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Abstract
Aiming at the problem that the bearing fault signal is weak and usually interfered by the strong background noise, which 
makes the fault feature extraction very difficult, an enhanced variational mode decomposition (EVMD) technique is proposed. 
First, the autoregressive (AR) model was utilized to eliminate the stationary components in the signal in advance to reduce 
the noise interference and the maximum kurtosis of the residual signal was set as the target. Second, the maximum frequency-
domain correlated kurtosis was adopted as the fitness value, and the decomposition modes K and quadratic penalty factor α 
in the VMD approach were adaptively selected by the whale optimization algorithm. Third, the reconstruction signal was 
acquired, then the enhanced envelope spectrum was employed to weaken the interference of irrelevant frequency components 
and the fault features of rolling element bearing could be extracted accurately. The results of simulation and experimental 
analysis show that the proposed algorithm can significantly reduce the noise interference and avoid the blindness selection 
of VMD parameters. The comparison with fix-parameter VMD and fast kurtogram approaches shows that the proposed 
technique can improve the effectiveness of defect signature extraction, which has a certain value for engineering application.

Keywords AR model · Whale optimization algorithm · Variational mode decomposition · Rolling element bearing · Fault 
feature extraction

1 Introduction

Rolling element bearing (REB) is an important part of the 
rotating machinery, which plays an important role in ensur-
ing the performance of the whole machinery. However, 
REB is usually working under high-speed, high-pressure 
and heavy-load condition, and the probability of REB’s fail-
ure is very high, which greatly threatens the safe and stable 
operation of the machinery. Therefore, it is of great urgency 
and practical significance to carry out researches on fault 
diagnosis approaches of REB. Recently, vibration-based 
monitoring techniques have become one of the most com-
monly used methods for the fault diagnosis of REB due to 

their superior characteristics, but there still some problems 
need to be solved.

(1) The fault features of REB are relatively weak compared 
with other irrelevant noise components. How to sup-
press the influence of background noise and extract the 
weak fault features accurately?

(2) How to select the appropriate measuring points based 
on the structure characteristics and actual working con-
ditions of the machinery to reduce the influence of the 
vibration caused by machinery itself?

(3) Considering that some drawbacks still exist in the 
already proposed fault diagnosis approaches, how to 
improve the effectiveness of these approaches?

To address the above problems, many researches have 
been conducted and various achievements have been 
obtained. Resonance demodulation is widely used due to 
its convenient application. However, the proper selection of 
resonance frequency band needs to determine the central 
frequency and bandwidth by human experience in advance, 
which may be easily affected. Therefore, in the classic fast 
kurtogram [1] proposed by Antoni, the optimal frequency 
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band is quickly determined based on the principle of maxi-
mum spectral kurtosis. On this basis, to improve the effec-
tiveness of this approach, many improved methods have 
been proposed; for example, the Infogram [2], the corre-
lated kurtosis-based kurtogram [3], the Autogram [4], the 
empirical wavelet transform-based fast kurtogram [5, 6], the 
subband average kurtogram [7] and so on. These methods 
further improve the accuracy and effectiveness of resonance 
frequency band selection.

To suppress the influence of transmission path, the blind 
deconvolution algorithms have been widely applied and 
developed rapidly in recent years, whose purpose is acquir-
ing the approximate original fault impulse signal based on 
the maximization of the characteristic index, including the 
minimum entropy deconvolution (MED) [8], the maxi-
mum correlated kurtosis deconvolution (MCKD) [9, 10], 
the multipoint optimal minimum entropy deconvolution 
adjusted (MOMEDA) [11, 12] and the maximum second-
order cyclostationarity blind deconvolution (CYCBD) [13]. 
These methods have their own characteristics, but the analy-
sis results are also restricted by some parameters, such as 
the shift number M in MCKD and the selection of cycle 
frequency in CYCBD. Moreover, the results of blind decon-
volution algorithms are significantly affected by the filter 
length, and to solve this problem, many studies are con-
ducted [14–16] and the effectiveness of blind deconvolution 
algorithms is enhanced but is still not perfect.

The signal decomposition techniques are employed to 
eliminate the irrelevant components in the original sig-
nal. As a classic signal decomposition technique, empiri-
cal mode decomposition (EMD) has been widely utilized 
in fault diagnosis of REB [17, 18]. EMD can decompose 
the vibration signal into a series of intrinsic mode func-
tions (IMFs), and the reconstruction signal is obtained by 
selecting the appropriate IMFs, which can suppress the 
irrelevant noise components and improve the signal-to-
noise ratio. However, end effects and mode mixing seri-
ously influence the performance of EMD. To address these 
problems, the ensemble empirical mode decomposition 
(EEMD) [19, 20] is proposed which solves the problem of 
mode mixing, but its performance is also affected by the 
number of ensemble and the variance of the added white 
noise. Moreover, the analysis efficiency is lower than the 
EMD. To further enhance the performance of EEMD, the 
complementary ensemble empirical mode decomposition 
(CEEMD) [21] and the complementary ensemble empiri-
cal mode decomposition with adaptive noise (CEEMDAN) 
[22] are also constructed. Variational mode decomposition 
(VMD) is a new signal decomposition technique, which 
is different from the recursive decomposition pattern of 
EMD [23]. VMD has the characteristics of high precision 
and fast convergence speed, which is widely employed in 
REB’s fault diagnosis in recent years [24]. To improve 

the effectiveness of VMD, researchers have carried out 
many discussions, whose focus are on two aspects: one 
is the optimization selection of quadratic penalty term α, 
the decomposition level K, and the improvement of sig-
nal reconstruction approach [25–27], the other is to opti-
mize the decomposition steps of VMD [28, 29]. Though 
numerous researches have been conducted on VMD, how 
to determine the parameters more effectively according to 
the signal characteristics is still a difficult problem.

As a result, in order to solve the problem of parameters’ 
selection in VMD and extract the fault features of REB 
under strong background noise, an enhanced variational 
mode decomposition (EVMD) technique is proposed. 
Firstly, the AR model is adopted to eliminate the station-
ary components in the original signal, and the maximum 
kurtosis value of the residual signal is set as the target to 
determine the order of AR model accurately. Secondly, 
as the noise still exists in the residual signal, the whale 
optimization algorithm (WOA) and frequency-domain cor-
related kurtosis (FDCK) are introduced to achieve the opti-
mal selection of VMD’s parameters; then, the signal with 
more obvious fault characteristics is extracted. Finally, 
based on the fault characteristic frequency (FCF) and 
envelope spectrum’s characteristics of REB, an enhanced 
envelope spectrum is proposed to extract the fault signa-
tures of REB accurately and suppress the interference of 
irrelevant frequency components. The main work of this 
paper is described as follows.

(1) The AR model is utilized to eliminate the stationary 
components in the original signal, and the defect fea-
tures are enhanced.

(2) The whale optimization-based VMD is employed, 
and the FDCK is used as the fitness function, which 
improve the effects of signal decomposition.

(3) An enhanced envelope spectrum (EES) is used to high-
light the fault feature components.

The remainder of this paper is organized as follows: The 
theoretical background of relevant techniques employed in 
this study is reviewed in Sect. 2, including the principle of 
AR model, the steps of whale optimized VMD and the cal-
culation approach of EES. The proposed technique is sum-
marized in Sect. 3. Section 4 and Sect. 5 exhibit the results 
when the simulation and experimental signals are used to 
demonstrate the effectiveness of the proposed approach, 
respectively. Conclusions are presented in Sect. 6.
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2  The basic principles

2.1  The AR model

The output of the AR model is related to the weighted sum 
of the input and the past n outputs. Hence, the signal can be 
predicted linearly by AR model. Suppose a signal x, whose 
length and mean value are N and zero, respectively. Then, 
the p order AR model can be expressed as:

where ai represents the weighted parameters of autoregres-
sion, �t denotes the zero mean white noise with the variance 
of �2 , which can also be called residual. Residual mainly 
represents the error between the real and the predicted val-
ues; for the vibration signal of REB, the residual mainly con-
tains non-stationary components (fault feature components) 
which cannot be obtained by linear prediction.

The least square method can be utilized to estimate the 
parameters ai in real application, and the steps are:

where  Y =
[
xn+1 xn+2 ⋯ xN

]T  ,  a =
[
a1 a2 ⋯ an

]T  , 

� =
[
�n+1 �n+2 ⋯ �N

]T , X =

⎡⎢⎢⎢⎣

xn xn−1 ⋯ x1
xn+1 xn+2 ⋯ x2
⋮ ⋮ ⋮ ⋮

xN−1 xN−1 ⋯ xN−n

⎤⎥⎥⎥⎦
Then, the least square estimation can be expressed as:

According to Eq. (1), besides determining the parameters of 
AR model, the order of model may also have a great influence. 
Hence, it is necessary to select the appropriate order of the 
AR model to remove the stationary components in the signal 
more effectively.

Many approaches can determine the appropriate order, as 
AR model is adopted to eliminate the stationary components 
in this paper, maximum kurtosis of residual signal is selected 
as the target. Therefore, the process of using the AR model can 
be described as following steps:

(1) The search range of the order is determined as 1 to 100, 
AR models with different orders are established and the 
residual signals are acquired.

(2) Kurtosis of all the residual signals is calculated.
(3) The optimal order of AR model is determined based on 

the maximum of kurtosis value.

(1)yt =

n∑
i=1

aixt−i + �t

(2)Y = Xa + �

(3)Y = Xa + �

2.2  Variational mode decomposition

VMD is a newly proposed signal decomposition technique, 
which can adaptively decompose the signal into K mode com-
ponents uk, called intrinsic mode function (IMF). The prin-
ciple of VMD is the process of constructing and solving a 
constrained variational problems, which is described as fol-
lows [25]:

where ωk = {ω1, ω2,…, ωk} denote the central frequency of 
each IMFs.

To solve the above problem, Lagrangian multiplier λ(t) 
and quadratic penalty factor α are introduced, which are 
employed to ensure reconstruction accuracy and the per-
formance of constraints, respectively. Then, the augmented 
Lagrangian is acquired and described as:

The alternating direction method of multiplier (ADMM) 
is introduced to solve Eq. (6). On the basis of determining 
the number of decomposition modes K, the sub-modes 
û1
k
 , its central frequency �1

k
 and Lagrangian multiplier �1 

should be initialized. The update principle of each sub-
modes ûk and its central frequency ωk are described in Eqs. 
(7) and (8) [25]:

The Lagrangian multiplier can also be updated.

(4)min
{uk},{�k}

{∑
k

‖‖‖‖‖
�t

[(
�(t) +

j

�t

)
⋅ uk(t)

]
e−j�kt

‖‖‖‖‖

2

2

}

(5)
∑
k

uk = f

(6)

L
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}
,
{
�k

}
, �
)

= �
∑
k
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j

�t

)
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2

2

+
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2
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f̂ (𝜔)
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i
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ûn+1
k

(𝜔)

)



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:567

1 3

567 Page 4 of 14

where τ denotes the noise tolerance. The iteration of VMD 
is stopped when Eq. (10) is satisfied.

where ε represents the convergence error. Based on the cal-
culation process of VMD, four parameters K, α,� and ε may 
influence the decomposition results and should be deter-
mined in advance, which brings a great challenge for the 
appropriate selection. Researches show that � and ε have less 
effect than the other two parameters; hence, they are set as 
default, and the determination of the first two parameters is 
optimized in this paper.

2.3  Whale optimization algorithm

Whale optimization algorithm [30] is presented to simu-
late the hunting behavior of humpback whales; the posi-
tion of each whale represents a candidate solution. In the 
algorithm, three behaviors of whales during hunting are 
simulated, which are encircling prey, search for prey and 
spiral updating position, respectively. These three behav-
iors can be expressed as:

(1) Encircling prey

The position x(t + 1) of the candidate solution in the 
(t + 1)th iteration can be updated by Eqs. (11) and (12); 
X*(t) represents the optimal position in the tth iteration:

where a decreases linearly from 2 to 0 according to the num-
ber of iterations, and r is randomly selected between 0 and 1.

(2) Search for prey

Search for prey is very similar to encircling prey, the 
difference is that search for prey no longer uses the optimal 
solution X*(t) of the current iteration, but randomly selects 
an candidate solution Xrandom(t):

(10)
∑
k

‖‖‖û
n+1
k

− ûn
k

‖‖‖
2

2

‖‖‖ûnk
‖‖‖
2

2

< 𝜀

(11)D = |CX∗(t)−X(t)|

(12)X(t + 1) = |X∗(t) − AD|

(13)A = |2ar − a|

(14)C = 2r

(15)D = ||CXrandom(t)−X(t)
||

(3) Spiral updating position

Spiral updating position is employed to simulate the 
helix-shaped movement of whales based on the position 
of the whale and prey, which can be expressed as:

where D’ denotes the distance between the optimal position 
and any candidate position in the tth iteration. b is a constant 
value, and l is randomly selected between −1 and 1.

Based on the previous introduction, the process of 
whale optimization can be described as follows:

(1) The position of whale population Xi (i = 1, 2, 3,…, N) 
is initialized, The fitness value of each candidate posi-
tions is calculated, and X*(t) is the position correspond-
ing to the optimal fitness value.

(2) The values of parameters a, A, C, l and p are deter-
mined. In this paper, b is set to be 1.

(3) When p < 0.5, if |A|< 1, Eqs. (11) and (12) are utilized 
to update the current position of the whale; else, Eqs. 
(15) and (16) are utilized to update the current position 
of the whale. When, 0.5 < p < 1, the current position of 
the whale is updated according to Eq. (17).

(4) a, A and C are updated based on the new position of 
the whale, and the fitness value of each candidate posi-
tion is also recalculated; then, the best position X*(t) is 
determined again.

(5) Repeat steps (3) and (4) until the maximum iteration is 
reached.

2.4  Enhanced envelope spectrum

Since the influence of strong background noise, the denoised 
signal obtained by using the AR model and VMD approach 
may still contain strong interference components. Hence, 
various irrelevant frequency components may still exist in 
its envelope spectrum, which affects the extraction and judg-
ment of the fault signatures. To address the problem, as the 
interval of the fault feature components in the envelope spec-
trum is usually the FCF, some improvements are conducted 
to the classic envelope spectrum and the EES is proposed.

(1) For discrete signal x, its envelope spectrum is expressed 
as Ev(x), whose frequency range is 1 to fs/2, fs denotes 
the sampling frequency of signal x.

(2) The noise level of the whole envelope spectrum is 
evaluated, and the spectral lines’ amplitude at the FCF 

(16)X(t + 1) = ||Xrandom(t) − AD||

(17)
{

X(t + 1) = D�ebl cos (2�l) + X∗(t)

D� = |X∗(t) − X(t)|
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components is also employed, and the noise level of 
Ev(x) can be expressed as:

where mean denotes the average value.
(3) The amplitude of spectral line at any frequency f1 is 

recalculated, and the EES is acquired.

where EEv(x)f1 and Ev(x)f1 denote the amplitude of 
spectral line at frequency f1 in envelope spectrum and 
EES, respectively, and fd denotes the FCF. Therefore, 
by using Eq. (19), if f1 is the FCF in the envelope spec-
trum of signal x, its amplitude will significantly be 
enhanced in the EES. Otherwise, if f1 represents the 
irrelevant components, its amplitude in the EES will 
not be obviously improved. As a result, the enhanced 
envelope spectrum can further highlight the defect sig-
natures in the envelope spectrum and reduce the inter-
ference of irrelevant frequency components.

3  Whole structure of the EVMD approach

3.1  The fitness function

As the characteristics of bearing fault signal are shown as 
prominent amplitude at the defect characteristic frequency 
components in frequency domain, based on the advantage of 
correlated kurtosis, the frequency-domain correlated kurto-
sis is utilized as the fitness function of whale optimization-
based VMD approach. When the envelope spectrum of the 
decomposed IMFs has obvious fault features, the FDCK is 
larger. It should be noted that to facilitate the calculation, 
the envelope spectrum is obtained by using Hilbert trans-
form and fast Fourier transform directly, which avoids the 
problem of selecting the parameters of band-pass filter in 
advance. The FDCK can be expressed as:

where E(x)n denotes the envelope of the signal xn, T is the 
number of signal points corresponding to the FCF, N and M 
represent the length of the signal and shift number, respec-
tively. In this paper, M is determined as 3.

(18)MEv(x) = mean[Ev(x)]

(19)EEv(x)f1 =
Ev(x)f1 ∗ Ev(x)f1+fd

MEv(x)2

(20)ECKM(T) =

∑N

n=1

�∏M

m=0
E(x)n−mT

�2

�∑N

n=1
E(x)2

n

�M+1

3.2  The principle to determine the effective IMF

For each IMF uk decomposed by the VMD approach, the 
FDCK  FDCKi (i = 1, 2, 3,…, K) is calculated, and then, the 
average value of all the IMFs’  FDCKi is acquired.

where ME denotes the mean value of all  FDCKi. If 
 FDCKi > ME, the corresponding IMF is considered as the 
effective IMF; else, the IMF is abandoned, and the final 
reconstruction signal is the sum of all effective IMFs.

3.3  The process of the fault feature extraction 
of REB using the EVMD

According to the theory described above, this paper pre-
sents the implementation of a new fault feature extraction 
technique for REB named EVMD. The flowchart of this 
technique is exhibited in Fig. 1, and the detailed steps are 
described below.

Step 1. The vibration signal of REB is acquired, the AR 
model is utilized to preprocess the signal and the station-
ary components are eliminated to reduce the interference of 
irrelevant components.

Step 2. The search ranges of K and α are set.
Step 3. The maximized FDCK of a single IMF is selected 

as the target to optimize the parameters of VMD by WOA; 
the optimal parameters and the optimal decomposition 
results are acquired.

Step 4. The enhanced envelope spectrum of the recon-
struction signal is obtained.

Step 5. Based on the enhanced envelope spectrum, the 
fault signatures and the fault type of REB are determined.

4  Simulation verification

The effectiveness of the proposed technique is demonstrated 
using the simulation signal. The construction of the simu-
lation signal simulates the bearing with inner race defect, 
where periodic impacts, harmonic components and white 
noise interference are taken into consideration. The simula-
tion signal is expressed as follows:

(21)ME =
1

K

K∑
i=1

FDCKi

(22)

⎧⎪⎨⎪⎩

x(t) =
∑N

i=1
Ais

�
t − iT − ti

�
+ B(t) + n(t)

Ai = 2 cos
�
2�frt + �∕2

�
+ 0.5

B(t) = 0.5 cos(2�fmt + �∕2)

s(t) = e−2�fnrt sin
�
2�fnt

�
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where fr = 42  Hz represents the rotating frequency and 
Ai = 1/fr is adopted to simulate the amplitude modulation, 
fn = 3200 and r = 0.05 denote the natural frequency of the 
system and the damping coefficient, respectively. The inter-
val of two adjacent impulses is set as T = 1/185 s; hence, the 
FCF is 185 Hz. ti = 0.01 T ~ 0.02 T simulates the delay due to 
the slippage of rolling elements. B(t) denotes the harmonic 
which is used to simulate the interference components exist-
ing in the signal and fm = 100. n(t) is adopted to represent the 
random noise and the signal-to-noise ratio is set to be -10db 
in the simulation. The sampling frequency is 16384 Hz, and 
the length of signal is 20 s in this simulation.

The signal x(t) and its envelope spectrum are presented in 
Fig. 2. It can be observed from Fig. 2a that the periodic com-
ponents are submerged by strong background noise, which 

can hardly be distinguished. Meanwhile, only the FCF is 
presented in the envelope spectrum which means to achieve 
good results only by envelope demodulation under strong 
noise interference is very difficult.

Subsequently, the simulation signal is processed by the 
proposed method. First, AR model is employed to remove 
the stationary components of simulation signal in advance. 
According to Fig.  3a, the maximum kurtosis value is 
achieved when the order of AR model is determined as 51, 
the residual signal is obtained which is exhibited in Fig. 3b.

Then, the whale optimization-based VMD approach is 
utilized to process the residual signal. In order to ensure 
the complete decomposition of the signal and the efficiency 
of the calculation, the search ranges of K and α are set as 
2 to 10 and 100 to 5000, respectively. The population size 

Fig. 1  Flowchart of the pro-
posed technique

Fig. 2  The simulation signal
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and maximum number of iteration are determined as 20 and 
30. Other parameters are selected as default. In the subse-
quent analysis, the parameters of the optimization algo-
rithm remain unchanged. Based on the convergence curve 
in Fig. 4a, the optimal fitness value 1.54 ×  10–7 is acquired 
after four iterations, while the optimal position is [1068, 4]; 
then, α = 1068 and K = 4 are adopted as the optimal param-
eters for VMD, the decomposition results are exhibited 
in Fig. 4b. Based on the principle in Sect. 2.2, the FDCK 
of these four IMFs is calculated, which are 4.55 ×  10–13, 
1.54 ×  10–7, 1.34 ×  10–12 and 4.17 ×  10–12; their average value 
is also obtained. By comparison, the IMF2 is determined 
as the effective IMF, which is then applied for the signal 

reconstruction, and the reconstruction signal is depicted in 
Fig. 4c. It can be found that the interference components 
have been significantly removed in the reconstruction signal, 
and the fault impact components can be recognized. The 
enhanced envelope of the reconstruction signal in Fig. 4d 
shows the frequency range from 0 to 700 Hz, where rotating 
frequency 2fr, the FCF fi and two of its harmonic compo-
nents are prominent, the fault signatures of bearing defect 
are extracted accurately. Therefore, it can conclude that the 
weak fault feature of REB can be accurately extracted under 
the interference of strong background noise by the proposed 
technique.

Fig. 3  Analyzed results of the simulation signal using the AR model

Fig. 4  Analyzed results of the proposed technique
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To highlight the importance of parameters’ optimiza-
tion, the parameters of VMD are determined as [3650, 5] 
randomly in advance, and the fix-parameter VMD is then 
applied to the residual signal displayed in Fig.  3b, the 
enhanced envelope spectrum is also calculated and the 
results are depicted in Fig. 5. Although the noise compo-
nents are also suppressed according to the reconstruction 
signal in Fig. 5a, only the rotating frequency fr, the FCF fi 
and one of its harmonic 2fi are able to be detected. What’s 
more, the amplitude of the spectral line at 2fi is not obvi-
ous, the noise components are more obvious than those in 
Fig. 4d, which verifies the necessity of selecting the optimal 
parameters for VMD.

To further show the effectiveness of this algorithm, the 
classic fast kurtogram method [1] is employed. The central 
frequency and bandwidth of the optimal analysis frequency 
band are 3072 Hz and 682 Hz according to the kurtogram 
exhibited in Fig. 6a. The envelope spectrum of the optimal 
band signal is depicted in Fig. 6b, where only the FCF and 
one of its harmonic are successfully extracted but not very 
prominent, and the influence of noise is very obvious. The 
phenomenon describes above further to demonstrate the 
effectiveness of the proposed technique in noise suppress-
ing and weak fault features extracting.

5  Experimental verification

The bearing vibration signal collected using a test rig is 
adopted to further demonstrate the effectiveness of the pro-
posed approach for the fault feature extraction of REB. The 
test rig exhibited in Fig. 7 consists of bearing support struc-
ture, main shaft, experimental bearing, lubricating oil sys-
tem, servo-driven motor, radial loading device, axial loading 

Fig. 5  Analyzed results of the simulation signal using fix-parameter VMD

Fig. 6  Analyzed results of the simulation signal using the fast kurtogram

Fig. 7  The test rig
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device and control system, which is able to simulate the 
common working state along with the defect types of REB.

For real test, the bearing may be arranged inside the 
machine, to avoid damaging the whole structure, and 
the measuring points for vibration capturing can only be 
selected near the bearing locations, but not on the bearing 
house directly. There may exist a complex transmission path 
between the defective bearing and the measuring point, 
which contains multiple connection interfaces and influ-
enced by multistructures of the machine. And the meas-
ured signal can also be more complex, which brings great 
challenge for the accurate fault detection of REB. Hence, 
according to the above description, to simulate the complex 
transmission path, the measuring points are selected on the 
case instead of at the center position of the bearing support 
structure, shown in Fig. 7.

The experimental bearing type is 6010 with a defect on 
the inner race (outer race) generated by laser wire-electrode 

cutting (the width and depth of the defect are both 0.2 mm). 
Table 1 presents the parameters of the experimental bear-
ing. During the test, the rotating speed is set as 3000r/
min(fr = 50 Hz)and the sampling frequency is 16384 Hz, the 
radial and axial loads are 1KN and 2KN, respectively. The 
FCF of inner (fi) and outer (fo) race defect can be expressed 
as:

By calculation, the theoretical FCF for this REB 
with inner race and outer race defect are fi = 370 Hz and 
fo = 280 Hz.

5.1  The REB with inner race defect

As presented in Fig. 8a, the repetitive transient impulses are 
not able to be detected in the experimental signal and the 
influence of noise is very obvious. In the envelope spectrum 
given in Fig. 8b, the rotating frequency fr and its harmonic 
2fr can be detected. The FCF fi can be barely distinguished 
and its harmonic components can be hardly observed; 

(23)fi =
1

2
Z
(
1 +

d

D
cos a

)
fr

(24)fo =
1

2
Z
(
1 −

d

D
cos a

)
fr

Table 1  Parameters of the test bearing

Inner 
diameter/
mm

Outer 
diameter/
mm

Pitch 
diameter 
D/mm

Ball 
diameter 
d/mm

Number 
of ball 
Z/↑

Contact 
angle 
α/°

50 80 65 9 13 0

Fig. 8  The experimental signal with inner race defect

Fig. 9  Analyzed results of the measured inner race fault signal using the AR model
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meanwhile, some irrelevant frequency components are also 
prominent.

Then, the technique proposed in this paper is applied to 
the experimental signal. Based on the relationship displayed 
in Fig. 9a, the optimal order of AR model is determined as 
99, and the residual signal in Fig. 9b exhibits the suppression 
of irrelevant components compared with the original signal 
but not enough. Therefore, the optimized VMD approach is 
utilized to further analyze the residual signal, and the results 
are depicted in Fig. 10.

According the convergence curve displayed in Fig. 10a, 
the maximum fitness value 2.64 ×  10–12 is obtained after 
22 iterations, and the optimal parameters for VMD are 
determined as K = 4 and α = 1011, respectively. The 

decomposition results using the optimal VMD are shown 
in Fig. 10b, and the FDCK of the four IMFs are calcu-
lated, which are 6.44 ×  10–14, 2.88 ×  10–15, 3.11 ×  10–15 and 
7.51 ×  10–14. Based on the average of the four FDCK val-
ues, the IMF1 and IMF4 are determined as the effective 
IMF, and the reconstruction signal is depicted in Fig. 10c 
where the fault impact components are able to be observed. 
The above phenomenon indicates that the optimized VMD 
approach can further enhance the fault signatures, while 
the irrelevant components are suppressed. The enhanced 
envelope spectrum of the reconstruction signal is displayed 
in Fig. 10d, where abundant fault signatures are success-
fully extracted. The rotating frequency components, FCF, 
along with one harmonic are prominent. What’s more, the 

Fig. 10  Analyzed results of the measured inner race fault signal using the proposed technique

Fig. 11  Analyzed results of measured inner race fault signal using the fix-parameter VMD



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:567 

1 3

Page 11 of 14 567

sidebands modulated by rotating frequency around the FCF 
components can also be distinguished, based on the features 
mentioned above; it can conclude that the REB has inner 
race defect. The effectiveness of the proposed technique in 
fault diagnosis of REB is also verified when compared with 
the envelope spectrum shown in Fig. 8b.

Similar to the simulation analysis, two comparisons 
are conducted. The analyzed result of fix-parameter VMD 
approach is displayed in Fig. 11, the parameters are chosen 
in advance as K = 6 and α = 2650, respectively. Although the 
impact components can also be identified in Fig. 11a, it is 
not as obvious as those in Fig. 10c. Meanwhile, in the enve-
lope spectrum of the reconstruction signal, only the rotating 
frequency fr and the FCF fi are extracted successfully, and 
the amplitude of these spectral lines is lower than those in 
Fig. 10d, and fault features are not abundant enough com-
pared with the result acquired by the proposed technique. 
The above description indicates that the random selection 
of VMD’s parameters may not achieve the optimal defect 
signature extraction.

Besides, the fast kurtogram is employed and results are 
depicted in Fig. 12. Based on the kurtogram in Fig. 12a, the 
central frequency and bandwidth of the optimal frequency 
band are 3584 Hz and 341 Hz, the square envelope spectrum 
of the optimal band signal is exhibited in Fig. 12b, where 
useful fault signatures are unable to be identified except for 
the rotating frequency fr in which amplitude is very small. 

The phenomenon described above indicates that it is difficult 
for the fast kurtogram to accurately determine the location 
of the optimal analysis frequency band and extract fault sig-
natures effectively under strong background noise condition. 
By comparison, the effectiveness of the proposed technique 
is further demonstrated.

Since the optimization algorithm is employed to improve 
the effectiveness of the fault feature extraction, the proposed 
approach is more time-consuming, and the fast kurtogram 
method has high calculation efficiency.

5.2  The REB with outer race defect

To demonstrate the applicability of the technique, the meas-
ured signal with outer race defect is utilized for analysis, and 
the results are exhibited in Fig. 13. In Fig. 13a, the periodic 
impact components are unable to be observed due to the 
influence of strong background noise. The envelope spec-
trum in Fig. 13b shows a complex feature map where only 
the FCF and one of its harmonic are able to observe, which 
means using the envelope analysis directly cannot achieve 
ideal performance. Therefore, the proposed technique is 
applied to the signal.

To ensure the maximum of kurtosis, the optimal order of 
AR model is selected as 84 according to the curve exhibited 
in Fig. 14a, and the stationary components in the original 
signal are eliminated. Figure 14b displays the residual signal 

Fig. 12  Analyzed results of measured inner race fault signal using the fast kurtogram

Fig. 13  The experimental signal with outer race defect
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where the irrelevant components are weaken obviously com-
pared with the original signal, which is convenient for the 
subsequent analysis.

Then, the residual signal is processed by the optimized 
VMD approach. The maximum value of the fitness func-
tion 9.528 ×  10–11 is acquired after seven iterations accord-
ing to the convergence curve shown in Fig. 15a, and the 
corresponding optimal parameters for VMD are K = 3 and 
α = 1000, respectively. The decomposition results using 
the optimal VMD are exhibited in Fig. 15b and three IMFs 
are obtained. Three IMFs’ FDCK are calculated, which 

are 3.14 ×  10–13, 3.47 ×  10–13 and 9.54 ×  10–11. Based on 
the mean of the three FDCK values, the effective IMF is 
selected as IMF3, the reconstruction signal is then acquired 
and depicted in Fig. 15c where the irrelevant noise is fur-
ther suppressed. The enhanced envelope spectrum is finally 
calculated and displayed in Fig. 15d, where abundant fault 
signatures are successfully extracted. The FCF along with 
three harmonics is prominent, while the noise almost has no 
interference. The features mentioned above indicate that the 
REB has outer race defect.

Analogously, two comparisons are conducted to high-
light the effectiveness of the proposed technique. Figure 16 

Fig. 14  Analyzed results of the measured outer race fault signal using the AR model

Fig. 15  Analyzed results of the measured outer race fault signal using the proposed technique
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displays the analyzed results using the fix-parameter 
VMD. In Fig. 16a, the impact components can be detected 
but in its enhanced envelope spectrum of Fig. 16b, only 
the FCF fo is prominent.

At last, Fig. 17 shows the analyzed results using the 
fast kurtogram; the location of the optimal frequency 
band is determined by the kurtogram shown in Fig. 17a, 
whose central frequency and bandwidth are 7168 Hz and 
2048 Hz, respectively, and the optimal band signal can be 
acquired. Figure 17b displays the square envelope spec-
trum of the optimal band signal, where the FCF and three 
harmonics are able to be detected.

When comparing Figs. 15d, 16b, 17b, by using the pro-
posed method, abundant fault features can be detected with 
less interference frequency components in the enhanced 
envelope spectrum, and the amplitude of FCF components 
is relatively large. Two comparisons’ result of REB with 
outer race defect further demonstrates that the proposed 
algorithm can eliminate the strong background noise and 
the fault features of REB can be extracted effectively. 
Moreover, similar to the results in Sect. 5.1, the calcula-
tion time for the proposed approach is longer.

6  Conclusions

To address the problem that the fault features of REB 
are weak and often submerged by background noise, an 
enhanced variational mode decomposition technique is 
proposed in this paper, which combines the AR model, 
the optimized VMD and enhanced envelope spectrum 
together; thus, the fault signatures of REB can be extracted 
accurately. Some conclusions are obtained during the 
research of this paper.

(1) The FDCK is utilized as the fitness function and the 
parameters K and α are selected automatically, which 
avoid the problem that the parameters of VMD need 
to be determined by human experience in advance. 
The whole optimization process is simple, which can 
achieve good results.

(2) With the help of AR model, the signal can be preproc-
essed to enhance the fault features in advance. The 
enhanced envelope spectrum is employed to further 
highlight the fault characteristic components, and 
the interference of irrelevant components can be sup-
pressed.

(3) The effectiveness of the proposed technique is verified 
by using the simulation signal with signal-to-noise ratio 
of -10 dB, the measured bearing inner race fault and 

Fig. 16  Analyzed results of measured outer race fault signal using the fix-parameter VMD

Fig. 17  Analyzed results of measured outer race fault signal using the fast kurtogram
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outer race fault signals. The results indicate that this 
method can accurately extract the fault features of REB 
under the interference of strong background noise. The 
comparison results with the fix-parameter VMD and 
fast kurtogram further demonstrate the effectiveness 
of the technique.
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