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Abstract
Robotic manipulators with unbalanced payloads rotating at nearly constant speeds can often be found in automated manu-
facturing tasks, such as drilling, grinding and deburring. In this paper, a sliding-mode disturbance observer (SMDOB) is 
designed for such systems that are subject to unknown periodic disturbances due to unbalanced rotating payloads. Stability 
of the closed-loop system, in which the SMDOB is in combination with a nominal controller, is addressed. Besides, this 
paper presents an adaptation algorithm for automatic switching-gain adjustments. To alleviate chatter, this algorithm is able 
to decrease switching gains according to practical operating conditions of robotic manipulators. An experimental study on 
a two-link direct-drive robotic manipulator was conducted. The experimental results are reported in this paper with a com-
parative study, realistically showing the efficacy of the proposed system.

Keywords Disturbance observer · Gain adaptation · Periodic disturbance · Robotic manipulator · Sliding mode

1 Introduction

In automated manufacturing processes, robotic manipulators 
are often equipped with rotary process tools as end effectors, 
enabling robots to perform certain important tasks, such as 
drilling, grinding and deburring. When the rotating parts 
of these rotary process tools have uneven mass distribution 
relative to their axes of rotation, this rotating unbalance can 
cause significant disturbances to robotic manipulators, espe-
cially to direct-drive robots. These unknown disturbances to 
robots can deteriorate working precision of corresponding 
automated manufacturing processes. Such a problem can 
also arise when a robotic manipulator is fitted with an eccen-
tric mixer, milling tool or rotary table [1].

Disturbance observers (DOBs) are an effective tool to 
estimate unknown disturbances or physical quantities [2]. 
There have been many disturbance observers devised for 

robotic manipulators. It is a well-known fact that robotic 
manipulators generally have highly nonlinear dynamics. 
Based on linear models, the studies [3–5] employed linear 
disturbance observers for robotic manipulators, in which 
unmodeled nonlinearities are considered unknown dis-
turbances. Rather than using linear or linearized models, 
the study [6] proposed a nonlinear disturbance observer 
(NDOB) for 2-DoF (degrees of freedom) robotic manipu-
lators. The studies [7, 8] extended the NDOB design to n-
DoF robotic manipulators. However, the time derivative of 
a lumped disturbance in these studies [6–8] is assumed to 
be zero, which implies limited applicability of the NDOB to 
robotic manipulators subject to unbalanced rotating payloads 
[9]. Chen [10] released this assumption and considered dis-
turbances generated by a general linear system [11], in which 
the unknown disturbance is considered a scalar. Neverthe-
less, the disturbance in a robotic manipulator is often not a 
scalar. Afterward, the study [12] considered an unknown 
disturbance of vector form but with an assumption that the 
second derivative of the disturbance is zero.

Sliding-mode techniques are known for enhancing robust-
ness of uncertain systems subject to modelling uncertainties 
and external disturbances [13–15]. Appealing for robustness, 
previous studies have integrated sliding-mode techniques 
into the design of disturbance observers [16]. For robotic 
manipulators, the study [17] proposed a sliding-mode 
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disturbance observer (SMDOB) with guaranteed stability. 
However, the first derivatives of disturbances with respect 
to time are assumed to be bounded. Recently, the study [18] 
released this assumption and only required continuous dif-
ferentiability of disturbances relating to state-dependent 
modeling uncertainties with implementation complexity 
lower than that in [19]. However, no experimental results 
were reported in [18, 19]. More importantly, these SMDOBs 
[17–19] are not specifically designed to deal with distur-
bances due to unbalanced rotating payloads of robotic 
manipulators. Moreover, switching gains of these SMDOBs 
[17–19] need to be manually determined by trial-and-error. 
If the switching gains are chosen smaller than required, then 
a sliding mode cannot be ensured for disturbance estima-
tion. On the contrary, if they are larger than needed, then 
the undesirable chattering phenomenon can appear. Besides, 
since the required magnitudes of switching gains can vary 
due to different operating conditions of a robotic manipu-
lator, it is difficult to have fixed switching gains that are 
appropriate for all operating conditions. Thus, it is essential 
to have the switching gains auto-tuned.

This paper presents an SMDOB design for robotic manip-
ulators subject to unbalanced rotating payloads. More spe-
cifically, this paper extends the single-input single-output 
design [20] to robotic manipulators with multiple inputs and 
outputs. Furthermore, an algorithm is presented to adap-
tively adjust the switching gains. This algorithm can ensure 
the existence of a sliding mode in a finite time and is able to 
decrease the switching gains whenever it can. The experi-
mental results are reported in this paper, and a comparative 
study is also performed in this paper, in which the DOB pre-
sented in [11] are experimentally compared with the scheme 
proposed in this paper.

2  Background materials

Consider an n-DoF robotic manipulator described in joint 
space by

where � denotes an n-dimensional vector of generalized joint 
coordinates, � is an n-dimensional vector of generalized con-
trol forces, �(�) is an n × n inertia matrix being symmetric 
and positive definite, �(�,�̇)�̇ corresponds to the Coriolis 
and centrifugal forces, and �(�) is the gravity force. Moreo-
ver, � denotes an n-dimensional vector of unknown distur-
bances, including the effects due to modeling uncertainties.

Let the control law for (1) be

(1)𝐌(𝐪)�̈� + 𝐁(𝐪,�̇�)�̇� + 𝐠(𝐪) = 𝐮 + 𝐝,

(2)� = �nom − �̂,

in which �nom is determined by a nominal controller, and 
�̂ is a disturbance estimate produced by a DOB. Consider 
a reference trajectory, �d , and define the tracking error as

Let the nominal controller be described by

in  which �1 = diag(K11,K12,… , K1n), � = �̇d −�0�, 
� = �̇ +�0�, and �0 = diag(K01,K02,… , K0n). Here, all 
diagonal elements of �0 and �1 are positive design param-
eters. The aim of this paper is to propose a disturbance 
observer that produces �̂ for robotic manipulators. Here the 
auxiliary nominal control, described by (4), is conventional 
and popular for the control of robotic manipulators in joint 
space. From a structural point of view, this nominal control 
is constructed by combining proportional–derivative (PD) 
control and several compensation terms. Hence, it is also 
referred to as PD control with compensation in the literature 
[21].

In what follows, the DOB presented in [11] will be 
briefly summarized, and this DOB is referred to as Chen’s 
DOB. As it is in [6], a two-link robotic manipulator is con-
sidered for the sake of simplicity in this section. That is, 
� =

[
d1 d2

]T
, � =

[
q1 q2

]T
, where q1 and q2 are, respec-

tively, the first and the second joint coordinates, and d1 and 
d2 are unknown disturbances referred to the first and the 
second joints, respectively.

In [11], the Chen’s DOB is designed for a plant 
described by

in which � ∈ R2n, d is a scalar disturbance, and � (�) , �1(�) 
and �2(�) are smooth functions of � . It is assumed that the 
scalar disturbance is produced by an exogenous system given 
by

where � ∈ Rm. For a two-link robotic manipulator, the dis-
turbance is assumed to act on the tip of the second link [11]; 
that is, d2 = d, and �̂=

[
0 d̂

]T
, in which d̂ denotes an esti-

mate of d. Furthermore, the functions in (4) are given by

𝐟(𝐱) =

⎡⎢⎢⎣

q̇1
q̇2

−𝐌−1(𝐁�̇� + 𝐠)

⎤⎥⎥⎦
 ,  �1(�) =

[
�2×2
�−1

]
 , 

�2(�) = �1

[
0

1

]
, where �=

[
q1 q2 q̇1 q̇2

]T
. In [11], d is 

(3)� = � − �d.

(4)𝐮nom = 𝐌�̇� + 𝐁𝐯 + 𝐠 −𝐊1𝐬,

(5)�̇(t) = �(�(t)) + �1(�(t))� + �2(�(t))d(t),

(6)�(t) = �(�(t)),

(7)�̇ = �c�,

(8)d = �c�,
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assumed to be a pure sinusoid. In this paper, d is consid-
ered a sinusoid plus a dc component that commonly 

appears in a robotic system. Let �c =

⎡
⎢⎢⎣

0 1 0

−�2
0
0 1

0 0 0

⎤
⎥⎥⎦
 and 

�c =
[
1 0 0

]
 , in which �0 is the frequency of the major 

ac disturbance and is set equal to the rotational frequency 
of the rotary process tool attached to a robotic manipula-
tor. The Chen’s DOB is given by

where � is the observer’s state vector, �(�) = ��(�)∕�� , and 
�(�) = �cL� �(�) = �cq̇2 [11]. Here, L denotes Lie deriva-
tives, and �c = [Kc1 Kc2 Kc3]

T is a gain vector to be designed.

3  Proposed SMDOB for robotic 
manipulators

For an n-DoF robotic manipulator with an unbalanced rotat-
ing process tool, the disturbance is an n-dimensional vec-
tor, that is, � =

[
d1 d2 ⋯ dn

]T , in which each element, 
di, i = 1,⋯ , n, is assumed to be produced by an exogenous 
system described by (7) and (8). Hence, the disturbance can 
be expressed as

in which � ∈ Rn×m , and 
{
�d, �d

}
 is assumed to be an observ-

able pair.
In the proposed SMDOB, an auxiliary process is intro-

duced, whose state vector is denoted as � ∈ Rn with an initial 
value of �(0) = �̇(0). Let the auxiliary process be described 
by

in which the switching function, � , is defined as � = � − �̇,  
the switching signal, �, is defined as � = −�ssgn(�) , and 
�s = diag(Ks1,Ks2,⋯ Ksn) is the switching-gain matrix to be 
manually assigned or auto-tuned. It is assumed that 
Ksi >

|||di − d̂i
|||, i = 1,⋯ , n. The proposed disturbance esti-

mate, �̂ , is given by

(9)
�̇ =

(
�c − �(�)�2(�)�c

)
� + �c�(�)

−�(�)
(
�2(�)�c�(�) + � (�) + �1(�)�

)
,

(10)�̂ = � + �(�),

(11)d̂ = �c�̂,

(12)�̇ = �d�,

(13)� = �d�,

(14)�(�)�̇ = −�(�, �̇)�̇ − �(�) + � + �̂ − �(�, �̇)� +�,

in which �̂ is an estimate of � , � is positive definite, and � is 
a gain matrix to be designed.

To verify if the sliding mode, � = �, is ensured, consider 
a Lyapunov candidate

Differentiating (17) with respect to time and substituting (1) 
and (14) into the resultant equation gives

where the property that �̇ − 2� is skew symmetric [22] has 
been used. Equation (18) implies the satisfaction of the so-
called sliding condition. Furthermore, since �(0) = �̇(0), one 
has �(0) = �. These give �(t) = � for all t ≥ 0 , which further 
implies �̇(t) = � for all t ≥ 0 in the sense of equivalent con-
trol [23]. Therefore, the switching signal, �, equals � − �̂ in 
the sense of equivalent values; that is,

which is important to the following stability analysis.
To determine � and � for a stable closed-loop system, 

consider another Lyapunov candidate

Taking the first derivative of the first term on the right-hand 
side of (20) with respect to time gives

From (12), (13), (15), (16), and (19), it gives

(15)̇̂
𝛏 = 𝐀d�̂� + 𝐋(𝚽 − 𝐁𝛔) + 𝐏−1𝐂T

d
𝐬,

(16)�̂ = �d�̂,

(17)Vo = �T�(�)�.

(18)

V̇o = 2𝛔T𝐌�̇� + 𝛔T�̇�𝛔 = 2𝛔T𝐌(�̇� − �̈�) + 𝛔T�̇�𝛔

= 2𝛔T(�̂� − 𝐁(𝐪, �̇�)𝛔 +𝚽 − 𝐝) + 2𝛔T𝐁(𝐪, �̇�)𝛔

= 2𝛔T(�̂� − 𝐝 +𝚽) = 2𝛔T
�
�̂� − 𝐝 −𝐊ssgn(𝛔)

�

< 0 if ‖𝛔‖ ≠ 0,

(19)� = � − �̂,

(20)Voc = �T�� + (� − �̂)T�(� − �̂).

(21)

d

dt

(
𝐬T𝐌𝐬

)
= 2𝐬T𝐌�̇� + 𝐬T�̇�𝐬 = 2𝐬T𝐌(�̈� − �̇�) + 2𝐬T𝐁𝐬

= 2𝐬T
[
−𝐁�̇� − 𝐠 + 𝐮nom − 𝐝 + 𝐝 −𝐌�̇�

]
+ 2𝐬T𝐁𝐬

= 2𝐬T
[
−𝐁�̇� − 𝐠 +𝐌�̇� + 𝐁𝐯 + 𝐠 −𝐊1𝐬 − 𝐝 + 𝐝 −𝐌�̇�

]

+ 2𝐬T𝐁𝐬

= −2𝐬T𝐊1𝐬 + 2𝐬T(𝐝 − �̂�).

(22)
d

dt
(� − �̂) = �d(� − �̂) − �(� − �̂) − �−1�T

d
�

= (�d − ��d)(� − �̂) − �−1�T
d
�.
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Since 
{
�d, �d

}
 is an observable pair, the observer gain, �, 

can be decided using the pole assignment approach so that 
the matrix, �d − ��d , is Hurwitz and has desired eigenval-
ues. Taking the first derivative of the second term on the 
right-hand side of (20) with respect to time and using the 
relation (22) gives

Since (�d − ��d) is Hurwitz, there exists a positive definite 
solution, � , to the Lyapunov equation

for any given positive definite matrix, � . Combining (21), 
(23) and (24) gives

which implies that � → � and �̂ → � as t → ∞, ensuring the 
asymptotic stability of the overall system. Figure 1 shows the 
block diagram of the proposed controller/observer system 
with constant switching gains.

4  Automatic switching‑gain adjustment

The validity of (18), which ensures the existence of a slid-
ing mode, relies on the condition that Ksi >

|||di − d̂i
|||, 

i = 1,⋯ , n. This condition requires the switching gains to 
be larger than the absolute errors in disturbance estima-
tion. However, the magnitude of this error is uneasy to be 
determined since it can vary with different operating con-
ditions of a robotic manipulator. To alleviate this difficulty, 

(23)

d

dt

[
(� − �̂)T�(� − �̂)

]

=
[
d

dt
(� − �̂)

]T
�(� − �̂) + (� − �̂)T�

d

dt
(� − �̂)

= (� − �̂)T
[
(�d − ��d)

T� + �(�d − ��d)
]
(� − �̂)

− �T�d(�
−1)T�(� − �̂) − (� − �̂)T��−1�T

d
�

= (� − �̂)T
[
(�d − ��d)

T� + �(�d − ��d)
]
(� − �̂)

− 2�T(� − �̂).

(24)(�d − ��d)
T� + �(�d − ��d) = −�

(25)V̇oc = −2�T�1� − (� − �̂)T�(� − �̂) < 0,

an algorithm for automatically adjusting these switching 
gains is presented in this section.

Define Ksi =
|||di − d̂i

||| + 𝜇i, i = 1,⋯ , n, where �i is an 
arbitrary positive constant. Assume that |||

̇
Ksi

||| + 𝛿i < 𝜂i, 
i = 1,⋯ , n, where �i is an arbitrary positive constant, and 
�i is positive and assumed to be available. The algorithm 
for switching-gain adaptation is

in which �i , i = 1,⋯ , n, are positive constants and |�|i 
denotes the absolute value of the ith component of the vec-
tor, �.

To investigate the stability of this adaptation mecha-
nism, consider a Lyapunov candidate

Taking the first derivative of Voa with respect to time and 
using (18) gives

Consider the following two situations. The first is when  
||𝐌�̇� + 𝐁𝛔 +𝐊ssgn(𝛔)

||i + 𝜇i < Ksi, which is equivalent to |||di − d̂i
||| + 𝜇i < Ksi or Ksi < Ksi . In this situation, Eq. (26) 

gives K̇si = −𝜂i, and the term with an index of i in (28) 
becomes

The other is when ||𝐌�̇� + 𝐁𝛔 +𝐊ssgn(𝛔)
||i + �i ≥ Ksi , which 

implies |||di − d̂i
||| + 𝜇i ≥ Ksi and Ksi ≥ Ksi . In this second situ-

ation, K̇si = 𝜆i
||𝜎i|| + 𝜂i, and the term with an index of i in 

(28) becomes

(26)K̇si =

{
−𝜂i, if

||𝐌�̇� + 𝐁𝛔 +𝐊ssgn(𝛔)
||i + 𝜇i < Ksi,

𝜆i
||𝜎i|| + 𝜂i, otherwise,

(27)Voa = �T�� +

n∑
i=1

1

�i
(Ksi − Ksi)

2.

V̇oa = 2�T
[
−�ssgn(�) + �̂ − �

]
+ 2

n∑
i=1

1

𝜆i
(Ksi − Ksi)(K̇si −

̇
Ksi)

(28)

= 2

n∑
i=1

{
𝜎i
[
−Ksisgn(𝜎i) + d̂i − di

]
+

1

𝜆i
(Ksi − Ksi)(K̇si −

̇
Ksi)

}
.

(29)

𝜎i
[
−Ksisgn(𝜎i) + d̂i − di

]
+

1

𝜆i
(Ksi − Ksi)(K̇si −

̇
Ksi)

= 𝜎i
[
−Ksisgn(𝜎i) + d̂i − di

]
+

1

𝜆i
(Ksi − Ksi)(−𝜂i −

̇
Ksi)

< 𝜎i

[
−
|||di − d̂i

|||sgn(𝜎i) − 𝜇isgn(𝜎i) + d̂i − di

]

+
1

𝜆i
(Ksi − Ksi)

[
−
|||
̇
Ksi

||| − 𝛿i +
|||
̇
Ksi

|||
]

< −𝜇i
||𝜎i|| −

𝛿i

𝜆i

|||Ksi − Ksi
|||.

Fig. 1  Block diagram of the proposed SMDOB system
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Combing the results, (29) and (30), from these two situa-
tions, one has

which implies that �i → 0 and Ksi → Ksi in a finite time. 
Hence, the finite-time convergence of the observer with the 
adaptation mechanism is ensured.

5  Experimental evaluation

5.1  Experimental system

As shown in Fig. 2, the experimental manipulator is pla-
nar, has three links and three revolute joints, and is directly 
driven by three motors. Link 3, together with motor 3, is 
considered the end effector and used to emulate an unbal-
anced rotary process tool. Figure 3 shows a photograph of 
the experimental robotic manipulator with rotating link 

(30)

𝜎i
[
−Ksisgn(𝜎i) + d̂i − di

]
+

1

𝜆i
(Ksi − Ksi)(K̇si −

̇
Ksi)

= 𝜎i
[
−Ksisgn(𝜎i) + d̂i − di

]
+

1

𝜆i
(Ksi − Ksi)

(
𝜆i
||𝜎i|| + 𝜂i −

̇
Ksi

)

= 𝜎i
[
−Ksisgn(𝜎i) + d̂i − di

]
+ (Ksi − Ksi)

||𝜎i||
+

1

𝜆i
(Ksi − Ksi)

(
𝜂i −

̇
Ksi

)

=𝜎i

[
−Ksisgn(𝜎i) + d̂i − di

]
+

1

𝜆i
(Ksi − Ksi)

(
𝜂i −

̇
Ksi

)

≤ 𝜎i

[
−
|||di − d̂i

|||sgn(𝜎i) − 𝜇isgn(𝜎i) + d̂i − di

]

+
1

𝜆i
(Ksi − Ksi)

[|||
̇
Ksi

||| + 𝛿i −
̇
Ksi

]
≤ −𝜇i

||𝜎i|| −
𝛿i

𝜆i

|||Ksi − Ksi
|||.

(31)V̇oa ≤ 2

n∑
i=1

(
−𝜇i

||𝜎i|| −
𝛿i

𝜆i

|||Ksi − Ksi
|||
)
,

3. Motors 1 and 2 are, respectively, SGMAH-04AAA41 
and SGMAH-01AAA41 having rated torque of 1.27 and 
0.318 Nm from Yaskawa Electric Corporation. Motor 3 is 
2342S024CR from Faulhaber with rated power of 16 W. 
Motor 3 that drives link 3 is velocity-controlled by a linear 
proportional–integral controller with gravity compensa-
tion, and its speed is controlled at 10 rps, which produces 
disturbances with a major ac component of 10 Hz.

The controller’s central part is a Texas Instruments 
TMS320C6713 digital signal processor along with a 
Xilinx XCV50PQ240-C6 field-programmable gate array. 
A sampling period of 0.0819 ms is chosen for real-time 
implementation of digitized controller/observer algo-
rithms. The controller hardware is similar to that in [24]. 
Please refer to [24] for more details about the controller 
hardware.

5.2  Controller/observer design

Figure 4 shows a schematic of the robotic manipulator, 
where all joint angles are defined. Table 1 provides sym-
bols and definitions of physical parameters and their nomi-
nal values. Since link 3 along with motor 3 is used as an 
end effector, the robotic manipulator is considered to have 2 
DoFs, i.e., n = 2 for controller/observer designs. The 2-DoF 
mathematic model of the manipulator used in this paper is 
the same as that in [24] and is not repeated in this paper.

For the nominal controller (4), let �0 = diag(10, 10) and 
�1 = diag(0.02, 0.06) . Moreover, velocity signals are low-
pass filtered with an edge frequency of 200 rad/s to attenu-
ate high-frequency noise. For the Chen’s DOB, choose 
�c=Kc

[
1 1 1

]T with Kc= 0.05 or 0.10, and �0 = 20�. For 
the SMDOB, let �s = diag(0.24, 0.18), � = 1000�, and the 
observer gain, �, is determined so that the matrix, �d − ��d , 
has all eigenvalues equal −30.Fig. 2  CAD model of the experimental manipulator

Fig. 3  Photograph of the experimental manipulator
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5.3  Experimental results with fixed gains

The first two joints of the manipulator are initially unactu-
ated, but the third joint rotates at approximate 10 rps, i.e., 
q1(0) ≈ −�∕2 rad, q2(0) ≈ 0 , and q̇3(0) ≈ 20𝜋 rad/s. Let 
�d=

[
−�∕2 + 1 1

]T rad.
Figure 5 shows step responses using the nominal con-

troller only, demonstrating that the angular position of 
joint 2 is obviously influenced by the unbalanced rotating 
payload. Figure 6 shows step responses using the Chen’s 
DOB with Kc= 0.05 and 0.10, in which larger Kc produces 
more oscillatory control efforts but smaller position errors. 
Comparing the output responses shown in Figs. 5 and 6, it 
is seen that the Chen’s DOB can diminish the positioning 
error of joint 2. However, since the Chen’s DOB only tries 
to compensate for the disturbance to joint 2, the distur-
bance to joint 1 is not well compensated for by the Chen’s 
DOB. It is worth noting that although the Chen’s DOB 
includes the disturbance model for joint 2, the response 
error of joint 1 deteriorates the performance of joint 2. 

Figure 7 shows step responses with the SMDOB. Com-
paring the output responses shown in Figs. 5, 6 and 7, it 
is seen that the SMDOB augments the nominal controller 
and that the SMDOB outperforms the Chen’s DOB.

Consider a task of contour tracking, in which the 
desired contour, (xd, yd) , is defined by

in which � = −1.278t + 3�∕2 rad, (x0, y0) = (0.08,−0.08), 
and � = 0.05  m. Figure  8 shows the contour-following 
results in Cartesian space using the nominal controller with 
and without the SMDOB. It is seen that the SMDOB greatly 
enhances the contour-tracing performance of the nomi-
nal controller. Figure 9 shows the corresponding tracking 
responses in joint space, demonstrating that the proposed 
SMDOB can counteract the disturbances induced by the 
rotating payload during trajectory tracking.

(32)xd = x0 + �(1 − sin �) cos �,

(33)yd = y0 + �(1 − sin �) sin �,

Fig. 4  Schematic of the experimental manipulator

Table 1  Physical parameters for 
the manipulator

Param Explanation Value in SI unit

m
�i

Mass of link i m
�1 = 0.064, m

�2 = 0.050, m
�3 = 0.016

I
�i

Inertia of link i about mas centre I
�1 = 1.79 × 10−4, I

�2 = 1.09 × 10−4, I
�3 = 3.42 × 10−6

�
i

Lenth of link i �1 = 0.117, �2 = 0.090, �3 = 0.051

�
iC

Distance between joint i and mass 
centre of link i

�1C = 0.055, �2C = 0.045, �3C = 0.017

Mi Mass of motor i M1 = 1.7, M2 = 0.512, M3 = 0.090
IMi Stator moment of inertia of motor i IM2 = 1.8 ×  10–4, IM3 = 2.41 ×  10–5

Imi Rotor moment of inertia of motor i Im1 = 1.73 ×  10–5, Im2 = 3.64 ×  10–6, Im3 = 0.58 ×  10–6

g Gravitation constant g = 9.82

Fig. 5  Step responses using the nominal controller only
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5.4  Results with automatic switching‑gain 
adjustment

The most popular technique for auto-tuning the switching 
gains is to increase gains whenever the switching func-
tion is nonzero, that is, whenever the sliding mode does 
not exist [25–27]. Using this technique, the adaptation 
law for switching-gain adjustment would be K̇si = 𝜆i

||𝜎i||, 
i = 1, 2. This technique is straightforward but would cause 
the switching gains to grow unboundedly. Because the 
switching functions, �i , i = 1, 2, can never be constrained at 
zero in practice. On the contrary, the algorithm, described 
by (26), allows the switching gains to be reduced if the 
switching gains are large enough.

In the following experiments with gain adaptation, the 
switching gains are initially set to zero, i.e., Ksi(0) = 0, 
i = 1, 2. Figure 10 shows step responses with and without the 
adaptation mechanism, in which the parameters are chosen 
to be �i = 10, �i = 0.12, �1 = 0.15, �2 = 0.05, i = 1, 2. It is 
seen that the output responses with and without gain adapta-
tion are similar. Moreover, the switching gains increase rap-
idly from zero during an initial period and decrease gradu-
ally following this rapid increase. Afterward, the adaptation 
mechanism can either increase or decrease the switching 
gains, depending on practical situations. Figure 11 shows 
tracking responses with and without gain adaptation in 
joint space during the task of contour tracking. As shown 
in Fig. 11, the output responses without gain adaptation 
are comparable to those with fixed gains. The benefits of 

Fig. 6  Step responses with the Chen’s DOB

Fig. 7  Step responses with the SMDOB

Fig. 8  Contour following with and without the SMDOB

Fig. 9  Tracking responses with and without the SMDOB
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using the presented adaptation mechanism are that it enables 
smaller switching gains to be used during the tracking task 
and that it adapts the switching gains according to variable 
operating conditions, which is impossible for the one using 
fixed switching gains.

6  Conclusion

This paper presents an SMDOB for robotic manipulators 
with unbalanced rotating payloads. Asymptotic stability of 
the closed-loop system that includes the SMDOB as well 
as the nominal controller is guaranteed using the Lyapunov 
stability criterion. Furthermore, this paper presents a switch-
ing-gain adaptation law that can ensure the existence of a 

sliding mode in a finite time and is able to decrease switch-
ing gains according to practical situations. The experimental 
results on a direct-drive robotic manipulator with a rotating 
arm are reported, practically demonstrating the efficiency of 
the proposed system.
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