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Abstract
Nowadays, adhesive bonding is an essential joining technique in top-end sectors, such as aircraft, automotive, and construc-
tion industries. Due to their advantages over traditional joining methods, adhesive joints research has been under huge 
developments in recent years, being the development of accurate and efficient numerical techniques a leading challenge in 
adhesive joint design. Although the finite element method (FEM) is an established discretisation technique, meshless meth-
ods emerged as alternative discretisation methods to evaluate adhesive joints. Nonetheless, meshless techniques still require 
deeper research in adhesive joint simulations, where strength prediction is hindered by intricate stress states and material 
behaviour. This paper aims to evaluate the natural neighbours radial point interpolation method (NNRPIM) in the linear 
analysis of adhesive joints. The capability of the method was addressed by comparing it with analytical models, the FEM 
and experimental data. As the applications of meshless methods to analyse adhesive joints are scarce, this work evaluates 
the behaviour of double-lap joints (DLJ) considering distinct overlap lengths and adhesive materials. DLJ has a different 
behaviour than single-lap joints, which are more commonly analysed. Thus, this work provides a preliminary linear analysis, 
which could be the basis for further analyses of adhesive joints combining the NNRPIM with elastic–plastic, hyper-elastic, 
and large deformations formulations. Although it is remarked that elastic formulations underpredict joint strength, the 
NNRPIM shows similar results to the FEM, which supports the extension of the NNRPIM to more representative mathemati-
cal formulations and complex joint designs.
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1 Introduction

Adhesive bonding allows the joining of similar and dis-
similar materials. In addition, the stress concentrations in 
the joint are smaller in those bonded than in those joined 
by other methods like fasteners or welding; furthermore, 
bonded joints are often lighter than their counterparts. 
Because of these advantages, bonded joints have an impor-
tant role in modern manufacture [1].

Different joint configurations exist, which depend on the 
relative alignment of the substrates. Joints bonding parallel 
substrates are the most studied, being the single-lap joint 
(SLJ) amongst these and extensively analysed because of 
its geometric simplicity. However, its geometry also causes 
eccentric loading, which results in lower joint strength 
( Pmax ). On the contrary, the double-lap joint (DLJ) has 
three substrates where the centre substrate is opposite to 
the top and bottom ones, and so, the eccentric loading is 
highly reduced [1], making it suitable for structural applica-
tions [2]. Moreover, the joints’ behaviour is highly sensitive 
to different design variables, such as adherend and adhe-
sive properties (namely ductility), overlap length, adherend 
thickness, adhesive thickness, curing process of the adhe-
sive and surface preparation [3]. The adhesive layer must 
be thin (0.1 mm ≤ ta  ≤ 1 mm) to achieve the best Pmax [4]. 
In lap joints, the overlap is also related to Pmax [5, 6], being 
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Pmax almost proportional to LO , but this also depends on the 
adhesive type [7].

Stress distributions in the adhesive layer can be obtained 
analytically and numerically. The former method provides a 
relative fast approximation of the stresses, mainly for elastic 
material models. Although there are analytical models suita-
ble for elastic–plastic adhesives and substrates, their applica-
tion is less straightforward. An extensive review of the most 
important analytical formulations has been performed by da 
Silva et al. [8, 9]. Analytical formulations are often chosen 
for performing parametric studies because the solution time 
is minimum. For example, Her and Chan [2] proposed an 
analytical formulation based on the sandwich model for the 
DLJ; the analytical model was validated using a numerical 
model, i.e. finite element method (FEM) through commer-
cial software, a good agreement was found in the solutions. 
Then, it was used to perform a parametric study about the 
variables influencing Pmax . On the other hand, the numerical 
analyses permit to consider more variety of material behav-
iours for adhesives and substrates and therefore are more 
present in the literature. Regardless of the approach, ana-
lytical or numerical, stress distributions are obtained. Then, 
Pmax can be determined using continuum mechanics criteria, 
like those described by Crocombe [10]. Unfortunately, the 
choice of failure criteria depends on the joint type and the 
materials involved, as stated by Hart-Smith [11]. In conse-
quence, those used in the literature can only be used as a 
starting point.

Turning back to the numerical techniques mentioned 
above, the FEM has been proven as a reliable and accu-
rate method to determine stresses and strains in adhesive 
joints [7, 12]. Furthermore, the capabilities of the method 
are increased by means of cohesive zone modeling (CZM) 
[7, 12], and more recently, by the eXtended finite element 
method (XFEM) [12]. Despite this, the FEM’s solution and 
accuracy rely on a structured element mesh, which on occa-
sions can be distorted, compromising the accuracy. This 
problem is often addressed by highly refining the mesh 
around the points where high-stress gradients are expected. 
However, this is mostly performed manually and requires a 
large amount of time [13, 14]. As a consequence, meshless 
methods have been on development, which accuracy does 
not rely on a predefined element mesh; these methods are 
described by Chen [14]. Those meshless methods based on 
Radial Point Interpolators, like the radial point interpolation 
method (RPIM) [15] and the natural neighbour radial Point 
interpolation method (NNRPIM) [16] possess comparable 
accuracy to the FEM [17], being the NNRPIM a truly mesh-
less method since it does not need a predefined background 
integration mesh. In addition, the shape functions of these 
RPI-based meshless methods possess the Kronecker’s delta 
property, which is also present in the FEM’s shape func-
tions. Consequently, the imposition of boundary conditions 

is similar. In addition, the numerical routines developed for 
the FEM can be easily expanded to meshless methods [13].

Although meshless methods are a promising alternative 
to analyse adhesive joints, their application to this subject is 
scarce, as reviewed by Ramalho [18]. One of the first works 
applied to bonded joints was that of Tsai et al. [19], whose 
analysis proposal consisted of the combination between 
CZM and the symmetric smoothed particle hydrodynam-
ics meshless method (SSPH). The double-cantilever beam 
(DCB) was the joint geometry, under mode I, mode II and 
mixed-mode, enabling the experimental/meshless compari-
son and validation. The meshless strength predictions, using 
continuum mechanics criteria, were acceptable for both 
mode I and prevalent mode I loadings. Mubashar and Ash-
croft [20] compared the smoothed particle hydrodynamics 
(SPH) method against CZM, both using the Abaqus® (Das-
sault Systèmes, Inc.) embedded formulations. However, the 
SPH stresses revealed non-negligible oscillations and peel 
stresses overshooting the real joint behaviour, contrarily to 
shear stresses, which were below the expected. Nonetheless, 
and despite the produced noise in the load–displacement 
curves, the failure load was offset to around 9%, leading to 
reasonably good results. Ramalho et al. [21] used the radial 
point interpolation method (RPIM) together with the critical 
longitudinal strain (CLS) criterion, continuum-mechanics 
based, for strength prediction of SLJ with aluminium adher-
ends and under tensile loads, via stress and strain distribu-
tions analysis. The maximum load predictions were accurate 
for adhesives that ranged from brittle to ductile. However, 
the CLS parameters were found to vary between different 
overlap lengths. The method was considered a good choice, 
and it only required an additional interface node layer to 
limit the influence domains of the integration points that 
linger near the material interfaces. The maximum error 
between all tested conditions was 17%, regarded as accept-
able in view of using continuum mechanics criteria. From 
the aforementioned cases, it can be observed that meshless 
applications to adhesive joints had been focussed on SLJ and 
DCB joints. However, these studies usually focus on unique 
geometries and one adhesive material, while do not address 
geometric variations nor ductile adhesives. Furthermore, 
although linear-elastic analyses are often overlooked, they 
are a suitable tool for small strains and conservative design 
of joints.

As reviewed, applications of meshless methods to ana-
lyse adhesively bonded joints are scarce. Given the mesh-
less methods’ theoretical assets to model the intricate behav-
iours of adhesively bonded joints, their extension to such 
applications is currently a research necessity. Regarding 
the NNRPIM, its application to adhesive joint modeling 
is still in the first stages of development. In this work, the 
NNRPIM is originally extended to DLJ adhesive joints 
modeling, which presents a different behaviour to SLJ, the 
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most commonly analysed joint configuration. Therefore, 
a linear-elastic formulation is employed to validate the 
NNRPIM methodology, quantify the impact of consider-
ing linear-elastic assumptions, and investigate the suitabil-
ity of continuum mechanics criteria based on linear-elastic 
assumptions. The suitability of the method for numerical 
stress analysis and joint strength prediction was discussed 
by comparing it with known analytical linear-elastic mod-
els, the FEM and experimental data for joints bonded with 
different overlap lengths and adhesive materials (ranging 
from brittle to ductile). A linear-elastic NNRPIM analysis 
of adhesively bonded DLJ is discussed, hence providing the 
foundation for further complex DLJ modeling combining 
the NNRPIM with elastic–plastic, hyper-elastic, and large 
deformations formulations.

2  Experimental work

2.1  Joint geometry

The selected bonded joint configuration is the DLJ, whose 
geometry and relevant parameters are presented in Fig. 1. 
The necessary dimensions to fully define the joint are (in 
mm): adherend thickness t1 = 3, adhesive thickness ta = 0.2, 
L0 = 12.5, 25, 37.5, and 50  mm, and total joint length 
between grips LT = 180 mm. Five specimens were fabricated 
and tested for each DLJ set, composed of adhesive/LO com-
bination, giving sixty specimens overall. As shown in Fig. 1, 
all adherends have the same tP. This creates an unbalanced 
joint as using the inner adherend with twice tP of the outer 
adherends produces an area-balanced joint [22].

2.2  Materials

The adherends were cut to size from a plate of alu-
minium alloy, AW6082 T651, which tensile strength 
properties were characterised, in previous work [23], 
by following the specifications of the ASTM-E8M-04 
standard [24]. Data analysis led to the reported proper-
ties: longitudinal elastic modulus (E) = 70.07 ± 0.83 GPa, 
y i e l d  s t r e n g t h  (σ y )  =  2 6 1 . 6 7  ±  7 . 6 5   M P a , 

failure strength (σf) = 324 ± 0.16 MPa and strain at failure 
(εf) = 21.70 ± 4.24%. Bonded joints were fabricated with 
three adhesives, from brittle to ductile; the selected adhe-
sives were the Araldite® AV138 (strong and brittle epoxy), 
Araldite® 2015 (less strong but medium ductile epoxy), and 
the Sikaforce® 7888 (strong and ductile polyurethane). The 
experimental stress–strain (σ-ε) curves of these adhesives 
are presented in Fig. 2.

Tensile mechanical properties (E, σy, σf, and εf) were 
obtained experimentally from bulk tests. The specimen fab-
rication and testing were done following the standard NF T 
76–142. Shear properties (shear modulus—G, shear yield 
stress—τy, shear strength—τf, and shear failure strain—γf) 
were obtained using Thick Adherend Shear Tests (TAST), 
for which fabrication and testing protocols followed the 
11,003–2:1999 ISO standard, with emphasis to specimen 
curing in a rigid mould to ensure the proper adherends’ lon-
gitudinal alignment, and usage of DIN C45E steel adherends 
to minimise adherend-induced deformations affecting the 
obtained results. Table 1 provides the relevant data for the 
three adhesives and relevant yield and failure criteria param-
eters, which are defined in subsequent sections.

2.3  Fabrication and testing

The fabrication of the joint specimens was initiated by cut-
ting the aluminium plate to the required length and width 

Fig. 1  DLJ geometry, dimen-
sions, and symmetry conditions 
for the numerical analysis

Fig. 2  Representative σ-ε curves of the three adhesives considered
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(w = 25 mm) to produce the adherends. The adherends were 
then subjected to proper surface preparation by mechani-
cal methods (grit blasting), followed by acetone degreasing, 
with emphasis to the blasted surfaces, preventing adhesive 
contamination and promoting cohesive failures in the adhe-
sive layer, which are essential for the correct joint analysis 
[25]. The adhesive was poured into the bonding surfaces 
by different methods (either automatic gun application or 
manual mixing and application with a spatula). Assembly 
and adhesive curing were aided with a steel jig to align the 
adherends and provide the correct ta. Actually, ta value was 
enforced by positioning the outer adherends with calibrated 
metallic blocks [26]. Longitudinal stops provided the cor-
rect L0 and LT. Joint alignment during testing was secured 
by glueing tabs (25 mm × 25 mm × 3 mm) at the joint edges. 
The specimens were left in the jig for one week at room 
temperature to cure. After removal from the jig, the excess 
of adhesive from the specimens was removed by milling as 
Fig. 3a illustrates. The specimens were tested in a Shimadzu 
AG–X 100 testing machine (Fig. 3b shows a specimen prior 
to testing). The load cell was 100 kN, and the testing speed 

was 1 mm/min. It was assured that at least four valid tests for 
each joint configuration were made available.

3  Methods

3.1  Failure criteria

A wide range of failure criteria is available to predict joint 
strength. The global yielding (GY) criteria, originally 
introduced by Crocombe [27], is a limit state criterion that 
can be derived from the Hart-Smith model [28], assuming 
several simplifications [29] of the original complex formu-
lation. It is considered that the adhesive fully yields before 
joint failure, which allows defining the maximum load as:

being �f  the adhesive ultimate shear strength, L0 the 
overlap length, and w the width of the DLJ. The joint 
strength is also limited by the adherends’ tensile strength, 
being the maximum load supported by the adherends given 
by:

 where �f  is the adherend failure stress and t1 the adherend 
thickness. Therefore, joint strength is either restricted by 
adhesive or substrate failure.

Maximum stress or maximum strain value criteria are 
an intuitive yet valid approach to predict joint strength. 
These variables are evaluated along the adhesive’s layer 
mid-thickness; then, when a point along that line reaches 
the material’s failure value, the joint is considered to have 
reached its maximum strength ( Pmax ). The review by 
Quispe Rodríguez [29] provides a wide range of failure 
criteria for adhesively bonded joints. Due to its simplicity 
and easy implementation within the linear-elastic formula-
tion, in this work, the NNRPIM is combined with several 

(1)Pmax = �f ∙ L0 ∙ w,

(2)Pmax = �f ∙ t1 ∙ w,

Table 1  Properties of 
the adhesives Araldite® 
AV138, Araldite® 2015, and 
SikaForce® 7888 [23]

a  manufacturer’s data
b  estimated from Hooke’s law

Property AV138 2015 7888

Young’s modulus E [GPa] 4.89 ± 0.81 1.85 ± 0.21 1.89 ± 0.81
Poisson’s ratio � [−] 0.35 a 0.33 a 0.33 a

Tensile yield strength �y [MPa] 36.49 ± 2.47 12.63 ± 0.61 13.20 ± 4.83
Tensile failure strength �f [MPa] 39.45 ± 3.18 21.63 ± 1.61 28.60 ± 2.0
Tensile failure strain �f [%] 1.21 ± 0.10 4.77 ± 0.15 43.0 ± 0.6
Shear modulus G [GPa] 1.56 ± 0.01 0.56 ± 0.21 0.71 b

Shear yield strength �y [MPa] 25.1 ± 0.33 14.6 ± 1.3 -
Shear failure strength �f [MPa] 30.2 ± 0.40 17.9 ± 1.8 20 a

Shear failure strain �f [%] 7.8 ± 0.7 43.9 ± 3.4 100 a

Fig. 3  Milling the excess of adhesive (a), and a DLJ specimen fixed 
in the testing machine (b)
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continuum mechanics criteria. The maximum peel stress 
criterion states that failure occurs when the maximum peel 
stress at the adhesive layer reaches the materials’ failure 
stress,

Similarly, the maximum shear stress criterion is defined 
as:

and the maximum principal stress criterion as

being �1 and �2 the principal stresses, �f  the adhesive ten-
sile strength, and �f  the adhesive shear strength. In addition, 
analogous strain criteria were also evaluated, even though 
less discussed due to the limited applicability to linear-elas-
tic conditions.

3.2  Volkersen’s closed‑form model for DLJ

Volkersen’s analytical elastic model [30] is usually imple-
mented in SLJ design, even though it does not account for 
the bending moment caused by load eccentricity in SLJ; 
thus, suitable to analyse DLJs. The DLJ geometry minimises 
the bending deformation present in SLJ. Also, considering 
the symmetry conditions shown in Fig. 1, the Volkersen 
model can be easily extended to DLJ. It is assumed that the 
adhesive only deforms in shear, while the adherends main-
tain the stress level below its elastic limit. Solving the dif-
ferential equation proposed by Volkersen yields to:

being � the shear stress in the adhesive, P the applied 
load, b the joint width, L0 the overlap length, t1 the top adher-
end’s thickness, t2 the bottom adherend’s thickness, and 
X =

x

L0
 with −0.5 ≤ X ≤ 0.5 . The characteristic shear-lag 

distance, w , [29] is given by:

being G the adhesive shear modulus, E the adherend 
elastic modulus, and ta the adhesive thickness. Since the 
Volkersen method assumes a pure shear deformation of the 
adhesive, a shear-based criterion must be considered.

(3)�max
y

= �f .

(4)�max
xy

=
�1 − �2

2
= �f ,

(5)�max
1

= �f ,

(6)� =
P

bL0
∙
w

2
∙
cosh(wX)

sinh
(

w

2

) +

(

t1 − t2

t1 + t2

)

∙
w

2
∙
sinh(wX)

cosh
(

w

2

) ,

(7)w =

√

Gl2

Et1ta
∙

(

1 +
t1

t2

)

,

3.3  The natural neighbour radial point 
interpolation method

Nowadays, the Volkersen analytical model (and other 
closed-form methods) provides benchmark solutions to sim-
ple adhesive lap joints. In complex practical adhesive joint 
applications, analytical models are rarely applicable, being 
generally used to validate numerical methods in simple 
geometry joints. Numerical methods are capable to simulate 
complex joints subjected to arbitrary load cases. Although 
several discretisation techniques are available to predict DLJ 
strength, this work presents the application of an accurate 
meshless technique, the NNRPIM, to numerically simulate 
DLJ. Additionally, a four-node Lagrangian FEM formulation 
is used for comparison.

Contrarily to the FEM, the NNRPIM does not require 
a predetermined connectivity or element mesh to establish 
and integrate the partial differential equilibrium equations. 
Rather, an integration mesh uniquely dependent on the nodal 
spatial information is constructed, resorting to the Voronoï 
diagram of the field nodes discretising the problem domain. 
First, considering a set of nodes N =

{

x1 x2 ⋯ xN
}

∈ ℝ
2 

(Fig. 4a), the Voronoï diagram of N is constructed (Fig. 4b). 
Afterward, a Delaunay triangulation is constructed by con-
necting each interest node to its natural neighbours as illus-
trated in Fig. 4c. This procedure allows dividing the Voronoï 
cell of an interest node xI in n sub cells, being n the number 
of natural neighbours of xI . The constructed subcells can 
then be used to perform the Gauss–Legendre integration. It 
is reported in the literature that a single integration point per 
sub-cell is sufficient to numerically integrate the NNRPIM 
shape functions in elastostatic problems [16]. Therefore, the 
integration scheme shown in Fig. 4d is considered in this 
work. The Voronoï diagram is also used to obtain the nodal 
connectivity directly from the nodal discretisation, being the 
influence-cell (or influence-domain) of an interest point xI 
defined by its natural neighbours (Fig. 4b).

The NNRPIM uses the radial point interpolators (RPI) 
to locally approximate the field variables, i.e. u . Thus, the 
interpolation function u

(

xI
)

 is defined by the combination 
of a radial basis function (RBF), R

(

xI
)

 , and a polynomial 
basis function (PBF), P

(

xI
)

:

being n the number of nodes in the influence domain of 
xI and m the number of monomials in the PBF. Although 
several RBF are available in literature, this work considers 
the multiquadrics (MQ-RBF) [31],

(8)u
(

xI
)

=

n
∑

i=1

Ri

(

xI
)

ai
(

xI
)

+

m
∑

j=1

Pj

(

xI
)

bj
(

xI
)

,

(9)Rij =
(

d2
ij
+ c2

)p

,



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44:55

1 3

55 Page 6 of 16

 where the Euclidean distance, dij , is the only variable in the 
RBF; c and p are shape parameters of the RBF whose choice 
must minimise the interpolation error, as described by Wang 
and Liu [32]. Hence, these parameters had to be optimised 
to achieve such function. For the present NNRPIM formula-
tion, such parameters were previously determined and opti-
mised by solving several 2D tests [16], being c = 0.0001 and 
p = 0.9999 the optimal parameters used in this work. The 
coefficients ai

(

xI
)

 and bj
(

xI
)

 , in Eq. (8), are determined by 
establishing the following equation for each node inside the 
influence domain of xI:

 being us the vector of the corresponding nodal values. To 
obtain a set of n + m equations with n + m unknowns, an 
extra set of equations, PTa = 0, is added to the system [33], 
which yields:

Solving Eq. (11) permits to define the interpolation func-
tion as:

(10)
{

R P
}

{

a

b

}

= us,

(11)

{

R P

PT
0

}

⏟⏞⏞⏞⏟⏞⏞⏞⏟
M

{

a

b

}

=

{

us
0

}

.

 where �
(

xI
)T is a by-product of Eq. (12) that is negligible 

[16]; thus,u
(

xI
)

= �
(

xI
)

us . In addition, the shape functions’ 
spatial partial derivatives can then be easily computed as 
detailed by Belinha [16].

The procedure to obtain the final set of discrete equa-
tions, which is established in the Galerkin weak form, is 
analogous to the FEM. The equilibrium equations are given 
by ∇� + b = 0 , with �n = t on the natural boundary Γt , and 
u = u on the essential boundary Γu , being � the Cauchy 
stress tensor, b the body force per unit volume vector, n the 
unit outward vector normal to Γt , t the traction force on Γt , 
and u the prescribed displacement on Γu . The Galerkin weak 
form for the present linear-static problem is defined as:

Manipulation of Eq. (13) allows to establish a system of 
equations in the form [16]:

(12)
u
(

x
I

)

=
{

r
(

x
I

)T

p
(

x
I

)T

}

M−1

{

us
0

}

=
{

�
(

x
I

)T

�
(

x
I

)T

}

{

us
0

}

,

(13)�L = ∫
Ω

��T�dΩ − ∫
Ω

�uT�bdΩ − ∫
Γt

�uT tdΓ = 0.

Fig. 4  NNRPIM integration 
scheme considering a regular 
nodal discretization
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 where the global stiffness matrix K and the natural force f t 
vector are defined as:

 being B the deformability matrix containing the shape 
functions’ partial derivatives, c the material constitutive 
matrix for plane strain conditions, H the shape function 
interpolation matrix, ng the total number of Gauss points, 

(14)Ku = f b + f t,

(15)K = ∫
Ω

BTcBdΩ =

ng
∑

i=1

B
(

xI
)T
c
(

xI
)

B
(

xI
)

∙ wI

(

xI
)

,

(16)f t = ∫
Γt

HT tdΓt =

ng
∑

i=1

H
(

xI
)T
t ∙ wt

I

(

xI
)

,

and wI the weight of integration point xI . The method is 
fully described in Reference [16]. The NNRPIM and FEM 
were programmed in MATLAB (The MathWorks Inc. USA) 
using custom-written routines, easing comparison between 
methods.

3.4  Preliminary convergence analysis

A preliminary convergence analysis is first presented to 
evaluate the nodal density effect on the specimens force/
displacement and stress at the adhesive layer. For that, 
nine nodal discretisations (m1 to m9) of increasing nodes, 
as Fig. 5 presents, were built. The nodal meshes were cre-
ated using a custom-written MATLAB script. Notice that 
the nodal mesh is refined near the adhesive layer to cap-
ture high-stress gradients occurring in such zone, without 
compromising the computational cost of the analysis. At 
this stage, only models with L0 = 12, 5mm are considered. 

Fig. 5  Nodal discretisations and interest points

Fig. 6  Nodal discretisation for L0 = 12.5mm (a), FEM discretisation (b) and NNRPIM discretization (c)
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Next, numerical analyses assuming plane strain conditions 
were carried out using the NNRPIM and the FEM, the two 
numerical methods used in this work.

In the FEM case, four-node quadrilateral elements were 
used, considering 2 × 2 Gauss points per element in the 
numerical integration (Fig. 6b), whilst the NNRPIM uses the 
integration scheme described in Sect. 3.3, which results in 
the integration point discretisation type presented in Fig. 6c. 
For an equal number of nodes, the NNRPIM requires a 
higher integration point density than the FEM, which allows 
more information regarding the stress/strain fields; however, 
the higher number of integration points leads to a slightly 
higher computational cost as discussed next.

A displacement was imposed at the right end adherend 
as Fig. 1 indicates. Hence, the applied reaction force at that 
boundary is evaluated and plotted in Fig. 7a for each nodal 
discretisation. It can be observed that, from the 4000 nodes 
mark, the applied force converges to a defined value for both 
the FEM and NNRPIM.

Strains and stresses were evaluated at the adhesive layer 
left mid-point (interest point in Fig. 5). In that region, a 
high-stress concentration occurs, hence strain and stress at 
interest points are obtained by extrapolating the strain and 
stress values calculated at the surrounding integration points 
to the interest node. In this manner, the stress singularity is 
smoothed, and mesh-independent solutions can be achieved 
as Fig. 7b, c show. Both strain and stresses at the interest 
point converge to well-defined values for discretisations with 
more than 6000 nodes.

In the present preliminary study, the NNRPIM computa-
tional time is compared with the FEM. Figure 8 shows the 
computational time of the FEM and NNRPIM techniques 
for each nodal discretisation considered (m1 to m9). The 
total computational cost is divided in the pre-processing 
phase (Fig. 8a) and linear-elastic analysis (Fig. 8b). Nodal/
element meshes were created separately from the structural 
analysis module, and the respective cost is not included in 
the computational time here presented. In the FEM, integra-
tion mesh and nodal connectivity are naturally determined 

Fig. 7  Convergence analysis: reaction force at the right boundary (a), stresses (b) and strains (c) at the interest point

Fig. 8  Computational time for the pre-processing (a), and linear analysis (b) modules (axis in logarithmic scale)
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in the mesh generation. Regarding the NNRPIM, the pre-
processing phase includes the construction of the Voronoï 
diagram, integration mesh, influence domains and shape 
functions, which compared to the FEM (Fig. 8a) requires a 
significant computational effort in a pre-processing phase. 
Nevertheless, this process is automated by the method, and 
so, no user intervention is necessary, while the pre-process-
ing in the FEM is usually dependent on user inputs [13]. 
Concerning the structural analysis module, Fig. 8b shows 
that the NNRPIM and FEM require similar computational 
time. Meshless methods are usually costlier than the FEM 
due to the complex shape functions and integration schemes, 
which are determined in the pre-processing phase. In the 
linear analysis module, the computational cost is mostly 
dependent on mesh refinement. If first-degree influence 
cells are considered in the NNRPIM formulation, a reduced 
nodal connectivity (around 8 nodes in influence domains) 
is obtained, and a computational cost similar to the FEM 
can be achieved.

Taking into account the preliminary results presented, 
the following numerical analyses are performed consider-
ing the nodal discretisation m6 (see Fig. 5). Four distinct 
L0 are studied in this work. Thus, a discretised model was 
built for each DLJ model. The m6 nodal mesh was built with 

L0 = 12, 5mm . For higher L0 , the m6 nodal density is main-
tained by increasing the number of nodes in the adhesive 
layer. Hence, it is expected that the joint with L0 = 50mm 
is discretised with more field nodes than the model with 
L0 = 12.5mm . Models with L0 = 12.5 , L0 = 25.0 , L0 = 37.5 , 
and L0 = 50.0mm were discretised with 6058, 9322, 12,586, 
and 15,850 nodes, respectively.

4  Results

4.1  Experimental evaluation

The experimental results are discussed in this section. 
Regarding the brittle AV138 adhesive, most joints resulted 
in pure cohesive failure, nonetheless, in some experiments 
failure occurred near the adhesive interface. Figure 9a shows 
the cohesive failure near the interface of an AV138 bonded 
joint with L0 = 12.5mm . In DLJ bonded with the 2015, no 
failures occurred near the interface. All specimens with 
L0 = 12.5mm resulted in a cohesive failure. For L0 = 25 
and L0 = 37.5mm , some specimens showed cohesive failure, 
while others failed at the substrate. Due to the high ductility 
of the 2015 adhesive, all DLJ with L0 = 50mm failed at the 

Fig. 9  Failure modes: AV138 cohesive failure near the interface for L0 = 12.5mm (a), 2015 cohesive failure (b), and 7888 cohesive failure for 
L0 = 50mm (c)

Fig. 10  Experimental data: 
P − � curves for of a representa-
tive specimen bonded consider-
ing different adhesives and over-
lap lengths (a) and maximum 
load for the three adhesives 
considered (b)
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substrate. For the 7888, similar results to those of the 2015 
were obtained, except that for L0 = 50mm , cohesive failure 
occurred in some specimens. Figure 9b, c show a cohesive 
failure of a 2015 and 7888 DLJ, respectively.

In AV138 DLJ, no plastic deformation developed prior to 
failure, as Fig. 10a shows. For overlaps up to L0 = 50mm , 
the same linear behaviour was verified. In 2015 and 7888 
adhesive joints, a linear-elastic behaviour up to failure 
occurred for the specimens with L0 = 12.5mm (Fig. 10a). 
For DLJ with L0 > 12.5mm , clear plastic deformation 
occurred in the specimens bonded with the 2015 and 7888. 
Figure 10a shows the obtained P − � curve for a DLJ with 
L0 = 50mm bonded with the 2015. It is noticeable that the 
high ductility of the 2015 allows the adherends to undergo 
plastic deformation, which led such DLJ to fail by the 
adherend.

Figure  10b shows the maximum experimental loads 
obtained for each DLJ configuration combining the adhe-
sives used and L0 . Although the AV138 has the highest 
ultimate strength, its brittle behaviour causes the respec-
tive DLJ to have low maximum loads compared with the 
2015 and 7888 ductile adhesives. The 7888 combines high 
strength and ductility. Hence, it is expected that joints using 
this adhesive support higher loads compared to the remain-
ing adhesives (Fig. 10b). It is also noticeable that the failure 
load does not increase linearly with the L0 but converges to 
a defined failure load.

4.2  Numerical stress distribution

The FEM and NNRPIM stress field solutions are now pre-
sented. First, the stress distribution at the adhesive mid-
thickness is evaluated. Stress values are obtained at the inte-
gration points and then extrapolated to the field nodes. This 
procedure permits to smooth the strain and stress fields and 

define mesh-independent stress values in the mid-adhesive 
layer (see Sect. 3.4). Additionally, by considering stresses at 
the mid-adhesive layer to evaluate adhesively bonded joints, 
which is a standard procedure in the literature, the known 
singularity problem leading to mesh dependent stress val-
ues at the interface corners is circumvented. Nevertheless, 
a mesh sensitivity analysis is still recommended to obtain 
the most efficient nodal distribution for the analysed case. 
Figure 11 shows the obtained numerical peel stress distri-
bution, normalised to the average shear stress, �y∕�

avg
xy  , at 

the mid-adhesive plane for each adhesive studied. The �avgxy  
at the adhesive layer mid-line was calculated by averaging 
the shear stress values of the nodes in the mid-line [34]. 
Similarly, the normalised shear stress distribution, �xy∕�

avg
xy  , 

using the NNRPIM and the FEM is presented in Fig. 12. 
First, it can be noticed that contrarily to SLJ, the stress dis-
tribution in the considered DLJ is more complex and not 
symmetric within the overlap region. Thus, maximum stress 
values are obtained at one of the adhesive layer edges. As 
L0 is increased, the adhesive becomes less stressed (in both 
peel and shear) at the centre region ( x∕L0 = 0.5 ) of the adhe-
sive. This conclusion is in accordance with the extensively 
reported fact that joint strength is not increased linearly with 
the overlap length [35]. Comparing the three adhesives stud-
ied, the brittle AV138 adhesive presents the higher stresses 
at x = 0 , since it has the highest stiffness of all studied adhe-
sives (Table 1). The 2015 and 7888 have similar elastic prop-
erties, and thus present similar stress peaks and distributions 
along the mid-adhesive thickness. Although small oscilla-
tions between the NNRPIM and the FEM are observed at the 
adhesive boundaries (more significant for L0 = 12.5mm ), 
Figs. 11 and 12 demonstrate that the NNRPIM and FEM 
provide analogous solutions in all linear-elastic analyses.

Fig. 11  Peel stress distribution: AV138 (a), 2015 (b) and 7888 (c)
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Figure 13 compares the FEM and NNRPIM normalised 
stress field solutions within the full adhesive layer, rather 
than just assessing mid-thickness values. Due to the simi-
lar stress distributions between the adhesives considered, 
only the contour plots for the 2015 are presented. Each 
contour plot in Fig. 13 represents the full adhesive layer 
not to scale. Regarding the peel stress distribution, the 
NNRPIM and FEM solutions are closely related for every 
L0 considered. The influence of L0 on the peel stress distri-
bution is visible in the respective contour plots. For higher 
L0 , the peak stresses region (left) becomes narrower, and 
the centre region of the adhesive becomes less stressed. 

The same remarks can be extended to the shear stress 
distribution; although the NNRPIM and FEM calculate 
analogous peak shear stress values, shear stress distribu-
tions present some variations. Considering the shear stress 
distributions in Fig. 13, the NNRPIM provides a distinct 
distribution than the FEM, with curved stress isolines 
within the adhesive layer. This is justified by the higher 
integration point density in the NNRPIM, which permits to 
capture stress variations that the FEM discretisation may 
not be sensible to.

Fig. 12  Shear stress distribution: AV138 (a), 2015 (b) and 7888 (c)

Fig. 13  Peel and shear stress distribution in the adhesive layer (not to scale)
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4.3  Strength prediction

Regarding the GY criteria and the Volkersen analytical 
model, predicted DLJ failure load can be directly obtained 
by substituting the adhesive shear ultimate stress �f  in the 
governing equations. In the FEM and NNRPIM method-
ology, a stress field not necessarily equivalent to the DLJ 
failure state is obtained. Considering the obtained numerical 
stress field, a resultant reaction force is obtained (Fig. 1). 
Then, to obtain the DLJ strength prediction using the 
NNRPIM or FEM, the maximum stress obtained numeri-
cally is extrapolated to the adhesive failure stress. The maxi-
mum stress is evaluated at the mid adhesive layer rather than 
the full domain, as in the analytical solutions, to smooth 
the singularity and mesh dependent values at the interface 
corners. Hence, for the maximum shear stress criterion, DLJ 
failure load is calculated as:

being �max
xy

 the adhesive shear strength, �nnrpimxy  the 
maximum stress at the adhesive layer obtained using the 
NNRPIM, and RFnnrpim the corresponding reaction force 
applied in the DLJ. It must be noted that, since DLJ sym-
metry conditions are considered, the reaction force obtained 
using the numerical model is doubled to compare the numer-
ical results with the experimental data. The same methodol-
ogy is easily extended to the failure criteria considered in 
this work and presented in Sect. 3.1.

It is reported in adhesive joints’ literature that linear elas-
tic formulations underpredict experimental joint strength 
due to the plastic behaviour of the adhesive joint prior to 
failure [23, 36]. Nonetheless, numerical elastostatic analyses 

(17)Pmax =
�max
xy

�
nnrpim
xy

∙ RFnnrpim,

provide the basic methodology to more complex strength 
prediction models considering elastoplastic or hyper-elastic 
formulations. The strength prediction results considering 
stress-based criteria are shown in Fig. 14. The GY criterion 
is the technique that best approximates the experimental DLJ 
performance. Regarding the AV138 adhesive (Fig. 14a), the 
GY criterion overpredicts joint strength. Actually, the GY 
criterion considers a fully plasticised adhesive at failure. 
Due to the brittleness of the AV138, experimental failure 
occurs without plasticisation, which causes the GY criterion 
to overpredict joint strength. Therefore, the GY criterion is 
more suitable for high-ductility adhesive joints, in which 
substrate failure may even occur prior to adhesive failure. 
Considering the ductile 2015 and 7888 (Fig. 14b-c), the GY 
closely predicts joint strength. The GY criterion efficiently 
predicts the strength of simple geometry joints such as SLJ 
or DLJ. However, it is not applicable to complex practical 
applications.

Regarding the linear models used in this work, Fig. 14 
shows that such formulations underpredict the experimental 
joint strength. The best approximation occurs in the case of 
the AV138 adhesive (Fig. 14a), in which the use of elastic 
models may be less impactful due to the adhesive brittle-
ness. In this analysis, the Volkersen analytical model, and 
the NNRPIM and FEM methods provide similar DLJ failure 
loads for every L0 . If ductile adhesives are considered, linear 
elastic formulations significantly underpredict joint strength, 
which justifies the implementation of more complex formu-
lations, such as elastoplastic, hyper-elastic, or large defor-
mations to closely predict experimental DLJ failure loads. It 
can be concluded from Fig. 14 that NNRPIM solutions are in 
accordance with the vastly experimented FEM, which allows 
to confidently extend the NNRPIM meshless technique and 

Fig. 14  Joint strength prediction: AV138 (a), 2015 (b) and 7888 (c)
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its inherent advantages over the FEM to more demanding 
adhesive joint formulations.

Joint strengths determined through strain-based failure 
criteria are also presented due to their ease of implemen-
tation. The literature suggests that strain-based criteria are 
suitable to predict the strength of adhesive joint bonded with 
ductile adhesives such as the 2015 and 7888. However, the 
results presented in this work permit to conclude that stress-
based criteria are more adequate when considering linear-
elastic material behaviour, even though the numerical analy-
sis significantly underpredict joint strength.

The full numerical analysis work results can be consulted 
in Table 2. For every adhesive material and overlap length, 
the predicted maximum load using the NNRPIM and FEM 
combined with stress- and strain-based criteria is presented. 
From Table 2, several remarks can be withdrawn. Regarding 
stress-based criteria, the lowest percentual errors occur when 
the brittle AV138 adhesive is considered. For this adhesive, 
the linear-elastic model is better suited for the smallest L0 , 
where the present NNRPIM formulation underpredicts the 
experimental load by 18%. For the ductile 2015 and 7888 
adhesives, the lowest errors still occur for the smallest L0 , 
although errors of approximately 30% are observed. Strain 
criteria results are also presented in Table 2. The magni-
tude of �f  for the 7888 completely hinders the application 
of strain criteria under elastic material behaviour, being the 
predictions in such analyses indisputable. For the AV138, 
the lowest errors occur when the maximum principal crite-
rion is used ( �max

1
 ), allowing to underpredict experimental 

strength by approximately 10% for L0 = 12, 5mm and by 
approximately 30% for L0 > 12, 5mm . A noticeable remark 
in Table 2 is that the same �max

1
 criterion closely predicts the 

strength of 2015 bonded joints with L0 > 12, 5mm.
Figure 15 shows the numerical linear-elastic curves along 

with the experimental data from Fig. 10a. For interpretation 
purposes, only results considering DLJ with L0 = 12, 5mm 
and L0 = 50mm and bonded with the AV138 and 2015 
adhesive are presented. In the left close-up, one can see 
that the DLJ with L0 = 50mm are stiffer than the DLJ with 
L0 = 12.5mm . But, as noticeable in the main centre plot, the 
change in stiffness is negligible, and L0 mostly influences the 
joint strength. Comparing the numerical curves with experi-
mental data, it can be observed that the linear-elastic analy-
ses approximate reasonably well the experimental curves 
for small displacements ( 𝛿 < 0, 5mm ). However, over this � 
the adhesive joint exhibits highly nonlinear material behav-
iour, and the linear-elastic approximation is inaccurate. The 
discrepancy in stiffness (curves’ slope) between the experi-
mental and numerical curves may occur due to the bound-
ary conditions imposed in the numerical model (Fig. 5) that 
cannot be fully replicated in practical experiments. Further-
more, experimental testing is affected by external factors 
(e.g. grip slippage) as described by Chowdhury et al. [37], Ta
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thus resulting in experimental curves softer than the rigid 
numerical analyses ones.

In this work, the NNRPIM and the FEM are used in par-
allel for comparison and validation purposes. It was found 
in Sect. 4.2 that similar stress distributions at the mid adhe-
sive layer were obtained for both numerical methods. Such 
similar stress distribution further leads to the close strength 
prediction between the NNRPIM and FEM for each joint 
geometry and adhesive material, as shown in Fig. 14 and 
Table 2. It can be concluded that the numerical underpredic-
tions are related to the employed failure criteria, which are 
derived from the solid mechanics linear-elastic formulation. 
The combination of the NNRPIM with more complex mate-
rial modeling and failure criteria is then required to predict 
the experimental strength of DLJ adhesive joints. The pre-
sent application validates the NNRPIM against the FEM for 
a converged regular discretisation, which is suitable for both 
the FEM and NNRPIM modeling. However, the NNRPIM 
assets permit higher flexibility in the domain discretisation, 
i.e. discretisation refinement can be easily optimised with-
out the concern of regular or well-conditioned (undistorted) 
elements. This is the main advantage of the NNRPIM, since 
its unique dependency on an arbitrary nodal discretisation 
permits to establish the discrete system of equations without 
the need for a predefined (nodal independent) integration 
mesh. Moreover, the flexibility of the natural neighbours 
concept to establish the influence domain of each integration 
point permits straightforward modeling of the material dis-
continuity at the adherend/adhesive interfaces. Such assets 
can then be explored to predict the intricate stress distribu-
tion in complex adhesively bonded joints. Considering that 
meshless methods and the NNRPIM in particular possess 
high convergence rates [16], as discussed in Sect. 4.2, the 
accurate and smooth stress fields can be obtained for arbi-
trary nodal distributions and less dense discretisations than 

FEM models [16]. The extension of the NNRPIM to more 
complex adhesive joint applications is then fundamental.

5  Conclusions

This work presents an experimental and numerical assess-
ment of adhesively bonded DLJ using the AV138, 2015, and 
7888 adhesives. To numerically evaluate the DLJ stress dis-
tribution, joint strength and force–displacement approxima-
tion, a truly meshless technique was applied, the NNRPIM. 
Despite the inherent advantages of the NNRPIM to model 
material discontinuities, its application to adhesively bonded 
joints is still under development. Although the NNRPIM 
was previously used to analyse SLJ, this work presents an 
original extension of the NNRPIM to DLJ, which presents a 
less studied geometry than SLJ. Thus, an introductory linear-
static evaluation was carried out to present the NNRPIM and 
compare it to the FEM.

It was found that the NNRPIM and FEM provide analo-
gous results in the linear-elastic analysis of DLJ, which vali-
dates the presented NNRPIM and supports its extension to 
more demanding formulations. Regarding the experimental 
joint strength, the GY criterion closely predicted the strength 
of DLJ bonded with ductile adhesives. Differently, the pre-
sented linear NNRPIM and FEM formulations underpre-
dicted the DLJ strength. Therefore, plasticity, large deforma-
tions or crack propagation algorithms must be considered to 
efficiently simulate the experimental behaviour. Within the 
present NNRPIM linear-elastic formulation, it was found 
that stress-based criteria are more adequate than strain-based 
criteria, being the closest predictions obtained for the DLJ 
bonded with the brittle AV138 considering the maximum 
peel stress criterion. If complex material modeling is con-
sidered, strain criteria may be appropriate, especially for 
ductile adhesives.

Fig. 15  Experimental and numerical force displacement curves for the AV138 and 2015 adhesive joints
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Comparing NNRPIM to FEM, it was found in a pre-
liminary convergence analysis that the NNRPIM presents 
a much higher computational cost. However, such cost is 
mainly due to the pre-processing phase. During the pro-
cessing phase, both formulations present similar compu-
tational costs. Much of this cost is a consequence of the 
natural neighbour procedure and also of the higher number 
of integration points. However, with more integration points, 
it is possible to attain more information regarding the stress/
strain fields. Moreover, the literature [16] shows that the 
NNRPIM converges faster than the FEM. Thus, NNRPIM 
requires a less dense discretisation than FEM. Thus, taking 
into account all these factors, for nonlinear analyses (such 
as elastoplastic or hyper-elastic analyses), in which the pro-
cessing phase represents the bulk of the computational time, 
using the NNRPIM instead of the FEM will be an asset.
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