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Abstract
This paper is concerned with the application of the modal expansion method (MEM) to the vibro-acoustic simulation of 
flexible vibrating structures. The structural vibration field due to the external excitation is expanded by a FEM-based modal 
expansion method, and the corresponding normal velocity is transferred into the acoustic FE mesh that is generated for 
the acoustic analysis. In this kind of acoustic simulation, the numerical results are definitely influenced by the accuracy of 
the expanded vibration field using the modal expansion method, which is in turn influenced by the sensor placement for 
extracting and determining the reduced numerical mode shapes and the modal participation factors that are essential for the 
modal expansion method. In this context, the investigation of its effect on the numerical accuracy of the acoustic analysis 
is of importance. We in this paper compare the acoustic analysis results, such as the sound patterns, power, and pressures, 
between the regular and optimum sensor placements with MSC/Nastran results for three different boundary conditions.

Keywords  Structural vibration · Acoustic sound · Modal expansion · Optimum sensor placement · Acoustic analysis · 
Acoustical pattern · Acoustic power and pressure

1  Introduction

The reduction of noise has been a continuing subject in a 
whole range of fields, and it becomes more crucial as the 
environmental-friendly policy is being rapidly intensified 
worldwide [1]. For example, traffic noise of automotive and 
railway vehicles, indoor noise of home appliances, radia-
tion noise of aircraft and submarine, and various industrial 
noises would be the major concerns. This situation naturally 
made the noise level one of the most important performances 
in all the engineering applications, which emphasized the 
importance of the prediction and evaluation of noise level in 
the process of product development [2]. The noise level of 
products was traditionally evaluated by means of experimen-
tal tools at the prototype stage, but the advances in computer 

modeling and simulation technologies made its prediction 
possible even at the stage of concept design [3]. There exist 
many kinds of noise sources and their transmission is also 
diverse, but the most of noises around us are attributed to 
structural-acoustic radiation [4].

The interaction between the structural vibration and the 
surrounding air pressure induces acoustic wave propagation 
in the air. In the strict sense, structural acoustic radiation 
is an intrinsically coupled problem between the structural 
vibration field and the acoustic pressure field [5, 6]. When 
such an interaction between two fields is fully considered, 
the numerical analysis of the structural–acoustic problem 
requires either the elaborate derivation of a two-field mon-
olithic formulation [7] or the staggered iterative solving 
scheme [8, 9]. However, both the complexity and difficulty 
in the numerical formulation and simulation could be greatly 
relaxed when the effect of acoustic pressure on the structural 
vibration is not significant. In fact, in the structure-acoustic 
system, the effect of acoustic pressure on the dynamic struc-
tural deformation becomes negligible when the structural 
stiffness is much higher than the acoustic impedance.

In such cases, the structural-acoustic problem can be 
separately and indirectly solved, by taking the normal 
velocity data of the structure which can also be separately 
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obtained by the structural vibration analysis as the bound-
ary condition for the acoustic simulation [10]. In general, 
the normal velocity data on the outer structure surface 
which is interfaced with the surrounding air are extracted 
using the finite element vibration analysis. But, those can 
also be obtained by the modal expansion method (MEM) 
[11] that is widely used to reproduce and visualize the 
vibration field of structure using the measured modal 
parameters. In this method, the dynamic displacement 
field of the vibrating structure is reproduced in terms of 
the reduced number of natural modes and their modal par-
ticipation factors that are measured and determined using 
a number of vibration sensors. However, the quality of 
the reproduced vibration field is influenced by the sen-
sor positions [12–14] as well as the number of vibration 
sensors, which in turn affects the numerical accuracy of 
structural-acoustic analysis.

In this context, the purpose of the current study is to 
present the numerical analysis procedure for the struc-
ture-acoustic problem by utilizing the modal expansion 
method and to investigate the influence of sensor posi-
tion on numerical accuracy. The reduced natural modes 
are extracted from the numerical natural modes that are 
obtained by the FE modal analysis for the illustrative pur-
pose, and the modal participation factors are determined 
using the measured vibration data. To extract and deter-
mine these modal parameters, the regular (i.e., uniform) 
and optimum sensor placements are used. The optimum 
sensor positions are determined by utilizing a genetic algo-
rithm [15, 16], and the acoustic analysis is carried out 
by the acoustic transfer vector (ATV) technique in LMS 
Virtual. Lab [17] using the reproduced vibration data. 
The proposed method is illustrated through the numerical 
experiment with cylindrical shell-like structures. And, the 
vibro-acoustic results between the regular and optimum 
sensor placements are compared with MSC/Nastran results 
for three different boundary conditions: clamped-free, 
free-free, and clamped–clamped.

2 � Acoustical boundary value problem

Referring to Fig. 1, let us consider a 3-D acoustical problem 
in which the structural vibratory energy is radiating through 
an infinite air domain. The vibrating body B is a thin elastic 
shell-like structure of thickness t , diameter D and length L . 
The dynamic displacement field u(x;t) of body is interacted 
with the acoustic velocity field V(x;t) of air at their com-
mon interface such that  V ⋅ n = −u̇ ⋅ n [18, 19]. For the pur-
pose of computation, an infinite air medium enclosing the 
vibrating structure is truncated to a finite spherical domain 
Ω ∈ ℜ3 with the radius RX , and the Cartesian coordinate 
system with its origin designated at the center of structure 
is adopted. Then, the time-harmonic acoustic pressure field 
p(x;t) = p(x) ⋅ ei�t within the air domain Ω that is induced by 
the structural vibration is governed by the Helmholtz equa-
tion, which is defined by

and the Neumann boundary condition given by

and the radiation condition:

with � = �∕c and Vn = V ⋅ n being the wavenumber and the 
normal flow velocity. In which, d(= 3) is the spatial dimen-
sion of the problem, and � and c the angular frequency and 
the speed of sound, respectively. In the limit RX → ∞ , the 
domain becomes unbounded and the radiation condition (3) 
enforced on the truncated artificial boundary ΓX becomes 
the Sommerfeld condition [20].

The weak form of the acoustical boundary value prob-
lem given in Eqs. (1)–(3) can be derived according to the 
variational formulation. Introducing test function q and 

(1)Δp + �2p = 0 in Ω

(2)Vn = V0
n

on SN

(3)i�p +
�p

�r
= O

(
X−(d−1)∕2

)
on ΓX

Fig. 1   Acoustical boundary 
value problem for a flexible 
vibrating structure
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employing Green’s theorem leads to: Find the acoustic pres-
sure p(x;t) such that

for every admissible pressure field q(x;t) . Here, � indi-
cates the air density, and the Euler equation ∇p = −�V  is 
employed for the derivation of the first term on the right-
hand side (RHS). The numerical implementation of this 
weak form can be done by various methods, among which 
the finite element method, the combined finite/infinite ele-
ment method, and the boundary element method (BEM) are 
widely employed [21, 22]. In case of the finite element-based 
approach, the second term on the RHS can be dropped out 
when the test and trial functions are defined so as to satisfy 
the radiation condition (3) [10]. Meanwhile, the wave reflec-
tion phenomenon at the truncated artificial boundary ΓX 
can be suppressed by employing the special non-reflecting 
boundary condition [23].

In the current study, the above boundary value problem is 
basically solved by the finite element method, but the normal 
flow velocity V0

n
 in Eq. (4) (more exactly, the normal struc-

tural velocity u̇0
n
 ), a source of radiation noise, is indirectly 

calculated by the FEM-based modal expansion method and 
transferred into the acoustic FE mesh. As will be addressed 
in detail in the next section, the structural vibration field 
u(x;t) is expanded in terms of the mode shapes and the modal 
participation factors that are obtained by the finite element 
modal/vibration analyses.

(4)
∫Ω

(
∇p ⋅ ∇q − �2pq

)
dv = ∫S

N

i��V0

n
ds

− ∫Γ
X

(
i�p − O

(
X−(d−1)∕2

))
q ds = 0

3 � Modal expansion of the vibration field

The vibration field u(x;t) of a structure subject to the 
external excitation f (t) can be expressed as a lin-
ear combination of natural modes ΦI  such that 
u(x;t) = Φ1(x)q1(t) + Φ2(x)q2 +⋯ , with qI(t) being the 
modal participation factors. Based on this fact, the modal 
expansion method (MEM) is used to approximate (i.e., 
reproduce) the vibration field with the total of n lowest natu-
ral modes. In terms of using the limited number of natural 
modes, the natural modes selected for the modal expansion 
are called by the reduced natural modes Φr

I
(I = 1, 2,… , n) . 

The reduced natural modes can be experimentally meas-
ured using the total of N  vibration sensors, as shown 
in Fig.  2a, or by extracting from the numerical natural 
modes Φ

I
=
{
�1
I
,�2

I
, ⋅ ⋅ ⋅,�m

I

}T which were obtained by 
the FE modal analysis using an m-DOF mesh. In case of 
the numerical extraction, the finite element mesh for the 
modal analysis is generated such that m is sufficiently 
larger than n . And, each numerically reduced natural mode 
Φr

I
=
{
�1
I
,�2

I
, ⋅ ⋅ ⋅,�N

I

}T having N components is extracted 
from the numerical natural mode Φ

I
 by taking only the com-

ponents corresponding to the finite element nodes where the 
vibration sensors are positioned.

Regardless of how those are obtained, a common promi-
nent feature of the reduced natural modes is the disobedi-
ence of the orthogonality between themselves. It is natural 
because those are not obtained through the mathematically 
orthogonal extraction process such as Jacobi iteration. Such 
disobedience is usually evaluated by the modal assurance 
criterion (MAC) [24] which is defined by

(5)
MAC

IJ
= MAC

(
Φr,T

I
Φr

J

)
=
||
|
Φr,T

I
Φr

J

||
|

2

∕
(
Φr,T

I
Φr

I

)(
Φr,T

J
Φr

J

)

Fig. 2   Modal identification: a regular sensor placement ( N = 12 ), b MAC values
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and it has values from zero to unity. Figure 2b illustrates the 
distribution of MAC values of ten reduced natural modes 
Φr

I
(x) of the clamped cylindrical shell-like structure shown 

in Fig.  2a. The numerically reduced natural modes are 
extracted from the numerical natural modes Φ

I
 which were 

obtained by the FE modal analysis using the regular (i.e., 
uniform) placement of 12 vibration sensors. The orthogo-
nality between the reduced natural modes becomes better as 
the off-diagonal MAC values tend to zero and the diagonal 
ones approach unity. There is no doubt that the best case is 
when MAC has only the diagonal values of unity, which 
implies that the reduced natural modes are identical with 
those obtained by the mathematically orthogonal extraction 
process. In this context, the sensor placement optimization 
can be sought by minimizing the objective function F(X) 
defined by

which is an arithmetic sum of the off-diagonal MAC values. 
Here, X =

{
xs
1
, xs

2
,… , xs

N

} T  denotes the (2N × 1) design 
variable vector with xi =

(
zi, �i

)T , and its optimization can 
be effectively accomplished by employing a genetic algo-
rithm [16, 25].

Meanwhile, the numerical approximation of a damped 
structural vibration problem using a m− DOF finite element 
mesh ends up with a linear matrix equation system given by

with u being the (m × 1) nodal displacement vector. Substi-
tuting the mode superposition u(x;t) = [Φ(x)]q(t) into Eq. (7) 
and multiplying the (m × m) matrix [Φ] of numerical natural 
modes lead to

where � is the (m × 1) vector of modal participation fac-
tors. From the orthonormality between the numerical natu-
ral modes, one can obtain the relation between the modal 
participation factors qI and the normalized forces QI = ΦT

I
F 

for the harmonic response: 
[(
�2
I
− �2

)
+ 2��I�

]
qI = QI 

(I = 1, 2, … ,m) . In the mode superposition method, the 
coefficients qI are determined using the known QI and the 
damping ratio � , and then the structural vibration field u(x;t) 
is to be obtained [26].

Similarly, in the modal expansion method, the vibration 
field is expanded with the above-mentioned n reduced natu-
ral modes Φr

I
(I = 1, 2,… , n) . But, the corresponding (n × 1) 

modal participation vectors �n×1 are to be determined using 
the nodal responses �m which were measured at the N sensor 
positions. Then, by letting 

{
Φr

1
,Φr

2
, ⋅ ⋅ ⋅,Φr

n

}
 be the (N × m) 

(6)F(X) =

n∑

I,J=1, I<J

MACIJ(X)

(7)[M]ü + [C]u̇ + [K]u = F

(8)[Φ]T[M][Φ]q̈ + [Φ]T[C][Φ]q̇ + [Φ]T[K][Φ]q = [Φ]TF

matrix [Φr]N×n , the relation given by �m
N×1

= [Φr]N×n�n×1 
leads to

to determine the modal participation factors q . Here, 
[Φr]∗ =

(
[Φr]T[Φr]

)−1
[Φr]T denotes the left generalized 

inverse of the non-square matrix [Φr] [27].

4 � Numerical experiments

In this section, the proposed numerical analysis procedure 
for the structural-acoustic problem is illustrated and the 
dependence of the numerical results on the sensor placement 
is investigated. The thin elastic shell-like structure shown in 
Fig. 2a was taken for the numerical experiments, where the 
length L , the diameter D and the thickness t are 500, 250 and 
20 m, respectively. The structure is manufactured with steel 
and its material properties are as follows: the density � of 
7850 kg∕m3 , Young’s modulus E of 210 GPa and Poisson’s 
ratio � of 0.3. The shell domain is uniformly discretized by 
25 × 40 in the shell axis and circumferential directions using 
4-node shell elements so that the total number of elements 
is 1,000. The numerical natural modes Φ

I
 are obtained by 

the finite element modal analysis using a commercial FEM 
code, MSC/Nastran. According to the detailed numerical 
results, the lowest natural frequency is 744.60Hz and the 
total number of natural modes that are contained within the 
frequency range 0 ∼ 2500 Hz is 10 for the cylindrical struc-
ture with the clamped-free boundary condition. Likewise, 
the lowest (flexible) natural frequency is 838.5 Hz and the 
total number of natural modes that are contained within the 
frequency range 0 ∼ 2500 Hz is also 10 for the cylindrical 
structures with the free-free boundary condition. In addition, 
the lowest natural frequency is 1549.6 Hz, and the total num-
ber of natural modes that are contained within the frequency 
range 0 ~ 2500 Hz is 10 for the cylindrical structure with the 
clamped–clamped boundary condition. Figure 3 shows the 
lowest natural modes of the cylindrical shell-like structure 
for three different boundary conditions.

Figure 4 shows the optimum placement of 12 vibra-
tion sensors which was obtained by our GA-based opti-
mization method introduced in our previous paper [16]. 
It is clearly observed that the optimum sensor placement 
shown in Fig. 4a is quite different from the regular one 
shown in Fig. 2a even though both have the same bound-
ary condition. In addition, when compared with Fig. 2b, the 
MAC values in Fig. 4b of the reduced 10 natural modes Φr

I
 

which were extracted from the numerical modes Φ
I
 using 

the optimum sensor positions are shown to be much bet-
ter such that the off-diagonal MAC values are significantly 

(9)qn×1 = [Φr]∗
n×N

u
m

N×1
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Fig. 3   Lowest (flexible) mode 
shapes for different boundary 
conditions: a clamped-free, b 
free-free, c clamped–clamped

Fig. 4   Optimum sensor placements and MAC values for the cylindrical shell: a clamped-free, b free-free, c clamped–clamped
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reduced. Regarding the GA-based sensor placement opti-
mization, the reader may refer to our previous paper for its 
detailed explanation, rather we here summarize the core 
parts and the optimization results. The optimum positions 
Xopt =

{
xs
1
, xs

1
,… , xs

12

}
 of 12 vibration sensors are sought 

from all the finite elements nodes, except for the nodes 
lying on the right clamped boundary. So, each genome 
in the genome population is defined by the co-ordinates 
xi =

(
zi, �i

)T of 12 distinct random finite element nodes, 
and it is expressed by a binary string which represents the 
co-ordinates of 12 finite element nodes in the binary number 
system [15]. The objective function F(X) defined in Eq. (6) 
was minimized through the iterative genetic evolution, for 
which the population number and the crossover and muta-
tion ratios were set by 50, 0.6, and 0.01, respectively. The 
stop criterion for terminating the genetic evolution was 
defined by the relative change in the maximum fitness value 

of genomes along the iteration, and it was set by 1.0 × 10−4 
and the genetic evolution was terminated in 316 iterations.

4.1 � Vibration responses

According to the modal expansion method, the vibration 
field u(x;t) of the structure due to the impact force f (t) , a 
unit impulse signal which can be represented by 1.0 N for 
all frequencies, which is applied to the left tip of structure 
is expanded with the reduced 10 natural modes Φr

I
 up to 

2500 Hz for the clamped-free and free-free systems, 3500 Hz 
for the clamped–clamped system. The frequency responses 
of vertical acceleration at the point of excitation are com-
pared in Fig. 5a, b, and c, where the reference indicates the 
response obtained by the direct frequency response analysis 
using MSC/Nastran. The modal expansion using the optimal 
sensor placement produces the responses that deviate from 
the reference with the maximum relative error of 3.97%, but 

Fig. 5   Frequency responses at the point of excitation: a clamped-free, b free-free, c clamped–clamped
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which represents the extraordinary anti-resonances due to 
the absence of the higher modes in the calculation. There-
fore, the responses are in good agreement with the refer-
ence except for the anti-resonance frequencies, when com-
pared with the responses obtained using the regular sensor 
placement showing the maximum relative error of 31.75%. 
And, the difference between the optimum and regular sen-
sor placements becomes more remarkable as the frequency 
becomes higher.

The left contours in Figs. 6, 7,  8 represent the vibra-
tory acceleration patterns at the fifth and tenth natural 
frequencies that were obtained by the direct FE frequency 
response analysis using MSC/Nastran. Meanwhile, the 
center and right contours in Figs. 6, 7, 8 show the accel-
eration patterns reproduced by the modal expansion 
method using the optimum and regular sensor placements, 

respectively. It is observed that the optimum sensor 
placement provides vibratory acceleration patterns that 
are quite similar to those of MSC/Nastran, but one can 
see the remarkable difference between the regular sensor 
placement and MSC/Nastran. In case of the tenth natural 
frequency, the regular sensor placement leads to a totally 
different acceleration pattern. It justifies the importance 
of sensor position such that the modal expansion using the 
reduced natural modes showing the bad MAC values, as 
shown in Fig. 2b, leads to the inaccuracy in reproducing 
the vibration pattern as well as the frequency response. 
This inaccuracy is also attributed to the inaccurate modal 
participation factors because the modal participation fac-
tors were determined from the reduced natural modes and 
the measured vibration data.

Fig. 6   Vibratory acceleration 
patterns for the clamped-free 
cylindrical shell-like structure 
(unit: m∕s2, upper: the fifth 
natural frequency (1604 Hz), 
lower: the tenth natural fre-
quency (2418 Hz)): a MSC/
Nastran, b MEM using the 
optimum sensor placement, c 
MEM using the regular sensor 
placement

Fig. 7   Vibratory acceleration 
patterns for the free-free cylin-
drical shell-like structure (unit: 
m∕s2, upper: the fifth natural 
frequency (2057 Hz), lower: 
the tenth natural frequency 
(2429 Hz)): a MSC/Nastran, b 
MEM using the optimum sensor 
placement, c MEM using the 
regular sensor placement
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4.2 � Acoustical responses

The vibration field u(x;t) of the cylindrical structure that was 
reproduced by the modal expansion method is applied to the 
acoustic analysis. Figure 9 represents an acoustic FE model 
which was constructed using LMS Virtual. Lab, where the 
FE mesh of cylinder is the same as for the previous vibration 
analysis while the field point mesh with the radius R of 1.0 m 
was generated with 294 volume elements. The perfectly 
matched layer (PML) technique [23, 28] was employed to 
prevent the pressure waves from reflecting at the outer sur-
face of the acoustic mesh back to the cylindrical structure. 
The radiated sound power and pressure were calculated by 
the acoustic transfer vector (ATV) technique [29, 30] using 
the modal participation factors of the vibrating cylindrical 
structure.

The acoustic analysis was carried out with two different 
structural vibration data that were reproduced by the modal 
expansion method using the regular and optimum sensor 

placements. As well, it was also performed by MSC/Nastran 
for the comparison purpose. The sound pressure patterns 
at the field point surface for three different boundary con-
ditions are comparatively represented in Figs. 10, 11, 12. 
At the fifth natural frequency, it is observed that both the 
regular and optimum sensor placements provide the sound 
pressure contours that are almost similar to MSC/Nastran. 
However, the remarkable difference between the regular and 
optimum sensor placements is observed at the tenth natural 
frequency. The optimum sensor placement provides sound 
pressure contour that is in good agreement with MSC/Nas-
tran, but the regular one leads to the sound pressure contour 
that is remarkably different from MSC/Nastran. It is because 
the vibration field reproduced using the regular sensor place-
ment is different from one of MSC/Nastran at higher fre-
quencies, as shown in Fig. 5.

The sound power at the field point is comparatively rep-
resented in Fig. 13, where the reference stands for the result 
of MSC/Nastran. The optimum sensor placement shows 
good agreement with MSC/Nastran with the maximum 
relative error of 3.13% in a whole range of frequencies, 
but the regular one shows a remarkable difference with the 
maximum relative error of 15.67% at the frequencies higher 
than 1800 Hz . Thus, it has been justified that the structural 
vibration field which was reproduced using the optimum 
sensor placement provides the sound power and pressure 
that are in good agreement with MSC/Nastran in a whole 
frequency range of interest. The reason why the error in 
the acoustic response is smaller than the error in the vibra-
tion response is that Fig. 13 represents the radiated powers 
which were obtained by the area integral of intensities (i.e., 
the product of the sound pressure and the normal velocity) 
at each point, not the level of radiated noise at a specific 
point. If the response is observed at a specific sound receiv-
ing point, the error would apparently appear at the baseline 

Fig. 8   Vibratory acceleration 
patterns for the clamped–
clamped cylindrical shell-like 
structure (unit: m∕s2, upper: 
the fifth natural frequency 
(2597 Hz), lower: the tenth 
natural frequency (3349 Hz)): 
a MSC/Nastran, b MEM using 
the optimum sensor placement, 
c MEM using the regular sensor 
placement

Fig. 9   An acoustic FE model for the acoustic analysis ( R = 1.0 m)
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or at the anti-resonance, like in Figs. 10, 11, 12 and as in the 
trend of vibration. But, in Fig. 13 representing the radiated 
power, the point showing the highest intensity gives rise to 
a dominant effect.

5 � Conclusion

A vibroacoustic analysis method by utilizing the modal expan-
sion method and the sensor placement optimization has been 
introduced in this paper. The vibration field of flexible cylin-
drical structure subject to the external excitation was repro-
duced by the modal expansion method, for which the modal 

participation factors were determined using the vibration data 
obtained at the optimum sensor positions that were sought 
with the help of a genetic algorithm. Using the reproduced 
structural vibration data, the sound patterns, power, and pres-
sure that are resulted from the structural vibration were cal-
culated by the ATV technique. The numerical accuracy of the 
proposed analysis method was examined by comparing with 
MSC/Nastran and the case using the regular sensor placement. 
From the comparative numerical experiments for three dif-
ferent boundary conditions, it has been justified that the pro-
posed method provides the vibration and acoustic responses 
that are five times better than the case using the regular sensor 
placement. The case using the regular sensor placement leads 

Fig. 10   Sound pressure con-
tours for the clamped-free cylin-
drical shell-like structure (unit: 
Pa, upper: at the fifth natural 
frequency 1604 Hz, lower: at 
the tenth natural frequency 
2418 Hz): a MSC/Nastran, b 
optimum sensor placement, c 
regular sensor placement

Fig. 11   Sound pressure con-
tours for the free-free cylindri-
cal shell-like structure (unit: 
Pa, upper: at the fifth natural 
frequency 2057 Hz, lower: at 
the tenth natural frequency 
2429 Hz): a MSC/Nastran, b 
optimum sensor placement, c 
regular sensor placement
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Fig. 12   Sound pressure con-
tours for the clamped–clamped 
cylindrical shell-like structure 
(unit: Pa, upper: at the fifth nat-
ural frequency 2597 Hz, lower: 
at the tenth natural frequency 
3349 Hz): a MSC/Nastran, b 
optimum sensor placement, c 
regular sensor placement

Fig. 13   Comparison of acoustic power results: a clamped-free, b free-free, c clamped–clamped
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to remarkably inaccurate results (the maximum relative errors: 
31.75% in the vibration response and 15.67% in the acoustical 
response), in particularly at higher frequencies. But, the case 
using the optimum sensor placement provides the vibration 
and acoustic responses that are in good agreement with MSC/
Nastran in a whole frequency range of interest (the maximum 
relative errors: 3.97% in the vibration response and 3.13% in 
the acoustical response).
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