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Abstract
In high-speed trains, the driving safety and passenger comfort of the railway vehicle are negatively affected due to the prob-
lem of interaction between the train and the bridge. Among these problems are rail irregularities, flexible foundation effect, 
and external effects such as wind load and seismic loads. In this study, the dynamic interaction between the full train model 
modeled as 31-degrees of freedom and the bridge that can be modeled according to the Euler–Bernoulli beam theory was 
studied. The motion equations of the train and bridge beams have been derived with the Lagrange method, and the motion 
equations obtained have been solved with the fourth-degree Runge–Kutta method. The results obtained in this method were 
confirmed by two case studies previously conducted. The first four natural frequencies of the beam calculated using bridge 
parameters were determined, and the resonance velocities, which are the critical velocities of the beam-train system corre-
sponding to this determined frequency, were calculated. Moving at resonance velocities, the train causes maximum accelera-
tion amplitudes, especially in low damped beams. In this study, maximum dynamic responses were determined at variable 
velocities of the train, and it was understood that critical velocities were an essential concept in train-bridge interaction. It 
has also been found that well-damped beams reduce maximum dynamic responses. As a result, it was found that car body 
mass, bridge length, and train velocity significantly affect the combined train–bridge dynamic interaction.

Keywords  High-speed train · Full railway vehicle model · Euler–Bernoulli beam · Dynamic interaction · Railway bridge

1  Introduction

With the development of the use of high-speed trains, the 
research in this area is rapidly increasing. Today, high-speed 
trains are preferred for faster transportation. Researchers are 
working on the rail system vehicles that reach higher veloci-
ties to shorten the transportation time. The velocity of the 
high-speed train on the 4072 km long Shinkansen line in 
Japan was measured as 320 km/h. The longest high-speed 

train line in the world is located in China with 30,000 km, 
and this train can go up to 400 km/h. The highest velocity 
in history is maglev trains with 603 km/h in Japan using 
magnetic levitation technology [1]. While these increased 
velocities provide a significant advantage in reducing travel 
times, there are also disadvantages brought about by high 
velocities.

The most important of these disadvantages is vibration. 
Vibrations adversely affect passenger comfort and transpor-
tation safety. Train vibrations originating from the ground 
are the leading type. At the same time, ground vibration 
creates noise and damages the surrounding structures [2]. 
Another example of ground-based vibration is rail irregu-
larities. Due to the wear of the rail profile on the railway 
lines, contact problems occur between the rail and the wheel 
[3, 4]. While these ground-based vibrations affect passenger 
comfort more, external vibrations threaten both comfort and 
driving safety. Wind and earthquake effects can be shown 
as external vibrations. The high-speed train's exposure to 
strong winds with a velocity of more than 25 m/s during 
bridge crossings creates a gravely serious safety concern 
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[5]. Therefore, wind barriers are usually installed in windy 
areas to ensure the driving safety of high-speed trains [6, 
7]. In addition, since railway bridges are located on highly 
long columns, it creates excessive vibrations in a possible 
earthquake, and there is the risk of the derailment of the 
train [8, 9]. High-speed trains derailed and crashed during 
the Kaohsiung earthquake in Taiwan in 2010 and the Niigata 
earthquake in Japan in 2014 [10].

Several studies have been conducted on the interaction 
between railway bridges and trains. The trains and bridges 
can be considered as independent systems. Railway bridges 
can be modeled as a beam. There are Euler–Bernoulli, 
Timoshenko, Rayleigh, and Shear beam theories in the liter-
ature [11, 12]. Timoshenko beam model is preferred in stud-
ies examining the shear deformation, bending deformation, 
linear and rotary inertia effect of beams [13–16]. Euler–Ber-
noulli [17] beam model is preferred when parameters such 
as shear deformation and rotary inertia effect are not taken 
into account, and the beam height is negligible compared to 
the beam length. In his study, Esen conducted the vibration 
analysis of the Timoshenko beam, which was simply sup-
ported on a two-parameter ground, using the finite element 
method [18]. Within the scope of Euler–Bernoulli beam 
theory, Chen et al. [19] examined high-frequency vibration 
analysis of beams exposed to axial force. In another study, 
lateral vibrations of beams under the influence of rotational 
motion were examined [20]. In the literature, the Euler–Ber-
noulli beam model is used for beams forced to random 
dynamic loading, except for axial and rotational forces 
[21]. The force applied by the railway vehicle passing over 
the bridge beam, which will be examined within the scope 
of this study, is assumed to be the moving load. Dynamic 
analysis of Euler–Bernoulli beams exposed to moving loads 
was performed using an isogeometric approach [22]. The 
isogeometric approach has been expressed as a robust and 
reliable tool for simulating and solving related engineer-
ing problems. Dixit used Euler–Bernoulli and Timoshenko 
beam theories to compare the dynamic response of damaged 
beams and compared their results with each other [23]. As 
a result, he found that the Timoshenko beam theory gave 
better results in determining the dynamic response since it 
includes shear deformation and rotary inertia effect com-
pared to the Euler–Bernoulli beam theory. Heydari et al. 
examined forced bending vibration analysis for damaged 
short beams and used the Timoshenko beam as a beam 
model. They compared the results they obtained with 
the Euler–Bernoulli model. Their study showed that the 
Timoshenko beam model is more advantageous for use in 
short beams [24].

In order to model railway vehicles, (TBI)s are taken with 
a high degrees of freedom (DOF). The simplest known vehi-
cle model is a 2-DOFs spring damping system consisting 
of only the vehicle body and the wheel [25]. However, this 

(DOFs) model is not adequate for numerical solutions. Train 
models can also be modeled as a quarter, half, or full models 
for ease of application. Mızrak and Esen [26], using numeri-
cal and experimental methods, examined the dynamic effects 
of wagon mass and train velocity on a quarter railway vehi-
cle model with 5-DOFs consisting of a car body, bogie, and 
two wheelsets. There are also 6-DOFs models obtained by 
adding seats to the quarter railway vehicle model [27]. Wang 
et al. [28] analyzed the half-railway vehicle model consist-
ing of two bogies, four wheelsets, and the car body using 
FEM for train-track analysis. In order to get more accurate 
results by considering all factors in the train model, the 3-D 
full train model is used [29]. In the full train model, lat-
eral displacements, roll, and yaw movements can also be 
examined. Zhu et al. controlled the lateral displacement of 
the 17-degrees full railway vehicle using active suspension 
systems for the ride quality of the trains [30]. In the study 
[5], the authors have been modeled 27-DOFs full railway 
vehicle model with 2-bogies and 4-axles and bridge struc-
ture to investigate the effect of the wind action upon railway 
vehicle dynamic in time domain using computer simulation 
and studied running safety, stability of the train vehicles. The 
study [31] investigates that non-stationary random vibra-
tion of 3D time-dependent train-bridge systems subjected to 
multi-point earthquake excitations, including wave passage 
effect, is investigated using the pseudo-excitation method 
27-DOFs full vehicle model. On the other hand, in the study 
[32], train-bridge coupled vibration system has been inves-
tigated random dynamic responses of the 3D train-bridge 
coupled system with random parameters, including param-
eters of the bridge materials.

Analytical and numerical methods are available in previ-
ous studies for train-bridge interaction (TBI). The finite ele-
ment method (FEM) is the most common numerical method. 
Both train and bridge can usually be modeled using FEM. In 
addition, the Mode superposition method [33, 34] and New-
mark β method [35] can also be used to figure out the motion 
equations of the combined train-bridge model. However, it 
should be considered that the time step size used for the 
analysis of train rail movement in these methods increases 
the solution time and the required computer memory.

Most of the studies given in above generally include low-
speed vehicles, simple vehicle, and simple bridge models, 
whereas the high and very high-speed train has been groov-
ing up worldwide, and there is no satisfying study to explain 
the interaction between these railway vehicles and structures 
on which railway vehicles are moving. The organizations 
that are likely to do this study do not present their stud-
ies because of privacy and know-how. In this study, as can 
see Fig. 1, the interaction between a 3-D complex railway 
vehicle with 31-DOFs to be considered moving at high-
speeds and bridge has been modeled, and the analysis result 
is investigated for different velocity and different system 
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parameters according to the presented theory which is not 
implemented to full train and bridge interaction problem 
before.

In the analysis results, the dynamic behavior of the rail-
way vehicle body has been investigated in detail in terms 
of vibration amplitude of acceleration considering interval 
of the train velocity 2–200 m/s and the dynamic transverse 
displacement of the bridge is presented. Significantly, the 
time-dependent dynamic contact forces, which are very 
important in train bridge interaction, have been investigated, 
and analysis results are given in the study. Furthermore, the 
vibration responses of the high-speed train body and bogies 
have been analyzed in two axes, and the analysis results 
are presented. The effect of the bridge span length in the 
dynamic interaction has been investigated, and the results 
are examined. The novelty of the presented study, unlike 
the other studies given in above, the dynamic equation of 
motion of the interaction between the 31-DOF full railway 
vehicle and bridge substructure has been obtained using 
Lagrange equation then, the equation of motion of the entire 
system has been transformed to state-space form with the 
state variables, and finally, for the solution of the equation 
of the motion, fourth-order Runge–Kutta algorithm has been 
used in the time domain, and some critical parameters which 
affect railway vehicle and bridge dynamics such as railway 
vehicle body mass, vehicle velocity, bridge span length, and 
contact forces have been investigated in detail.

2 � Mathematical modeling of train 
and bridge

In Fig. 2, to model the TBI, the bridge beam can be modeled 
according to the simply supported Euler–Bernoulli beam 
theorem and the full train model moving with a constant 
velocity of 31-DOFs are shown.

In Fig. 1, the simply supported Euler–Bernoulli beam 
model and the train bridge interaction for the train model 
are explained with a drawing. Train model consists of the 
car body, front bogie, rear bogie, and wheelsets. The param-
eters of the train and bridge model seen in Fig. 2 are given 

in Table 1. In this study, the direction of movement of the 
train was chosen along the x-axis. All vertical displacements 
are shown along the y-axis, while lateral displacements are 
shown along the z-axis.

In Fig. 2, the displacement and rotation movements are 
represented as r12 and Ө12, respectively. Here, the first index 
represents the train parts such as the car body, the bogies, 
and the wheel, and the second index represents the direc-
tion of the train parts, such as x, y, z. rcy shows the vertical 
displacement of the car body, while rcz shows the lateral 
displacement of the car body. rb1y, rb1z, rb2y, and rb2z rep-
resent the vertical displacement of the front bogie, lateral 
displacement of the front bogie, vertical displacement of 
the rear bogie, and lateral displacement of the rear bogie, 
respectively. The vertical displacement of the wheelsets of 
the front bogie is defined as rw1y, rw2y, the lateral displace-
ment is determined as rw1z, rw2z, the vertical displacement of 
the rear bogie wheelset is defined as rw3y, rw4y, and its lateral 
displacement is defined as rw3z, rw4z.

The train’s rolling, pitching and yawing movement is 
assumed to be around the x-axis, z-axis, and y-axis, respec-
tively. The pitching is of the car body, the front bogie and 
the rear bogie are shown as Өcz, Өb1z ve Өb2z, respectively. 
The rolling motion of the car body, the front bogie, the rear 
bogie, and the wheelsets are shown as Өcx, Өb1x, Өb2x, ve 
Өwx, respectively. The yawing movement of the car body, 
the front bogie, the rear bogie, and the wheelsets are shown 
as Өcy, Өb1y, Өb2y, ve Өwy, respectively.

mc, mb1, mb2, and mw parameters represent the car body 
mass, front bogie mass, rear bogie mass, and wheel mass, 
respectively. The parameters Icz, Ib1z, Ib2z represent the mass 
moment of inertia around the pitch motion of the car body, 
the front body, and the rear body, respectively. Icx, Ib1x, Ib2x, 
Iwx correspond to the mass moment of inertia around the roll 
motion of the car body, the front body and the rear body, and 
wheelsets, respectively. Similarly, Icy, Ib1y, Ib2y, Iwy define 
the mass moment of inertia around the yaw motion of the 
car body, the front body and the rear body, and wheelsets, 
respectively. The distances lb1, lb2 represent the distance 
between the car body center of mass and the front bogie 
center of mass and the distance between the car body center 

wb(x,t) wb(x,t) wb(x,t)

L3L2

mc

v

Elastic FoundationDifferent
Bridge Length

L1

Fig. 1   Schematic illustration of TBI system
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of mass and the rear body of mass. The distances lw1 and lw2 
represent the distance of the front wheel to the center of the 
bogie mass and the distance of the rear wheel to the center 
of the bogie. Likewise, distances lw3, lw4 represent the dis-
tance of the front wheel to the center of the rear bogie mass 
and the distance of the rear wheel to the center of the rear 
bogie, respectively. While the parameters kw1y, kw2y, kw3y, 
and kw4y represent the suspension spring coefficient in the 
y-axis, between each bogie and wheels, respectively. The 
parameters kw1z, kw2z, kw3z, and kw4z represent the suspension 
spring coefficient in the z-axis.

Similarly, while the parameters cw1y, cw2y, cw3y, and cw4y 
correspond to the suspension damping coefficient in the 
y-axis, the parameters cw1z, cw2z, cw3z, and cw4z correspond 
to the damping coefficient of the suspension in the z-axis. In 
addition, whereas the parameters kb1y and kb2y represent the 
suspension spring coefficient in the y-direction, between the 
front and rear bogie and car body. The parameters cb1y and 
cb2y represent the suspension damping coefficient. Likewise, 

whereas the parameter kb1z and kb2z represent the suspension 
spring coefficient in the z-direction, the parameters cb1z and 
cb2z represent the damping coefficient of the suspension in 
the z-axis. The vertical movement of the bridge, wb(x,t), rep-
resents the displacement of any x point of the bridge beam at 
any t time, with reference to the point where the train enters 
the bridge. v represents the movement of the train at a con-
stant velocity from left to right of the bridge beam. The fol-
lowing assumptions have been accepted for the TBI analysis.

•	 The bridge is modeled as a simply supported beam 
according to Euler–Bernoulli beam theory.

•	 The railway vehicle is modeled with 31-DOFs.
•	 Only one vehicle passes over the bridge at constant veloc-

ity v.
•	 Train wheels are always in contact with the bridge beam 

and do not jump.
•	 The rigidity of the rail subsystem has been added to the 

rigidity of the flexible bridge structure used in the study.

(a)

(b) (c)

Fig. 2   Mathematical model of railway vehicle and bridge a side view, b top view and c front view
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With these assumptions, the kinetic and potential energies 
of the TBI seen in Fig. 2 are given in the equations below:

(1a)Ek =
1

2
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2
b2z

+ Ib2z𝜃̇
2
b2z

+ Ib2x𝜃̇
2
b2x

+ Ib2y𝜃̇
2
b2y

+mwṙ
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Table 1   The parameters of full high-speed train and bridge models

Train parameters

Train body mass (mc) 40 tons Lateral damping of secondary suspension system 
(cbiz,i = 1,2)

10 kNs/m

Front and rear bogie masses (mb1 = mb2) 3.04 tons Longitudinal damping of secondary suspension system 
(cbix,i = 1,2)

100 kNs/m

Mass of wheels (mwi,i = 1, 2, 3, 4) 1.78 tons Vertical damping of primary suspension system 
(cwiy,i = 1, 2, 3, 4)

90.2 kNs/m

Mass moment of inertia of car around pitch motion (Icz) 2080 tons m2 Lateral damping of primary suspension system 
(cwiz,i = 1, 2, 3, 4)

10 kNs/m

Mass moment of inertia of car around roll motion (Icx) 75 tons m2 Longitudinal damping of primary suspension system 
(cwix,i = 1, 2, 3, 4)

10 kNs/m

Mass moment of inertia of car around yaw motion (Icy) 224 tons m2 Length of bridge (L) 50 m
Mass moment of inertia of bogies around pitch motion 

(Ibiz,i = 1, 2)
3.93 tons m2 Longitudinal distance from car to bogie center of gravity 

(lbi,i = 1, 2)
8.75 m

Mass moment of inertia of bogies around roll motion 
(Ibix,i = 1, 2)

1.9 tons m2 Longitudinal distance from bogie to vertical primary 
suspension (lwi, i = 1, 2, 3, 4)

1.25 m

Mass moment of inertia of bogies around yaw motion 
(Ibiy, i = 1, 2)

2.1 tons m2 Vertical distance from bogie to lateral primary suspen-
sion (hw)

0.22 m

Mass moment of inertia of wheels around roll motion 
(Iwix, i = 1, 2, 3, 4)

1.25 tons m2 Vertical distance from car to lateral secondary suspen-
sion (hc)

0.8 m

Mass moment of inertia of wheels around yaw motion 
(Iwiy, i = 1, 2, 3, 4)

1.4 tons m2 Vertical distance from bogie to lateral secondary suspen-
sion (hb)

0.5 m

Vertical stiffness of secondary suspension system 
(kbiy,i = 1, 2)

1180 kN/m Half of secondary suspension spacing (a) 1 m

Lateral stiffness of secondary suspension system 
(kbiz,i = 1, 2)

15,000 kN/m Half of wheelset contact distance (lr) 0.7175 m

Longitudinal stiffness of secondary suspension system 
(kbix,i = 1, 2)

10,000 kN/m Half of primary spacing (d) 1 m

Vertical stiffness of primary suspension system 
(kwiy,i = 1, 2, 3, 4)

530 kN/m Half of bogie spacing (f) 1 m

Lateral stiffness of primary suspension system (kwiz,i = 1, 
2, 3, 4)

350 kN/m Lateral distance from wheelset to longitudinal secondary 
suspension (s)

0.9 m

Longitudinal stiffness of primary suspension system 
(kwix,i = 1, 2, 3, 4)

340 kN/m Lateral distance from wheelset to longitudinal primary 
suspension (e)

1.2 m

Vertical damping of secondary suspension system 
(cbiy,i = 1, 2)

39.2 kNs/m

Euler–Bernoulli bridge beam parameters
Elasticity module of right beam (E1) 207 GPa Elasticity module of left beam (E2) 200 GPa
Cross section inertia moment of right beam (I1) 0.2 m4 Cross section inertia moment of left beam (I2) 0.2 m4

Mass of unit length of right beam (µ1) 20 tons/m Mass of unit length of left beam (µ2) 18 tons/m
Equivalent damping coefficient of right beam (c1) 1750 Ns/m Equivalent damping coefficient of left beam (c2) 1750 Ns/m
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In Eq. (1a–c), μR and μL are the parameters of the mass 
of the unit length of the right and left bridge beam, respec-
tively. ERIR and ELIL are the flexural rigidity of the right and 
left bridge beams. On the other hand, the dissipation func-
tion of the full railway vehicle model and flexible structure 
coupled system can be obtained by Eq. (1c) considering the 
physical model given Fig. 2.
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2
L,b
(x, t)dx

+ cb1y

��
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�2�

+ cw2y

��
ṙb1y − ṙw2y − 𝜃̇b1zlw2 − 𝜃̇b1xd + 𝜃̇w2xd

�2
+
�
ṙb1y − ṙw2y − 𝜃̇b1zlw2 + 𝜃̇b1xd − 𝜃̇w2xd

�2�

+ cw3y

��
ṙb2y − ṙw3y + 𝜃̇b2zlw3 − 𝜃̇b2xd + 𝜃̇w3xd

�2
+
�
ṙb2y − ṙw3y + 𝜃̇b2zlw3 + 𝜃̇b2xd − 𝜃̇w3xd

�2�

+ cw4y

��
ṙb2y − ṙw4y − 𝜃̇b2zlw4 − 𝜃̇b2xd + 𝜃̇w4xd

�2
+
�
ṙb2y − ṙw4y − 𝜃̇b2zlw4 + 𝜃̇b2xd − 𝜃̇w4xd

�2�

+ 2cbz

��
ṙcz − ṙb1z − 𝜃̇cxhc − 𝜃̇b1xhb

�2
+
�
ṙcz − ṙb2z − 𝜃̇cxhc − 𝜃̇b2xhb

�2�

+ 2cwz
�
ṙb1z − ṙw1z − 𝜃̇b1xhw

�2
+ 2cwz

�
ṙb1z − ṙw2z − 𝜃̇b1xhw

�2
+ 2cwz

�
ṙb2z − ṙw3z − 𝜃̇b2xhw

�2

+ 2cwz
�
ṙb2z − ṙw4z − 𝜃̇b2xhw

�2
+ 2cbx

��
𝜃̇cye − 𝜃̇b1yf

�2
+
�
𝜃̇cye − 𝜃̇b2yf

�2�

+ 2cwx

��
𝜃̇b1ys − 𝜃̇w1ys

�2
+
�
𝜃̇b1ys − 𝜃̇w2ys

�2�
+ 2cwx

��
𝜃̇b2ys − 𝜃̇w3ys

�2
+
�
𝜃̇b2ys − 𝜃̇w4ys

�2�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The parameters, cR and cL, given in Eq. (1c) represent the 
equivalent viscous damping coefficient of the Euler–Ber-
noulli right and left bridge beam with the simply supported 
boundary condition given in Fig. 2. The expression Galerkin 
functions for both bridge beam, wR,b(x,t) and wL,b(x,t), which 
is the displacement of any x point on the beam at any time 
t, is given below:
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Here, the parameter q is the generalized coordinate rep-
resenting the displacement of the bridge beam structure, φ 
represents the oscillation form obtained with simply sup-
ported boundary conditions of the bridge beam. The param-
eter n defines the mode number of the simply supported 
bridge beams. The mode function of bridge beam is given 
by Eq. (5) as shown below:

The conditions of orthogonality between these oscilla-
tion mode shapes are given in Eq. (6), where ẟij represents 
Kronecker delta.

Lagrange expression is the distinction between kinetic 
energy and potential energies obtained in Eq.  (1a, b). 
Lagrange expression can be defined as (L = Ek − Ep).

(2)

wR,b(x, t) =

n∑
i=1

�i(x)qi(t), wL,b(x, t) =

n∑
i=1

�i+n(x)qi+n(t),

(3)

ẇR,b(x, t) =

n∑
i=1

𝜑i(x)q̇i(t), ẇL,b(x, t) =

n∑
i=1

𝜑i+n(x)q̇i+n(t),

(4)

w��
R,b

(x, t) =

n∑
i=1

���
i
(x)qi(t), w��

L,b
(x, t) =

n∑
i=1

���
i+n

(x)qi+n(t),

(5)�i(x) =

√
2

L
sin

(
i�x

L

)
, i = 1, 2,… , n.

(6a)

L

∫
0

��i(x)�j(x)dx = Ni�ij,

(6b)

L

∫
0

EI���
i
(x)���

j
(x)dx = Πi�ij

(7)

d

dt

(
𝜕L

𝜕�̇�(t)

)
−

𝜕L

𝜕��(t)
+

𝜕D

𝜕�̇�(t)
= 0 , k = 1, 2, 3,… , 31.

Generalized coordinates of train and bridge beams are 
given as in Eqs. (9–10). Here, whereas η represents the 
train’s generalized coordinates with 31-DOFs, the param-
eter q defines generalized coordinates of the two-simple sup-
ported bridge beam. Since each bridge beam has a first four 
vibrations mode in this study, eight generalized coordinates 
are given. The effect and defining of the number of mode 
function is explained in Sect. 3.2

The motion equation of the 31-DOFs train model seen 
in Fig. 2 was obtained using the orthogonality conditions 
given in Eq. (6) and the Galerkin’s approach of the beam 
displacement expressed in Eqs. (2–4). Some equations of 
motion for car body, front and rear bogies, wheels and bridge 
are given below:

The vertical acceleration of the car body can be obtained 
as follow:

Response of the right bridge beam is written as Eq. (12b)

(8)

d

dt

(
𝜕L

𝜕�̇�(t)

)
−

𝜕L

𝜕��(t)
+

𝜕D

𝜕�̇�(t)
= Qi ,

i = 1, 2,… , n. ⇒ For the right bridge beam

i = n + 1, n + 2,… , 2n. ⇒ For the left bridge beam

(9)�(t) =

⎧⎪⎪⎨⎪⎪⎩

rcy rcz �cz �cx �cy rb1y rb1z �b1z �b1x

�b1y rb2y rb2z �b2z �b2x �b2y rw1y rw1z

�w1x �w1y rw2y rw2z �w2x �w2y rw3y rw3z

�w3x �w3y rw4y rw4z �w4x �w4y

⎫⎪⎪⎬⎪⎪⎭

T

,

(10)�(t) =
{
q1(t) q2(t) q3(t) … q2n(t)

}T
,

(11)Qi =

L

∫
0

�i(x)fci(x, t)dx, i = 1, 2, .… , 2n,

(12a)

r̈cy = − 2cb1y∕mc

[
ṙcy − ṙb1y + 𝜃̇czlb1

]
− 2cb2y∕mc

[
ṙcy − ṙb2y − 𝜃̇czlb2

]

− 2kb1y∕mc

[
rcy − rb1y + 𝜃czlb1

]
− 2kb2y∕mc

[
rcy − rb2y − 𝜃czlb2

]

(12b)

q̈i(t) = − S1qi(t)∕N1 − c1q̇i(t)∕N1

+ 𝜑i(𝜉1R, t)∕N1

[
cw1y

[
ṙb1y −

n∑
i=1

𝜑i(𝜉1R, t)q̇i + 𝜃̇b1zlw1 − 𝜃̇b1xd + 𝜃̇w1xd

]
+ kw1y

[
rb1y −

n∑
i=1

𝜑i(𝜉1R, t)qi + 𝜃b1zlw1 − 𝜃b1xd + 𝜃w1xd

]
− fg1

]

+ 𝜑i(𝜉2R, t)∕N1

[
cw2y

[
ṙb1y −

n∑
i=1

𝜑i(𝜉2R, t)q̇i − 𝜃̇b1zlw2 − 𝜃̇b1xd + 𝜃̇w2xd

]
+ kw2y

[
rb1y −

n∑
i=1

𝜑i(𝜉2R, t)qi − 𝜃b1zlw2 − 𝜃b1xd + 𝜃w2xd

]
− fg2

]

+ 𝜑i(𝜉3R, t)∕N1

[
cw3y

[
ṙb2y −

n∑
i=1

𝜑i(𝜉3R, t)q̇i + 𝜃̇b2zlw3 − 𝜃̇b2xd + 𝜃̇w3xd

]
+ kw3y

[
rb2y −

n∑
i=1

𝜑i(𝜉3R, t)qi + 𝜃b2zlw3 − 𝜃b2xd + 𝜃w3xd

]
− fg3

]

+ 𝜑i(𝜉4R, t)∕N1

[
cw4y

[
ṙb2y −

n∑
i=1

𝜑i(𝜉4R, t)q̇i − 𝜃̇b2zlw4 − 𝜃̇b2xd + 𝜃̇w4xd

]
+ kw4y

[
rb2y −

n∑
i=1

𝜑i(𝜉4R, t)qi − 𝜃b2zlw4 − 𝜃b2xd + 𝜃w4xd

]
− fg4

]
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The vertical acceleration of the rear wheelset has been 
formulated as follow:

Angular acceleration of rear bogie around the x-axis is 
given by Eq. (12d).

On the other hand, the vertical acceleration of the front 
bogie is obtained by Eq. (12e).

The angular acceleration of the car body around the z-axis 
is governed by Eq. (12f).

In Eq.  (12b), the second-order equation of the right 
bridge beam is given. Here, the fg value shows the static 
forces applied to the bridge beam by the train and is 

(12c)
r̈w2z = 2cwz∕mw

[
ṙb1z − ṙw2z − 𝜃̇b1xhw

]
+ 2kwz∕mw

[
rb1z − rw2z − 𝜃b1xhw

]

(12d)

𝜃̈b2x =2cb2ya
2∕Ib2x

[
𝜃̇cx − 𝜃̇b2x

]
+ cw3yd∕Ib2x

[
2𝜃̇w3xd − 𝜑i(𝜉3R, t)q̇i + 𝜑i(𝜉3L, t)q̇i − 2𝜃̇b2xd

]

+ cw4yd∕Ib2x
[
2𝜃̇w4xd − 𝜑i(𝜉4R, t)q̇i + 𝜑i(𝜉4L, t)q̇i − 2𝜃̇b2xd

]
+ 2kb2ya

2∕Ib2x
[
𝜃cx − 𝜃b2x

]

+ kw3yd∕Ib2x
[
2𝜃w3xd − 𝜑i(𝜉3R, t)qi + 𝜑i(𝜉3L, t)qi − 2𝜃b2xd

]

+ kw4yd∕Ib2x
[
2𝜃w4xd − 𝜑i(𝜉4R, t)qi + 𝜑i(𝜉4L, t)qi − 2𝜃b2xd

]

(12e)

r̈b1y =2cb1y∕mb1

[
ṙcy − ṙb1y + 𝜃̇czlb1

]
− cw1y∕mb1

[
2ṙb1y − 𝜑i(𝜉1R, t)q̇i − 𝜑i(𝜉1L, t)q̇i + 2𝜃̇b1zlw1

]

− cw2y∕mb1

[
2ṙb1y − 𝜑i(𝜉2R, t)q̇i − 𝜑i(𝜉2L, t)q̇i − 2𝜃̇b1zlw2

]
+ 2kb1y∕mb1

[
rcy − rb1y + 𝜃czlb1

]

− kw1y∕mb1

[
2rb1y − 𝜑i(𝜉1R, t)qi − 𝜑i(𝜉1L, t)qi + 2𝜃b1zlw1

]

− kw2y∕mb1

[
2rb1y − 𝜑i(𝜉2R, t)qi − 𝜑i(𝜉2L, t)qi − 2𝜃b1zlw2

]

(12f)
𝜃̈cz = − 2cb1ylb1∕Icz

[
ṙcy − ṙb1y + 𝜃̇czlb1

]
+ 2cb2ylb2∕Icz

[
ṙcy − ṙb2y − 𝜃̇czlb2

]

− 2kb1ylb1∕Icz
[
rcy − rb1y + 𝜃czlb1

]
+ 2kb2ylb2∕Icz

[
rcy − rb2y − 𝜃czlb2

]

calculated as in Eq. (13a). Here, wh represents the number 
of wheels of the train going over the bridge beam. On the 
other hand, other static contact forces on the train body 
and bogies are obtained by Eq. (13b–c). The parameters fb 
and ft represent the static forces of bogies and train body, 
respectively.

(b)(a)

Fig. 3   a Verification case 1 and b case 2

(13a)fg =

�
mc +

∑2

i=1
mb,i+

∑8

i=1
mw,i

�
g

wh
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The parameter g given by Eq. (13a–c), as shown above 
represents gravitational acceleration.

3 � Numerical analysis

3.1 � Numerical verification examples

The equations of motion for the entire train and bridge model 
are obtained using the Lagrange method in Eqs. (7–8). A 
total of 39 s-order differential equations, 31 belonging to the 
train and 8 equations belonging to the bridge, were created. 
These equations are reduced to 78 first-order differential 
equations with the help of state-space forms. Then, to solve 
these equations, the fourth-order Runge–Kutta method was 
used by means of “Appendix 1”. The dynamic responses 
that occurred during the passage of the high-speed train 
over the bridge, which can be modeled as the Euler–Ber-
noulli beam, were analyzed with the commercial analysis 
program MATLAB. The parameters of the train and bridge 
beam used by [30, 36] in the literature for analysis in this 
study are given in Table 1. In order to verify the results 
of the analysis, a comparison was made with the results of 
the studies in the literature. In both solutions compared, all 
parameters were selected the same. The motion equation 
of the train bridge models in the literature was analyzed 

(13b)fb =

�
mc +

∑2

i=1
mb,i

�
g

2

(13c)ft = mcg

by the Newmark method [17, 37]. However, in this study, 
the second-order differential equations were reduced to the 
first-order equation in the state-space form and analyzed 
with the Runge–Kutta method. Two cases were examined 
for comparison; in the first case, the elasticity module of the 
beam was taken as E = 2.87 GPa, the inertia moment of the 
cross-sectional area was taken as I = 2.9 m4, the mass of unit 
length of the beam was taken as µ = 2303 kg/m, beam length 
was taken as L = 25 m, sprung mass was taken as Mv = 5.75 
tons, spring rating was accepted as kv = 1595 kN/m, and the 
system was assumed as undamped.

In the second verification case, which connected to the 
body of the wheel through spring and damping elements, the 
elasticity module of the beam was taken as E = 2.943 GPa, 
the inertia moment of the cross-sectional area was taken as 
I = 8.65 m4, the mass of unit length of the beam was taken 
as µ = 36 tons/m, beam length was taken as L = 30 m, sprung 
mass was taken as Mv = 540 tons, spring coefficient was 
accepted as kv = 41,350 kN/m, and the system was assumed 
as undamped. Distance between two wheels was taken as 
d = 17.5 m, and the train speed was taken as 27.78 m/s. The 

(a) (b)

Fig. 4   a Displacement at the midpoint of beam for verification case 1 and b displacement at midpoint of beam for case 2

Table 2   First four vibration modes of the right and left bridge beam

Mod num 1 2 3 4

For the right bridge beam
fb,j (Hz) 0.905 3.616 8.136 14.464
vcr,j (m/s) 18.079 72.319 162.719 289.277
For the left bridge beam
fb,j (Hz) 0.937 3.747 8.430 14.986
vcr,j (m/s) 18.733 74.931 168.595 299.745
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comparative result of the method used in this study with the 
examples given in Fig. 3 is shown in Fig. 4. The results of 
both validation examples and the method used in this study 
were quite similar. In Fig. 4, the comparison of the presented 
study with literature studies [38, 39], considering two cases 
sprung mass model (1-DOF) and suspended rigid beam 
model (2-DOFs) including moving load case too. Accord-
ing to the figure for case 2 given in Fig. 4b, it is clearly seen 
that there is some difference between the proposed study 
and Yang and Wu [39] in terms of bridge structure mid-
point vertical displacement because of the reason explained 
in this study. One of the biggest reasons the occurring this 
difference between the presented study and Yang and Wu 
[39] is taking into different mode numbers in the calcula-
tion of the flexible structure transverse dynamic effect of 
moving vehicle or moving load. For example, in the study 
Yang and Wu [39], for calculation of the beam deflection, 
the only first mode of the flexible beam has been considered 
and analytically and Newmark’s finite difference technique 
is used for the numerical analysis, which has a significant 

effect upon determining bridge and vehicle dynamic. In 
other words, in the presented study, the first four modes of 
the flexible beam have been taken into, and the fourth-order 
Runge–Kutta algorithm is used for the numerical analyses 
in the time domain.

In the analysis, the railway vehicle and the bridge param-
eters were taken as in Table 1. However, these values do not 
remain constant in the actual model. For example, the mass 
of the railway vehicle changes depending on whether the 
wagon is filled with passengers. Similarly, bridge param-
eters are of great importance for bridge engineering. The 
length of the bridge over which the high-speed train passes 
cannot be considered constant, as seen in Fig. 1, and differ-
ent bridge lengths change the train-bridge dynamic interac-
tion. When the train enters the bridge at a certain velocity, 
the bridge is forced to vibrate. If this velocity equals the 
resonance frequency of the bridge, the bridge oscillations 
are quite high. Train velocity, which corresponds to the 
resonance frequency, is called critical velocity at which the 
train is not desired to travel. Before starting the analysis, the 

Fig. 5   Effect of bridge beam mode number upon train-bridge dynamic response
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displacement modes of the bridge beam have been deter-
mined. In this study, it was seen that the first four modes of 
bridge beam are satisfactory. The natural frequency calcula-
tion of the beam is given in Eq. (14) [40], where ω repre-
sents the circular natural frequency of the beam.

In Eq. (14), the circular natural frequency of the beam 
is given. In Eq.  (15), the beam vibration frequency is 
calculated.

According to Eq.  (15), the first four vibration modes 
of the right and left bridge beam can be calculated as in 
Table 2.

The force frequency fv of the train and the natural fre-
quency fb of the bridge are called speed parameters. If fv 
and fb are equal, resonance occurs. The resonance causes 
the periodic motion amplitudes of the train passing over the 
bridge to increase. The most crucial characteristic length for 
the resonance caused by the train passing over the bridge 
beam is the length of the train [41]. The critical velocity 
of the beam-train system, vcr, causing resonance is given in 
Eq. (16) [42].

In Eq. (16), fb,j represents the jth natural frequency of the 
bridge beam. Expression d stands for the distance between 
the front wheel of the front bogie and the rear wheel of the 
rear bogie. i represents the number of half oscillation cycles 
[37, 43]. Length d is calculated as lb1 + lb2 + lw1 + lw4 = 20 m 
using Table 1. Thus, critical velocities of the beam-train 

(14)�2
j
=

j4�4EI

�L4
(rad/s),

(15)fj =
�j

2�
=

j2�

2L2

√
EI

�
(Hz)

(16)vcr,j =
dfb,j

i

system for the first four modes of the bridge are determined 
as in Table 2.

3.2 � The effect of the mode number used 
in the study upon railway vehicle and bridge 
dynamic

In this section, it will be examined how the vibration mode 
number of bridges that can be modeled according to the 
Euler–Bernoulli beam theory changes the TBI. In Sect. 2, 
the vibration mode frequencies of the simply supported 
bridge beams are introduced. Determining the vibration 
response of flexible structures such as bridges at specific fre-
quencies or natural frequencies is very important in examin-
ing forced vibrations. Therefore, in this section, both bridge 
and train dynamics are examined by considering the first 
eight vibration modes of the simply supported bridge beam.

In Fig. 5, the vertical displacement and acceleration of 
the train body and the deflection of the bridge midpoint are 
given according to the different mode numbers (n = 1–8). 
The root mean square (RMS) values of the graphs given in 
Fig. 5 according to each mode number are given in Table 3. 
As can be seen from the graphs, the responses of train and 
bridge are almost the same for all modes of bridge beams.

Considering only one vibration mode of the bridge beam 
and the first two vibration modes, the relative error value in 
the vertical displacement value of the train is 1.2%. If the 
first three modes are included, there is only a relative error 
value of 0.1024% compared to the results including the first 
two modes. With the inclusion of the first four vibration 
frequencies of the bridge beam, the value of the relative 
error is negligibly low, and it is observed that the results do 
not change much with the inclusion of subsequent vibration 
modes. As a result, it is seen that the first four vibration 
modes of the bridge beam examined in this study are pretty 
sufficient for the accuracy of the study.

Table 3   Comparison of the 
bridge mode number (n) upon 
the dynamic response of train 
and bridge beam

Mode 
number 
(n)

Train vertical displacement (m) Train vertical acceleration 
(m/s2)

Bridge midpoint displace-
ment (m)

RMS Relative dif-
ference (%)

RMS Relative dif-
ference (%)

RMS Relative dif-
ference (%)

n = 1 0.437270 × 10–2 – 0.14908931 – 0.02057272 –
n = 2 0.442626 × 10–2 1.201 0.14969764 0.4064 0.02058368 0.0533
n = 3 0.443080 × 10–2 0.1024 0.14979015 0.0618 0.02058028 0.0165
n = 4 0.443432 × 10–2 0.0795 0.14983530 0.0301 0.02058146 0.0057
n = 5 0.443702 × 10–2 0.0609 0.14987143 0.0241 0.02058232 0.0042
n = 6 0.443836 × 10–2 0.0300 0.14988726 0.0106 0.02058239 0.0003
n = 7 0.443875 × 10–2 0.0089 0.14989070 0.0023 0.02058227 0.0006
n = 8 0.443882 × 10–2 0.0015 0.14989051 0.0001 0.02058224 0.0001
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3.3 � The effect of time step upon dynamic responses 
of the train and bridge

In this study, the equations of motion of the train-bridge sys-
tem given in Eq. (12a–f) are solved precisely and accurately 
by the Runge–Kutta method. In this context, the selection 
of the time step is an important concept. In some studies, 
the use of different time steps has been preferred to solve 
the equations of motion of the bridge and train. For exam-
ple, Zhu et al. [44] adopted a fine time-step for the train 
subsystem and track subsystem due to the high-frequency 
wheel-rail contact and adopted a coarse time-step for the 
bridge subsystem due to low-frequency vibration. Froio et al. 
[45], in their study on the determination of maximum beam 
displacements, applied an automatic calculation method to 
evaluate the time step for each simulation. They also used 
the HHT-α implementation method [46] to achieve the 

numerical solution of the initial-value problem. An implicit 
formulation for this method is given as follow:

where m and c are the mass and damping coefficient, respec-
tively. rk , ṙk , and r̈k are the displacement, velocity, and accel-
eration response at the kth time-step, respectively. F is the vec-
tor of external forces. N is the number of time steps, Δt = �

N
 . 

Where, the parameter � is the time needed for the train to 
leave the bridge completely. � , � , and � are parameters of  

(17)
m.r̈k+1 + (1 + 𝛼).c.ṙk+1 − 𝛼.c.ṙk + (1 + 𝛼).rk+1

− 𝛼.rk+1 = (1 + 𝛼).Fk+1 − 𝛼.Fk k = 0, 1,… ,N − 1

(18)rk+1 = rk + Δt.ṙk + Δt2.
[(

1∕2 − 𝛽

)
.rk + 𝛽.rk+1

]

(19)ṙk+1 = ṙk + Δt.
[
(1 − 𝛾).r̈k + 𝛾 .r̈k+1

]

(a) (b)

(c)

Fig. 6   Effect of time step size (Δt) on dynamic responses of the train body and bridge in case of train velocity = 50 km/h a vertical displacement 
of train body, b vertical acceleration of train body and c displacement of bridge midpoint
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(a) (b)

(c)

Fig. 7    Effect of time step size (Δt) on dynamic responses of the train body and bridge in case of train velocity = 300 km/h a vertical displace-
ment of train body, b vertical acceleration of train body and c displacement of bridge midpoint

Table 4   Effect of time step size Δt upon solution accuracy for bridge midpoint displacement and train body displacement

Δt (s) Solution time (s) RMS (m) Relative difference (%) Rate of increase for time (%)

50 km h−1 300 km h−1 50 km h−1 300 km h−1 50 km h−1 300 km h−1 50 km h−1 300 km h−1

Bridge midpoint displacement
0.2 12.70 3.55 0.009362 0.01399 0.7106 17.657 – –
0.1 12.74 4.22 0.009372 0.01605 0.5409 5.5327 0.31 18.87
0.01 19.61 4.81 0.009423 0.01693 0.0636 0.3531 54.41 35.49
0.001 156.18 28.50 0.009429 0.01699 – – 1129.76 702.82
Train body displacement
0.2 12.70 3.55 0.007913 0.010629 0.8023 12.698 – –
0.1 12.74 4.22 0.007931 0.011665 0.5767 4.1971 0.31 18.87
0.01 19.61 4.81 0.007973 0.012130 0.0576 0.3696 54.41 35.49
0.001 156.18 28.50 0.007977 0.012175 – – 1129.76 702.82
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(a) (b)

Fig. 8   Dynamic responses of car body, front and rear bogies a vertical displacement and b lateral displacement

(a) (b)

Fig. 9   Dynamic responses of car body, front and rear bogies a rotation of pitch motion and b rotation of roll motion

(a) (b)

Fig. 10   Dynamic responses of car body, front and rear bogies a vertical acceleration and b lateral acceleration
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the algorithm. Hilber et al. [46] suggested −1∕3 ≤ � ≤ 0 , 
𝛾 > 0.5 and � ≥ 0.25.(� + 0.5)2 parameters to ensure stability 
and accuracy in the given method. Here, the parameter HHT-
α, that indicates the high-frequency numerical distribution 
ratio, can be chosen equal to α = − 0.1.

The HHT-α method presented by Hilbert et al. [46] in 
determining the time step size is briefly introduced above. In 
this study, before starting the analysis, solution step time was 
determined as Δt. It is adequate to take Δt = 10–2 in the analy-
sis. Choosing the solution step time smaller does not change 
the results obtained and increases the analysis time consider-
ably. In order for all wheelsets to contact the bridge (lb1 + lb2 
+ lw1 + lw4)/v = 0.24 s time is needed. The time needed for the 
train to leave the bridge completely is (L + lb1 + lb2 + lw1 + lw4
)/v = 0.84 s. The total analysis time was taken as five times 

the time required for the entire train to leave the bridge, and 
the dynamic response of the bridge was examined after the 
train left the bridge.

In this context, the displacement and acceleration values 
of the train body and the dynamic response of the bridge 
midpoint in 4 different time steps (Δt = 0.2, 0.1, 0.01, 
0.001 s) according to the position of the train while pass-
ing over the bridge are given in Figs. 6 and 7. RMS values 
of the bridge’s midpoint displacement and the train body 
displacement are given in Table 4. According to Table 4, if 
the train speed is 300 km/h when the time step size is 0.001, 
the RMS of the displacement value of the bridges’ midpoint 
is 0.01699 m, when the time step size is 0.01, this value is 
0.01693 m, and the relative difference is only 0.35%. How-
ever, when the time spent by the computer software program 
for the solution for both step times is considered, there is a 
sixfold difference. The effect of the proposed time step in the 
study is examined in Figs. 6 and 7 when the train speed is 
300 km/h and 50 km/h. Considering the fast or slow move-
ment of the train according to both graphs, it is stated that 
the determined time step size is the most appropriate. As a 
result, choosing the solution step time more minor does not 
change the results obtained and increases the analysis time 
considerably. Similarly, for the train body displacement, the 
results are also the same.

3.4 � Train and railway vehicle dynamic responses 
for constant velocity

In Figs. 8, 9 and 10, dynamic responses of car body and 
bogies are given for the train traveling at a constant velocity 
on the bridge beam. In Fig. 8a, b, vertical and lateral dis-
placement graphs of the car body and bogies are given. The 
train leaves the bridge after, 0.84 s and after this time, the 
vibration and displacement of the train decrease.Fig. 11   Dynamic responses of beams

(a) (b)

Fig. 12   The compare of effect of car body mass on the car body dynamic responses a vertical displacement and b lateral displacement
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When Fig. 8a is examined, the maximum displacement 
of the rear bogie and car body occurs at 0.73 s, and the 
maximum displacement of the front bogie is 0.55 s, which 
is 0.18 s before the rear bogie. This is due to the distance 
between the wheel in the front bogie and the wheel in the 
rear bogie. Figure 8b shows lateral displacements for the car 
body, front bogie, and the rear bogie. The maximum dis-
placement of the car body and front bogie was at 0.76 s, and 
53.3 m after the car body entered the bridge. The maximum 
displacement of the rear bogie was at 0.5 s, and 31.67 m 
after the car body entered the bridge. In Fig. 9, the pitch-
ing and rolling movements of the car body, front bogie and 
the rear bogie are given. The rolling motion is due to the 
dynamic response distinction between the right bridge beam 
and the left bridge beam, which can be seen in Fig. 11.

The vertical and lateral accelerations of the car body, 
front bogie, and rear bogie are given in Fig. 10. The max-
imum vertical acceleration of the car body was found as 
52.5 m after the train entered the bridge, and 0.84 m/s2, 
while the maximum lateral acceleration was found as 60 m 
after the car body entered the bridge and 0.0048 m/s2. The 
maximum vertical displacement and maximum acceleration 
of the car body occurred almost in the same position of the 
bridge. The maximum lateral acceleration of the front and 
rear bogie was found to be 0.032 m/s2 and 0.06 m/s2, respec-
tively. This vertical acceleration of the car body exceeds the 
acceleration values affecting humans according to ISO 2631 
standard, and according to this standard, the low comfortable 
acceleration value is 0.49 m/s2, and the medium comfortable 
acceleration value is 0.37 m/s2 [26].

(a) (b)

Fig. 13   The compare of effect of car body mass on the car body dynamic responses a vertical acceleration and b lateral acceleration

(a) (b)

Fig. 14   The compare of effect of car body mass on the beam dynamic responses a left beam midpoint displacement and b right beam midpoint 
displacement
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(a) (b)

Fig. 15   The effect of train velocity upon dynamic response a vertical displacement and b lateral displacement

(a) (b)

Fig. 16   The effect of train velocity upon dynamic response a pitch motion and b roll motion

(a) (b)

Fig. 17   The effect of train velocity upon dynamic response a vertical acceleration and b lateral acceleration
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3.5 � Train and railway vehicle dynamic responses 
for different car body masses

In this section, car body mass, one of the most important 
parameters in TBI, will be examined. Train velocity is con-
stant and taken as 300 km/h. Four different car body masses, 
(mc = 20, 40, 60, 80 tons), were examined. In Figs. 12 and 
13, the displacement and acceleration of the car body in dif-
ferent masses are given.

When Fig. 12 is examined, it can be noticed that as the 
mass of the car body increases, vertical displacements 
increase. However, it is also detected that the lateral dis-
placements decrease with the increase in the car body mass. 
Also, a detail seen in Fig. 12 is that as the car body mass 

increases, the maximum displacement time shifts to the 
right. This means that the natural frequency of the train 
bridge system is related to the car body mass. For exam-
ple, if mc = 20–40–60–80 tons, the maximum displacement 
times were determined to be 0.64 s, 0.71 s, 0.76 s, and 0.8 s, 
respectively. Similarly, in Fig. 13, vertical acceleration and 
lateral acceleration rise as the car body mass increases.

In Fig. 14, the displacement of the right and left bridge 
beam center point is given. After the car body passes 38.3 m 
over the bridge, the maximum displacement of the right 
bridge beam is 0.58 s, and its value is 0.046 m. The left 
bridge was calculated as 0.83 s and 0.0748 m, which is when 
the train leaves the bridge. After this time, the bridge beam 
is in free vibration, and the bridge vibrations are damped.

(a) (b)

Fig. 18   The comparison of the effect of the bridge damping ζ on DAF a DAF for right beam and b DAF for left beam

(a) (b)

Fig. 19   Displacement of car body for increasing velocity and different car body mass a vertical displacement of car body and b lateral displace-
ment of car body
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3.6 � Effect of train velocity upon train and railway 
vehicle dynamic responses

In Figs. 15, 16 and 17, the car body, front and rear bogie 
displacement, rotation, and acceleration values are given 
when the train speed changes from 2 to 200 m/s at 0.5 m/s 
intervals. When Fig. 15a is examined, it can be seen that the 
maximum displacement of car and bogies peaked in two 
places, the first of which occurred when the train speed was 
18 m/s, and the other was 45 m/s. According to Table 2, the 
value of 18 m/s is quite close to the first critical velocity 
of the beam-train system. Similarly, whereas the maximum 
pitching movement of the car body in Fig. 16 is determined 
to be at 65 m/s, the maximum vertical acceleration of the 
car body in Fig. 17 is 69 m/s, which are quite close to the 

second critical speed of the beam-train system. In Fig. 15b, 
the maximum lateral displacement of the rear bogie occurs 
when the train speed is 168.5 m/s, and it is known that the 
train is very close to the third critical velocity according to 
Table 2.

The dynamic amplification factor (DAF) of the beam 
mid-point is given in Fig. 18. DAF is the ratio of the maxi-
mum displacement of the bridge beam center point to the 
displacement of the bridge beam center point due to the 
mass of the train if the train passes over the bridge; it is 
found using the expression DAF = Rd(x)/Rs(x). The maxi-
mum displacement of the bridge center point is found using 
Rs = FL3/48EI formula, where F is the total weight of the 
train. When Fig. 18 is examined, it can be seen that three dif-
ferent damping ratios are given for the bridge beam. These 

(a) (b)

Fig. 20   Displacement of car body for increasing velocity and different car body mass a pitch motion of car body and b roll motion of car body

(a) (b)

Fig. 21   Acceleration of car body for increasing velocity and different car body mass a vertical acceleration of car body and b lateral acceleration 
of car body
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are determined as ζ = 0.47%, 2.36%, 4.72% for the right 
beam and ζ = 0.57%, 2.88%, 5.77% for the left beam. The 
maximum DAF of beams has increased in two places. These 
occur at 18.5 m/s and 71.5 m/s, the critical velocities of the 
beam-train system for the left beam.

One of the essential factors affecting the TBI is the car 
body mass. When the trainload increases, the forces applied 
to the bridge beam increase. In Figs. 19 and 20, the displace-
ment and rotation movements of the car body are given for 
increasing train speed and different car body mass.

When Fig. 19 is examined, the vertical displacement of 
the car body increases as the car body mass increases. How-
ever, in contrast, lateral displacement decreases with increas-
ing mass. In Fig. 19a, the maximum vertical displacement of 
the car body occurs at 40 m/s if the car body mass is 20 tons, 

while it is seen that it is at 45 m/s for the other masses. When 
Fig. 19b is examined, the maximum lateral displacement of 
the car body occurs at 15.5 m/s and 45 m/s, which are very 
close to the first two critical velocities of the beam-train sys-
tem, and after this velocity, lateral displacement decreases 
as the velocity of the train increases.

The rotational movements of the car body are given in 
Fig. 20. The maximum pitching movement of the car body 
is at 76 m/s close to the second critical velocity of the beam-
train system, and it is at 2.51 × 10–3 rad value. In Fig. 21, 
it is seen how the change of train velocity and body mass 
affects the car body acceleration, and accordingly, the ver-
tical acceleration increases with the increase in the mass, 
while the lateral acceleration decreases with the increase 
in the mass. However, after about 120 m/s of train velocity, 

(a) (b)

Fig. 22   Displacement of car body for increasing velocity and different bridge beam length a vertical displacement of car body and b lateral dis-
placement of car body

(a) (b)

Fig. 23   Rotation of car body for increasing velocity and different bridge beam length a pitch motion of car body and b roll motion of car body
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the effect of the mass is reversed, and vertical acceleration 
decreases when mass increases.

The vertical acceleration of the car body exceeds 0.49 m/
s2, which is considered to be low comfort according to 

ISO 2631 standards, when the train goes with a speed of 
74.9 m/s, the second critical velocity for the left bridge 
beam-train system. In Fig. 21b, the maximum lateral accel-
eration is quite close to the third critical velocity of the 
beam-train system, 178.5 m/s, according to Table 2. If the 
speed is about 150 m/s, the lateral acceleration is 0.015 m/
s2 regardless of the mass.

Railway bridges are essential parameters in terms of 
bridge engineering. Therefore, in Figs. 22, 23, 24 and 25, 
the dynamic responses of bridge beams at different lengths 
for train bodies are examined. Four different beam lengths, 
30–40–50–60 m, were studied. An examination of Fig. 22 
shows that both vertical and lateral displacements change as 
the bridge length increases. The first four critical velocities 

(a) (b)

Fig. 24   Acceleration of car body for increasing velocity and different bridge beam length a vertical acceleration of car body and b lateral accel-
eration of car body

(a) (b)

Fig. 25   Displacement of bridge beams for increasing velocity and different bridge beam length a right bridge midpoint displacement and b left 
bridge midpoint displacement

Table 5   The first four critical velocities of the beam-train system for 
different bridge length

For left bridge beam L = 30 m L = 40 m L = 50 m L = 60 m

vcr1 (m/s) 52.03 29.27 18.73 13.01
vcr2 (m/s) 208.14 117.08 74.93 52.03
vcr3 (m/s) 468.32 263.43 168.59 117.08
vcr4 (m/s) 832.57 468.32 299.72 208.14
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of the beam-train system for the all bridge length can be 
determined in Table 5. Figure 23 shows the pitching and 
rolling movement of the car body. According to this graph, 
the angle of rotation increases with increased bridge length. 
If the length of the bridge is 30 m, according to Table 5. 
The maximum pitching movement is quite close to the first 
critical velocity of the beam-train system. Similarly, if the 
length of the bridge is 40–50–60 m, the maximum pitching 
movement occurs at speeds close to the first and second.

In Fig. 25, the maximum displacement of the bridge mid-
point according to the bridge length is given. Accordingly, 
the maximum displacement amount increases as the length 
of the bridge beam increases, and the maximum displace-
ment amount of the bridge midpoint occurs at lower speeds 
as the bridge length increases. As seen in Eq. (14), the main 
reason for this is that the natural frequency of the bridge 
depends on the length of the bridge.

In Fig.  24, the vertical acceleration of the car body 
increases as the length of the bridge increases, while the 
lateral acceleration remains almost the same.

3.7 � Dynamic contact forces analysis

In this section, the vertical contact forces of the train body, 
bogies and wheel-rail due to train-bridge couple vibrations 
during the passage of the high-speed train over the bridge 
are analyzed by considering the speed of the train and the 
length of the train. When the high-speed train passes over 
the bridge, static forces occur in the contact area due to the 
train’s weight, while dynamic forces occur due to the instan-
taneous acceleration of the train parts due to the moving 
train. Therefore, the value of the contact forces is obtained 
by adding the static force and the dynamic force. In this 

(a) (b)

(c) (d)

Fig. 26   The responses of the contact forces a contact force of train body, b contact force of bogies, c contact force of right wheels and d contact 
force of left wheels
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section, the formulation of the train body, bogies and wheel-
rail contact forces is presented in “Appendix 2”.

In Fig. 26, the train body, bogies, and rail-wheel con-
tact forces are given in the time domain according to the 
train speed being constant and 300 km/h. When Fig. 26a is 
examined, the maximum contact force acting on the train 
body was 3.94 × 105 N in 0.6 s, while the minimum contact 
force was 3.91 × 105 N in 0.89 s. These determined values 
are quite similar to the vertical acceleration graph of the 
train body given in Fig. 10. Again, the same situation is the 
same for the vertical contact force values of the front and 
rear bogies. It is understood from this that in addition to the 
static forces caused by the mass, the dynamic forces of the 
vertical accelerations due to the TBI are added to the total 
contact force.

In Figs. 27, 28 and 29, the contact forces of the train have 
been investigated according to four different bridge lengths 
(L = 30, 40, 50, 60 m) and the train speed being in the range 
of 2–200 m/s. As can be seen from the figures, the contact 
forces increase with the increase in the bridge length. How-
ever, in some graphics, the contact forces reach their maxi-
mum value at certain speeds. For example, in Fig. 27a, b, 

the maximum contact force of the bogies occurs at the low 
speeds of the train, while in Fig. 27c, the maximum contact 
force of the train body occurs at the medium speeds of the 
train. According to this graph, the train speeds at which the 
maximum contact forces of the train's body occur change 
as the bridge length changes. In other words, in this case, 
as mentioned in the previous sections, the critical speed 
concept of the beam-train system becomes essential. There-
fore, just as vertical accelerations increase at these critical 
speeds, the vertical contact forces also increase. Right and 
left wheel-rail contact forces are given in Figs. 28 and 29, 
respectively. According to these graphs, if the train speed is 
40 m/s or less, the contact forces are pretty high, while the 
contact forces are relatively low as the train speed increases.

4 � Conclusion

In this study, dynamic analysis of the railway bridges has 
been conducted, which can be modeled as Euler–Ber-
noulli beams with 31-DOFs full railway vehicle model, in 
terms of the constant speed of the train, different car body 

(a) (b)

(c)

Fig. 27   Effect of train velocity and bridge length on contact force a front bogie contact force, b rear bogie contact force and c train body contact 
force
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masses, and different bridge lengths. For this purpose, the 
mathematical model of the bridge beam and full railway 
vehicle model was created, and the motion equations were 
obtained with the Lagrange method according to the model 
established. Dynamic responses of all train parts were found 
using the fourth-order Runge–Kutta method. The compari-
son was conducted with two different models in the literature 
to verify the study, and the results were found to be very 
similar. The results of the TBI at the end of the study are 
given below.

•	 In this study, dynamic responses were obtained quickly 
due to solving the motion equations created for TBI using 
the Runge–Kutta method.

•	 If the train speed is constant and 300 km/h, the maximum 
responses of the car body and rear bogie are almost iden-
tical, while the maximum dynamic response of the front 
bogie seems to have been slightly earlier.

•	 In the study, it is seen that the bridge parameters affect 
the bridge behavior. Therefore, when the frequency of 
the train passing over the bridge is equal to the natural 
frequency of the bridge, the bridge is resonant, and the 

bridge oscillations increase significantly. In addition, 
critical velocities depending on the natural frequency 
of the bridge are determined, and it is observed that 
dynamic responses increase at critical velocities.

•	 The effect of the body mass mc of the train and the bridge 
length L on the train-bridge dynamics were examined in 
four different values. With the increase in both values, the 
vertical displacement of the car body increases, while the 
lateral displacement decreases with the increase in mass.

•	 Moreover, in this study, contact forces have been exam-
ined on wheels, bogies and train body considering train 
velocity and bridge length. While most of the contact 
forces are static forces, consisting of the mass of the train 
parts, dynamic forces occur due to the vertical accelera-
tions caused by the interaction when the train passes over 
the bridge. Therefore, the contact force’s graphs are quite 
similar to vertical acceleration responses. Also, the maxi-
mum contact force values occur when the train speed is 
close to the critical speeds of the train-beam system.

With the proposed method to analyze interaction 3-D full 
model railway vehicle and flexible structure likewise bridge 

(a) (b)

(c) (d)

Fig. 28   Effect of train velocity and bridge length on contact force a front bogie (Right wheel 1) contact force, b front bogie (Left wheel 1) con-
tact force, c front bogie (Right wheel 2) contact force and d front bogie (Left wheel 2) contact force
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beam given in this study, one can simulate easily complex, 
nonlinear, and multi-parameter physical systems without 
costly and time-consuming experimental study.

Appendix 1

Thirty-nine motion equations have been converted to seventy-eight 
first-order equations using the variables given in “Appendix 1”.

(20)

x1 = rcy ≫ ẋ1 = ṙcy = x2 x18 = 𝜃̇b1x ≫ ẋ18 = 𝜃̈b1x x35 = 𝜃w1x ≫ ẋ35 = 𝜃̇w1x = x36 x52 = 𝜃̇w3x ≫ ẋ52 = 𝜃̈w3x

x2 = ṙcy ≫ ẋ2 = r̈cy x19 = 𝜃b1y ≫ ẋ19 = 𝜃̇b1y = x20 x36 = 𝜃̇w1x ≫ ẋ36 = 𝜃̈w1x x53 = 𝜃w3y ≫ ẋ53 = 𝜃̇w3y = x54

x3 = rcz ≫ ẋ3 = ṙcz = x4 x20 = 𝜃̇b1y ≫ ẋ20 = 𝜃̈b1y x37 = 𝜃w1y ≫ ẋ37 = 𝜃̇w1y = x38 x54 = 𝜃̇w3y ≫ ẋ54 = 𝜃̈w3y

x4 = ṙcz ≫ ẋ4 = r̈cz x21 = rb2y ≫ ẋ21 = ṙb2y = x22 x38 = 𝜃̇w1y ≫ ẋ38 = 𝜃̈w1y x55 = rw4y ≫ ẋ55 = ṙw4y = x56

x5 = 𝜃cz ≫ ẋ5 = 𝜃̇cz = x6 x22 = ṙb2y ≫ ẋ22 = r̈b2y x39 = rw2y ≫ ẋ39 = ṙw2y = x40 x56 = ṙw4y ≫ ẋ56 = r̈w4y

x6 = 𝜃̇cz ≫ ẋ6 = 𝜃̈cz x23 = rb2z ≫ ẋ23 = ṙb2z = x24 x40 = ṙw2y ≫ ẋ40 = r̈w2y x57 = rw4z ≫ ẋ57 = ṙw4z = x58

x7 = 𝜃cx ≫ ẋ7 = 𝜃̇cx = x8 x24 = ṙb2z ≫ ẋ24 = r̈b2z x41 = rw2z ≫ ẋ41 = ṙw2z = x42 x58 = ṙw4z ≫ ẋ58 = r̈w4z

x8 = 𝜃̇cx ≫ ẋ8 = 𝜃̈cx x25 = 𝜃b2z ≫ ẋ25 = 𝜃̇b2z = x26 x42 = ṙw2z ≫ ẋ42 = r̈w2z x59 = 𝜃w4x ≫ ẋ59 = 𝜃̇w4x = x60

x9 = 𝜃cy ≫ ẋ9 = 𝜃̇cy = x10 x26 = 𝜃̇b2z ≫ ẋ26 = 𝜃̈b2z x43 = 𝜃w2x ≫ ẋ43 = 𝜃̇w2x = x44 x60 = 𝜃̇w4x ≫ ẋ60 = 𝜃̈w4x

x10 = 𝜃̇cy ≫ ẋ10 = 𝜃̈cy x27 = 𝜃b2x ≫ ẋ27 = 𝜃̇b2x = x28 x44 = 𝜃̇w2x ≫ ẋ44 = 𝜃̈w2x x61 = 𝜃w4y ≫ ẋ61 = 𝜃̇w4y = x62

x11 = rb1y ≫ ẋ11 = ṙb1y = x12 x28 = 𝜃̇b2x ≫ ẋ28 = 𝜃̈b2x x45 = 𝜃w2y ≫ ẋ45 = 𝜃̇w2y = x46 x62 = 𝜃̇w4y ≫ ẋ62 = 𝜃̈w4y

x12 = ṙb1y ≫ ẋ12 = r̈b1y x29 = 𝜃b2y ≫ ẋ29 = 𝜃̇b2y = x30 x46 = 𝜃̇w2y ≫ ẋ46 = 𝜃̈w2y x63 = q1 ≫ ẋ63 = q̇1 = x64

x13 = rb1z ≫ ẋ13 = ṙb1z = x14 x30 = 𝜃̇b2y ≫ ẋ30 = 𝜃̈b2y x47 = rw3y ≫ ẋ47 = ṙw3y = x48 x64 = q̇1 ≫ ẋ64 = q̈1

x14 = ṙb1z ≫ ẋ14 = r̈b1z x31 = rw1y ≫ ẋ31 = ṙw1y = x32 x48 = ṙw3y ≫ ẋ48 = r̈w3y ⋮

x15 = 𝜃b1z ≫ ẋ15 = 𝜃̇b1z = x16 x32 = ṙw1y ≫ ẋ32 = r̈w1y x49 = rw3z ≫ ẋ49 = ṙw3z = x50 ⋮

x16 = 𝜃̇b1z ≫ ẋ16 = 𝜃̈b1z x33 = rw1z ≫ ẋ33 = ṙw1z = x34 x50 = ṙw3z ≫ ẋ50 = r̈w3z x62+(2n−1) = qn ≫ ẋ62+(2n−1) = q̇n = x62+2n

x17 = 𝜃b1x ≫ ẋ17 = 𝜃̇b1x = x18 x34 = ṙw1z ≫ ẋ34 = r̈w1z x51 = 𝜃w3x ≫ ẋ51 = 𝜃̇w3x = x52 x62+(2n) = q̇n ≫ ẋ62+(2n) = q̈n

(a) (b)

(c) (d)

Fig. 29   Effect of train velocity and bridge length on contact force a front bogie (Right wheel 3) contact force, b front bogie (Left wheel 3) con-
tact force, c front bogie (Right wheel 4) contact force and d front bogie (Left wheel 4) contact force
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When Equations are written in state-space form with state 
variables given by Eq. (20), together with the motions of 
equation belonging to other coordinates, the following is 
obtained:

Four repetitive coefficients of the Runge–Kutta method 
are written as follow for the differential equation system, 
comprising of a total of sixty-two first-degree differential 
equations:

Appendix 2

Static forces acting on wheelsets, bogies, and train body is 
given Eqs. (13a–c). Total contact forces have been obtained 
using motion equation of 31-DOFs full railway vehicle 
model and bridge beam as below:

(21)�̇(t) = A(t)�(t) + f (t),
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The vertical force of the center of the wheelsets center is 
given Eq. (28), whereas the torque of the wheelset’s center 
is formulated as Eq. (29).

The forces at the points of contact of right and left wheels 
are expressed as follow:

The contact forces of front and rear bogies are defined 
as follow:

(28)
�wk = ṙwkymw − 2cwky

(
ṙbjy − ṙwky + 𝜃̇bjzlwk

)

− 2kwky
(
rbjy − rwky + 𝜃bjzlwk

)
k = 1, 2 − 3, 4j = 1, 2

(29)

�wk =𝜃̈wkxIwkx − cwkyd
(
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)
… k = 1, 2 − 3, 4j = 1, 2
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(
2𝜃bjxd − 𝜑i(𝜉kL, t)qi + 𝜑i(𝜉kR, t)qi − 2𝜃wkxd

)

(30)Frwk = fg + Fwk +
�wk

lr
k = 1,… , 4.

(31)Flwk = fg + Fwk −
�wk

lr
k = 1,… , 4.
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Similarly, the contact force act on the train body is given 
as follow:
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ṙcy − ṙb1y + 𝜃̇czlb1

)

+ 2cb2y
(
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