional variables that include 
the volumetric flow rate Q, the viscosity � , and interfacial 
tension � between two immiscible liquids into the microtube, 
and the radius of the microtube as the characteristic length 
scale.

3  Numerical method

We have used the finite element software COMSOL Mul-
tiphysics to simulate the two-phase droplet and heat transfer 
in the microtube. In this case, the Navier–Stokes–Cahn–Hill-
iard and heat transfer Eqs. (1)–(2) are solved using a mixed 
finite-element method. The Cahn–Hilliard Eq. (13,4 ) is han-
dled by adding an auxiliary variable to separate the fourth-
order equation into two coupled second-order equations (see, 
e.g., [39, 41]).

The system of Eqs. (1) and (2) was implemented in the 
COMSOL Multiphysics using the Laminar Two-Phase Flow 
Module and coupled with the Heat Transfer Module. For the 
spatial discretization, we adopt Taylor–Hood elements (see, 
e.g., Ern and Guermond [44]) that are inf-sup stable elements. 
Thus, the velocity � and order parameter � are interpolated by 
piecewise-quadratic functions, while the pressure p, chemical 
potential � , and temperature T are interpolated by piecewise-
linear functions. Furthermore, we apply an implicit second-
order BDF method, with free time-stepping controlled by the 

(8)� ⋅ m grad� = 0, � ⋅ grad� = 0, � ⋅ k grad T = 0,
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solver to take larger or smaller time-steps sizes as required to 
satisfy the specified tolerances during the computations. At 
each time-step, the discrete mixed problem results in a system 
of nonlinear equations that is solved through a fully coupled 
approach using the damped Newton method. The direct solver 
PARDISO was selected to solve the discrete system.

3.1  Mesh independence

To study the heat transfer enhancement induced by the two-
phase flow within the microchannel, as shown in Fig. 1, 
immiscible droplet liquid is injected in a co-flowing liquid 
stream at uniform temperature of 300 K, with the flow rate 
Qc = 64.2 �l/s, which correspond to the Reynolds number of 
50. The flow rate ratio was set at � = 0.223 , corresponding to 
a flow rate of 14.3 �l/s for the dispersed phase. Those choices 
have been made to reproduce the results presented in [1] in 
order to validate our results, as will be discussed in Sect. 4.1. 
Thus, Table 1 lists the physical properties of the continuous 
(water) and dispersed (oil PAO) phases used in the numerical 
simulations. Furthermore, we adopted an interfacial tension 
value �0 = 30 × 10−3 N/m at 300 K and a temperature coef-
ficient � = −0.06 × 10−3 N/(m K), such that the interfacial 
tension is given by � = �0 + �(T − Tw1

) ; see [1] for details.
As a measure of the heat transfer enhancement caused by 

the train of two-phase droplets flow, we have used the Nusselt 
number given by

where q|w,z is the heat flux at the wall, and the local bulk-
mean-temperature Tb is calculated as follows:

The axisymmetric, two-dimensional domain (Fig. 1) is 
meshed into different structured grids using nel quadrilat-
eral elements. To verify the independence of the results 
of the mesh choice, we compared the distributions of the 
normalized axial velocity and dimensionless temperature 
� = (T − Tw,z)∕(Tb − Tw,z) , where Tw,z is the wall tempera-
ture. As shown in Fig. 2, the axial velocity profiles in five 
meshes are coincident. The dimensionless temperature 

(9)Nuz =
2Rq|w,z

k(Tb − Tw,z)
,

(10)Tb =
∫ R

0
�cvvzTrdr

∫ R

0
�cvvzrdr

.

distribution presents a deviation between meshes with 
nel = 50, 284 and 70,038 that are almost negligible, as shown 
in Fig. 3. Since the two-phase droplet flow increases the 
local Nu(z) number in comparison to the single-phase flow 
in the microtube, the Nu number varies periodically in the 
axial direction. Thus, we adopt the equivalent Nu∗ number 
by space and time averaging Nu to verify the independence 
of meshes on the convective heat transfer. Figure 4 shows 
that Nu∗ number tends to a plateau value as the number of 
elements nel grows in the mesh. For the following studies, 
we employed mesh with 60,757 elements that satisfy mesh 
independence, with accuracy and small computational 
consumption.

Table 1  Physical properties of the liquids used in the study, see Ref. 
[45]

Liquid � (kg/m3) � (Pa.s) c
v
 (J/kg K) k (W/m K)

Water 1.0 × 10
3

1.0 × 10
−3

6.0 × 10
−1

4.2 × 10
3

Oil (PAO) 8.0 × 10
2

5 × 10
−3

1.3 × 10
−1

2.3 × 10
2

Fig. 2  Normalized axial velocity evaluated at z = 20R for different 
meshes

Fig. 3  Dimensionless temperature profiles evaluated at z = 20R for 
different meshes
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4  Results and discussion

4.1  Heat transfer enhancement of droplet 
two‑phase flow

The flow patterns results are shown in Fig. 5 at the flow 
rate of 14.3 �l/s for dispersed phase. The dispersed phase 
generates from the tip of the internal microtube followed 
up with droplet growth, breakup and transport into the 
moving continuous phase under a dripping regime. Based 
on imposed hydrodynamic flow conditions, the simula-
tions predicted that the spherical droplets are distanced 
by around 3.7R from each other and the droplet radius is 
around 0.8R, which are in agreement with the flow pattern 
obtained in the studies by Fischer et al. [1].

The results show convective heat transfer enhancement 
in the cylindrical microchannel and the influence of drop-
lets frequency and internal circulation zones on the heat 
transfer rates. We compare the heat transfer rate predicted 

from droplets two-phase flow with results presented in the 
studies by Fischer et al. [1], which the focus was to study 
the effects of a train droplets on the local Nusselt number, 
without take into account the droplet generation. Figure 6 
shows the local Nusselt number Nuz and temperature distri-
bution in the axial z-direction at the steady state. As in the 
studies by Fischer et al. [1], a strongly thermal enhance-
ment is achieved in comparison with a single-phase flow 
and the Graetz solution. The local Nusselt obtained from 
the classical approximated solution of the Graetz problem 
yields Nuz = 1.357(PeR∕z)1∕3 , where Pe = 2𝜚cv̄ccpR∕kc is 
the Peclet number based on the properties of continuous 
phase.

From Fig. 6, we observe an augmentation of the local 
Nusselt number profile induced by the velocity of the recir-
culating zone between droplets being directed from the wall 
toward the center of the microchannel, meaning a enhance-
ment in the convection transport. These recirculations zones 
appear periodically in the region between two subsequent 
droplets, as shown in zones I and III. The temperature dis-
tribution in the droplets and continuous phase suggests that 
the hotter liquid is transported from the heated wall toward 
the center line of the channel where the liquid is colder. 
Thus, the liquid in front of the droplets is hotter than the liq-
uid in their tails, with a strong increase in the local Nusselt 
number. A similar process occurs within the droplets (see 
region II), where recirculations are observed, as shown in 
Fig. 7. The predicted local Nuz along the co-flowing regime 
in the microtube is in good agreement with the front-track-
ing-based numerical results obtained by Fischer et al. [1]. 
The local Nusselt number calculated from the phase-field 
simulation exhibits a maximum value slightly above 12, in 
comparison to single-phase flow.

For model validation, we used the root-mean-squared 
percentage error to measure how well the predicted local 
Nusselt number agrees with Fischer et al. [1] simulations for 
liquid–liquid spherical droplets. In short, it is employed the 
standard formula (see, e.g., Cherbakov et al. [46])

where P and F variables represent the predicted and Fischer 
et al. [1] local Nusselt numbers, respectively, and n is the 
number of data points. The root-mean-squared percentage 
error was determined to be around 5.5%.

We consider the effect of dispersed droplets production 
frequency on the heat transfer enhancement. Figure 8 shows 
flow patterns predicted at flow rate ratios � ranging from 0.1 
to 0.3 (see, e.g., Asthana et al. [47]) in the dripping regime 
at steady state and fixed capillary number based on the bulk 
mean velocity Ca= 2.6 × 10−3 . Note that increasing the flow 

(11)
Root-mean-squared error =

�����
∑n

1

�
P−F

P

�2

n
× 100,

Fig. 4  Average Nusselt number as a function of the number of ele-
ments in the mesh

Fig. 5  Snapshots of formation, breakup, and transport of dispersed 
droplets in the co-flowing microtube for Q

c
= 64.2 �l/s and flow rate 

ratio � = 0.223 at different time instant
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rate ratio � , the dispersed-phase frequency increases, and 
thus, more dispersed droplets flow through the microchan-
nel. Figure 9 shows the influence of the frequency of the 
dispersed droplets on the temperature field in comparison 
to the temperature distribution in single-phase flow. The 
result shows that the convective heat transfer improvement 
is strongly associated with the distance between droplets in 
co-flowing. We associate the convective thermal enhance-
ment with the flow structure shortening. The length of flow 
structures (the distance between droplets) is controlled using 
five values of the flow rate ratios � to generate different dis-
persed-phase frequency and flow patterns. From Fig. 9, it 
can be verified that the temperature distribution between 

two droplets is affected in front of the droplet and in the 
rear of droplets as the flow rate ratio � increases, as shown 
in Fig. 10, when considering the Nusselt number averaged 
over time. It is interesting to note that shortening the dis-
tance between droplets as increasing the flow rate ratio, the 
circulating flow between two droplets affects the convective 
thermal transport.

By introducing the flow-type parameter (Lee et al. [48])

(12)� =
|�| − |�|
|�| + |�| ,

Fig. 6  Variation of Nu and 
temperature distribution along 
the co-flowing microtube in 
single-phase and two-phase 
droplets flows. The liquid in 
the droplets is polyalphaolefine 
(PAO) surrounded by water as 
continuous phase, with flow rate 
ratio � = 0.223 . The simula-
tions are carried out for Re = 50 
and Ca = 2.6 × 10

−3 in the 
continuous phase. The local Nu 
of the liquid–liquid droplet flow 
calculated by Fischer et al. [1]. 
The root-mean-squared percent-
age error for the predicted and 
Fischer et al. simulations was 
determined to be around 5.5%

Fig. 7  Streamlines for a mov-
ing frame referential with the 
droplets mean velocity

Fig. 8  Flow patterns for differ-
ent flow rate ratios at the steady 
state. a � = 0.1 , b � = 0.15 , 
c � = 0.2 , d � = 0.25 , and e 
� = 0.3
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we quantify the flow structures within and between subse-
quent droplets, wherein � represents the symmetric strain 
rate tensor (stretching) that gives the local deformation and 
� is the skew part of the velocity gradient that gives the 
local rotation in the flow field; their respective magnitudes 
are defined as ��� =

√
tr �2 and ��� =

√
−tr�2 (see, e.g., 

[49]). The flow-type parameter � varies from −1 (pure rota-
tional flow) to 1 (pure extensional flow); � = 0 represents a 
pure shear flow. The distribution of � from Fig. 11 evidences 
the regions where rotation prevails over-stretching rates, 
regions with 𝜔 < 0 . When increasing the dispersed-phase 

frequency (distance between two droplets shortening), the 
recirculation structure decreasing in size between subse-
quent droplets and stretching zones prevails where 𝜔 > 0 . 
Thus, from Fig. 9, it can be found that these flow structures 
(recirculation zones) can affect the convective heat transfer. 
When compared with the heat transfer in the single-phase 
flow, we observe an increase of time-averaging Nu number, 
which suggests a bound limit for the heat transfer enhance-
ment, as shown in Fig. 10. It is interesting to note that 
after the flow rate ratio reaches a critical value, the Nusselt 
number starts decreasing. Augmenting the flow rate ratio, 
the distance between two droplets decreases, presenting a 
smaller recirculation structure in size between droplets and 
stretching domains prevails with 𝜔 > 0 , as shown in Fig. 11.

We find from Fig.  12 the existence of an optimal 
flow rate ratio, which predicts a maximum heat transfer 
enhancement of two-phase droplet flow in the microtube.

Figure 13 shows the pressure loss distribution as a 
function of flow rates. When the average Nu number aug-
ments around 34%, we find an increase of about 36.9% of 
pressure loss at the flow rate of 0.225.

4.2  Effects of capillary on the heat transfer

The Capillary number Ca relates viscous and interfacial 
forces. For low values of Ca, droplets tend to be elongated 
because the interfacial tension forces dominate over the 
actions of the viscous ones. As Ca augments, the breakup 
droplet rate steadily increases by the effect of the vis-
cous forces accordingly grows, and droplet deformation 

Fig. 9  Temperature distribution for two-phase droplets flows and different flow rate ratios at the steady state. a single-phase, b � = 0.1 , c 
� = 0.15 , d � = 0.2 , e � = 0.25 , and f � = 0.3 . The temperature field of the single-phase flow is added for comparison

Fig. 10  Nusselt averaged over time for different flow rate ratios �
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decreases. For a sufficiently high capillary number, the 
droplet diameter becomes smaller and spherical droplets 
are formed, with the shear stress exerted on the droplet 
more concentrated in one point, as observed in Ref. [50].

Figure 14 shows two-phase droplet flow patterns taking 
into account different Ca numbers and fixed flow rate ratio. 
Since the Ca number influences the droplet’s shape and 
breakup rate, it strongly affects the convective heat transfer, 
as shown in Fig. 15. As Ca increases, droplets spacing and 
volume decrease while promoting an initial augmentation 
in the time-averaging Nusselt number. While Ca continues 

increasing, droplets become spherical and their diameter 
progressively smaller, which reduces recirculation between 
droplets in the dripping regime and, thus, the time-averag-
ing Nusselt number decreases.

Figure 17 shows the dimensionless pressure loss as a 
function of the flow rate ratio for each value of the Ca 
number simulated; we find that the pressure loss steadily 
decreases as Ca augments. It is interesting to note that an 
optimum scenario regarding the heat transfer enhancement 
and pressure loss is obtained for Ca = 2.6 × 10−3 , as shown 
in Fig. 16 and 17.

Fig. 11  Flow-type parameter field for a � = 0.1 , b � = 0.15 , c � = 0.2 , d � = 0.25 and e � = 0.3

Fig. 12  Nusselt number spatial averaged for different flow rate and 
single phase (red dashed line)

Fig. 13  Dimensionless pressure loss versus flow rate ratio
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5  Conclusions

In this work, we employed a phase-field method based 
on the Navier–Stokes–Cahn–Hilliard equations coupled 
with the energy equation to simulate the heat transfer 
enhancement induced by a train of silicone-oil droplets in 
co-flowing microtube. Different from previous studies, we 
considered in the simulations droplets formation, breakup, 
and transport into the thermal entrance region. We found 

that with the presence of a train of droplets in the continu-
ous phase flow, the heat transfer can be enhanced with an 
increase in the pressure loss relative to the single-phase 
flow. Moreover, the enhancement in the convective heat 
transfer varies non-monotonically with the flow rate ratio. 
By augmenting the droplet generation frequency, the 
distance between droplets decreases, and also the recir-
culation structure separating droplets, which improves 
the thermal mixing. Thus, the space-time-averaging Nu 
number over the heated region increases firstly and then 
decreases with the flow rate ratio. A comprehensive effect 
of such observation suggests an optimal flow rate ratio in 
which the heat transfer enhancement of two-phase droplet 
flows in the microtube reaches a maximum for the dripping 
regime. The time-averaging Nu number decreases as the 
capillary number augments. As a consequence, the heat 
transfer enhancement decreases since the droplets decrease 
their size.

As a final remark, numerical simulations compose an out-
standing approach to the study of convective heat transfer 
enhancement induced by two-phase droplet flow in micro-
channels since they can predict complex two-phase flow con-
ditions free from external interference. However, numerous 
factors point toward the requirement of a theoretical model 
for immiscible two-phase flow that accounts for temperature-
dependent capillarity to describe the Marangoni effect. Thus, 
as a work-in-progress, we will propose a non-isothermal 
phase-field model for immiscible incompressible fluid flows 
with temperature-dependent capillarity in order to describe 
the Marangoni effect (or thermo-capillarity convection).

Fig. 14  Droplet formation rate with different Ca and fixed flow rate ratios � = 0.2 . a Ca= 0.5 × 10
−3 , b Ca= 1 × 10

−3 , c Ca= 2 × 10
−3 , d 

Ca= 3 × 10
−3 , e Ca= 4 × 10

−3 , f Ca= 5.75 × 10
−3 , and g Ca= 6 × 10

−3

Fig. 15  Nusselt averaged over time for different capillary numbers 
and flow rate ratios � = 0.2
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