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Abstract
Laser welding of thin sheets has widespread application in various fields such as battery manufacturing, automobiles, aviation, 
electronics circuits and medical sciences. Hence, it is very essential to develop a predictive model using artificial intelligence 
in order to achieve high-quality weldments in an economical manner. In the present study, two advanced artificial intelligence 
techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and multi-gene genetic programming (MGGP), were 
implemented to predict the welding responses such as heat-affected zone, surface roughness and welding strength during 
joining of thin sheets using Nd:YAG laser. The study attempts to develop an appropriate predictive model for the welding 
process. In the proposed methodology, 70% of the experimental data constitutes the training set whereas remaining 30% data 
is used as testing set. The results of this study indicated that the root-mean-square error (RMSE) of tested data set ranges 
between 7 and 16% for MGGP model, while RMSE for testing data set lies 18–35% for ANFIS model. The study indicates 
that the MGGP predicts the welding responses in a superior manner in laser welding process and can be applied for accurate 
prediction of performance measures.
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1  Introduction

Stainless steel (SS-316) and titanium alloy (Ti6Al4V) are 
extensively used in various fields of sophisticated indus-
tries such as biomedical, electrical and electronics, chemi-
cal plant, nuclear industries, automobiles and aviation sec-
tors. The extensive use of these materials is due to their 
excellent functional and structural properties, e.g., corrosion 
resistance, high fatigue strength, high strength-to-weight 
ratio and biocompatibility [1–3]. The report published by 

Transparency Market Research Group [4] indicated that tita-
nium alloy has huge impact in production of medical instru-
ments, medical implants, and aviation sectors for produc-
tion of airframes, aircraft engines, etc. Similarly, the report 
published by Grand View Research Group [5] stated that 
the global stainless steel market size was valued at USD 
111.4 billion in 2019 and is anticipated to witness a CAGR 
of 6.3% in terms of revenue from 2020 to 2027. These two 
materials (i.e., titanium alloy and stainless steel) are widely 
used and studied by researchers. In the present world, with 
advancement of technology, we can create and absorb lot of 
data. With the introduction to Industry 4.0, implementing 
computer intelligence in the manufacturing industry is one 
of the reasons in adopting artificial intelligence (AI) in man-
ufacturing sectors. A survey has been conducted by Fortune 
business insights [6], HCL [7], and Bernard Marr and Co. 
[8] on application and influence of AI on manufacturing sec-
tors on year 2020. The reports stated that USA and European 
Union have invested about USD 111 million for growth of 
AI in manufacturing and industrial sectors. The report states 
that other countries like China and Saudi Arabia have taken 
steps forward of implementing AI in industries. To address 
all this study and issues implementing AI in manufacturing 
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process of titanium alloy and stainless steel is an important 
topic and this will help industries and researchers to imple-
ment AI in manufacturing processes.

Joining of these materials is extensively studied by the 
researchers because of their aforementioned qualities and 
applications. The research is continuously carried out to 
attain good quality weldments of these materials [9–12]. 
Past literature suggests that the research work carried out 
by various researchers is mainly focused on joining of thick 
sheets of materials [13–17] and limited research work is 
reported on joining of thin sheet materials [18–20]. With 
the miniaturization of products, there is necessity to study 
the fabrication process of thin sheets. Laser is the best 
alternative for joining of thin sheets among other joining 
process. Laser welding process is a costlier technique for 
joining of materials. Hence, it is very necessary to adopt a 
methodology for predicting the weld quality using computa-
tional intelligence (CI) or artificial intelligence (AI) to attain 
high accuracy welds [21–24]. Recently, researchers focused 
more on development of predictive models in laser material 
processing using various approaches such as finite element 
model (FEM) [25, 26], statistical model [27, 28], numerical 
model [29, 30] and artificial intelligence (AI) [22–24] based 
models. There are various other artificial intelligence (AI) 
approaches such as neural network (NN) [31, 32], ANN [33], 
BPNN [33], support vector machine (SVR) [34], genetic 
programming (GP) [34–36], and multi-gene genetic pro-
gramming (MGGP) [34, 37]. All these approaches are very 
effective and vary with different conditions and applications. 
Researchers have introduced different AI techniques such as 
support vector regression methodology, sensor data fusion 
by support vector regression methodology, statistical evalu-
ation, and adaptive neuro-fuzzy approaches for predicting 
and forecasting processes in real-life problem to engineer-
ing problems. Shamshirband et al. [38] have implemented 
artificial intelligent (AI) process like support vector regres-
sion (SVR) methodology in constructing effective multisen-
sory system. The study aimed to propose a methodology to 
improve tracking ability in sensory system. Olatomiwa et al. 
[39] have proposed adaptive neuro-fuzzy system in solar 
energy systems to predict the solar radiation in day time. The 
introduction of AI in the study provides global attention in 
very important applications like agricultural crop produc-
tion, hydrological and ecological studies and development 
of solar energy systems. Orlowska and Szabat [40] have used 
adaptive neuro-fuzzy approach to control the vibration in 
electric controller using neuro-fuzzy controller in the study. 
The study shows the adaptability of AI to electrical and elec-
tronic systems.

Petković et al. [41] have introduced adaptive neuro-fuzzy 
inference system to estimate and optimize the design of lens 
systems. The introduction of ANFIS (adaptive neuro-fuzzy 
inference system) helps in providing good quality lens in 

digital manufacturing technology. To achieve efficiency in 
steam turbine, it is very necessary to detect and diagnose 
defects as early as possible. Salahshoor et al. [42] pro-
posed artificial intelligence techniques such as SVM (sup-
port vector machine) and ANFIS to predict the diagnostic 
defects and faults in industrial steam turbine. Gupta [43] 
have proposed AI methodologies such as artificial neural 
networks (ANN) and support vector regression (SVR) to 
understand the effectivity of the proposed models over 
statistical approaches during turning operation. The study 
suggests the efficiency of AI methodology over statistical 
tools. Jahangirzadeh et al. [44] have proposed support vector 
regression model in construction of bridge pier. The study 
was performed to determine the optimum dimensions dur-
ing construction of rectangular collar to minimize the cost 
and inaccuracy.

Less research work is available on AI-based approach in 
manufacturing processes. Sohrabpoor [45] have proposed 
adaptive neuro-fuzzy inference system (ANFIS) integrated 
with response surface methodology (RSM) for prediction of 
machining responses during laser processing of mild steel. 
The study suggests that the developed predictive model is 
quite accurate in predicting the responses. Aminian and 
Teimouri [46] have performed laser machining and laser 
weld of aluminum-based metal matrix composites. Aminian 
and Teimouri [46] have proposed different techniques such 
as response surface methodology (RSM), artificial neural 
network (ANN) and ANFIS for predicting the outputs for 
both laser processing techniques. The results of the compara-
tive study indicate more promising results for the ANFIS 
process than for ANN and RSM. Zhang et al. [47] have 
adapted AI method like back propagation neural network 
(BPNN) for predicting and optimization of welding gaps 
in adaptive filling in laser welding of high strength steel. 
Subashini and Vasudevan [33] have used ANN and ANFIS 
approaches for developing an efficient predicting model for 
estimating the depth of penetration during tungsten inert 
gas (TIG) welding of stainless steel. ANFIS shows more 
accurate results as compared to ANN approach.

Sharma et al. [48] have proposed a statistical method 
rooted with genetic programming (GP) method for pre-
diction of compaction strength of parts produced through 
powder metallurgy route. Panda et al. [35] have used a GP-
based model for predicting the dimensions of parts made by 
additive manufacturing. Desai and Shaikh [49] used ANN 
and GP methodologies to determine the depth of cut in laser 
micro-milling process. A comparative study was performed 
to estimate the accuracy of the proposed developed mod-
els. It was found that both the models are quite efficient in 
predicting the depth of cut in laser micromilling process. 
Kok et al. [36] have proposed GP for estimation of surface 
roughness of metal matrix composite surfaces cut by abra-
sive water jet machining. Garg et al. [34] have proposed 
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Fig. 1   EDS spectra and constituents for stainless steel [19]

Fig. 2   EDS spectra and constituents for titanium alloy [44]
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a multi-gene genetic programming (MGGP) approach to 
develop a predicting model for understanding the physi-
cal behavior of performance measures in fused deposition 
method (FDM). To study the effectiveness of the proposed 
model, Garg et al. [34] compared the developed predictive 
models using other AI approaches such as GP, ANFIS and 
SVR. The study showed the efficiency of MGGP approach 
in predicting performance measures. Garg et al. [37] have 
used MGGP model for developing a functional expression 
between process parameters and surface characteristics in 
selective laser melting process (SLM). The results show the 
robustness of the suggested model. Chatterjee et al. [21] 
have proposed two different AI approaches such as MGGP 
and ANFIS for predicting the performance measures in 
laser drilling operation. The results suggest the accuracy of 
MGGP model as compared to ANFIS model. To establish an 
empirical relationship between the process parameters and 
process outputs during turning operation, Garg and Lam [50] 
have proposed a MGGP model.

Advanced engineering materials (titanium alloys and 
stainless steels) are extensively used engineering materials. 
Titanium alloys and stainless steel find their widespread 

applications in aerospace industry, aviation sector, turbine 
blade manufacturing, electronics industry, automobile 
industry, day to day life usable products as well as medical 
equipment. Laser welding of advanced engineering materi-
als of thin sheets and their comparative studies is a quite 
challenging task. The excessive heat input during laser 
welding may lead to over burnt surface and decrease the 
weld quality of the weldments. Therefore, it is very neces-
sary to determine the influence of machining parameters on 
stainless steel and titanium alloy under identical machining 
parameters. Detailed literature survey shows that previous 
researches were basically focused on few aspects such as 
effect of machining parameters on process outputs, predic-
tion of process outputs using computational, statistical and 
heuristic approaches. Therefore, application of meta-heuris-
tic methodology and artificial intelligence (AI) for predict-
ing and optimizing the process outputs during laser material 
processing has been explored rarely. Implementing AI tech-
niques in manufacturing is a big step toward improving the 
manufacturing quality and reduces time and cost of the pro-
cess. Laser welding process is a costlier process among other 
available joining processes but requires high skills to han-
dle the process. Handling this process with high skills and 
accuracy will provide quality jobs with minimum defects 
compared to other processes. Implementing computational 
intelligence with AI techniques will help predicting the per-
formance measures of the machining process, as well as to 
minimize cost of trial and pilot runs during experimentation.

In the present study, welding of similar materials such 
as SS-316 with SS-316 and Ti-6Al-4 V with Ti-6Al-4 V 
of 0.45 mm thickness was performed using Nd:YAG laser. 
The study mainly focuses on adapting artificial intelligence 
techniques, adaptive neuro-fuzzy inference system (ANFIS) 
and multi-gene genetic programming (MGGP) to predict 
the performance measures, e.g., bead width (BW), heat-
affected zone (HAZ), surface roughness (SR) and welding 
strength (WS) of the weldments. The two artificial intelli-
gence techniques enable a better welding predictability, so 
will help critical industry practitioners using these models 

Fig. 3   Schematic layout of butt-
welding process using laser

Table 1   Laser parameters

Settings Ranges

Focal position On the surface (fixed)
Gas flow rate (l/min) 10
Average power (W) 250
Maximum peak power (kW) 5
Offset distance (mm) 3
Shielding gas pressure (bar) 1.5 (fixed)
Pulse frequency (Hz) 2
Work piece (for laser welding) SS 316 with SS 316 and 

Ti-6Al-4 V with Ti-
6Al-4 V
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in predicting successfully the outputs of given inputs in a 
reasonable manner during laser welding process. Further, 
the robustness of these two models allows a better manu-
facturing quality which in turn generates a higher safely for 
welded parts that are subjected to numerous cycles during 
their functioning period.

2 � Material and methods

2.1 � Materials

Selection of materials and workpieces’ dimensions has been 
done after exhaustive literature survey and research gap. 
The workpieces selected for the analysis are stainless steel 

(SS316) and titanium alloy (Ti-6Al-4 V) having 0.45 mm 
thickness. The material was procured by Manahar Metals 
Ltd., India. In order to verify the composition and weight 
percentage of the workpieces, energy-dispersive X-ray spec-
troscopy (EDS) has been performed using (FESEM-EDS) 
(FEI Quanta FEG 250, USA). The weight percentage of each 
constituent for both workpieces SS316 and Ti-6Al-4 V is 
shown in Figs. 1 and 2, respectively.

2.2 � Experimentation

Joining of thin sheets made of similar metals (i.e., SS316 
with SS316 and Ti-6Al-4 V with Ti-6Al-4 V) of 0.45 mm 
thickness has been performed using Nd:YAG pulsed laser. 
The schematic layout of butting welding process using laser 

Fig. 4   ANFIS basic architecture [21]

Fig. 5   Steps involved in MGGP 
(pseudocode) [64]



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44:53

1 3

53  Page 6 of 15

Fig. 6   Macrograph of bead width of titanium alloy and stainless steel weldments [52]

Fig. 7   Micrographs of HAZ for titanium alloy and stainless steel workpieces: a experiment number 4 (titanium alloy) b experiment number 6 
(stainless steel) c experiment number 4 (stainless steel) d experiment number 6 (titanium alloy) [52]
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is shown in Fig. 3. The specifications of welding setup are 
given in Table 1. The parameters and their ranges considered 
for the study were decided based on the literature survey [21, 
50, 51], ranges available in the laser setup and pilot experi-
ments. The parameters for welding setup are as follows:

–	 Laser current (A): 200 A, 230 A and 260 A
–	 Pulse width (B): 10 ms, 15 ms and 20 ms
–	 Welding speed (C): 10 mm/min, 30 mm/min and 50 mm/

min

Fig. 8   Surface roughness calculation of the weldment at experiment run number 5 (for SS316)

Fig. 9   Surface roughness calculation of the weldment at experiment run number 5 (for Ti-6Al-4 V)
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The welding of materials was performed in butt joint 
configuration and experiments were carried out using the 
design of experiments approach integrated with response 
surface methodology (RSM). The design matrix was decided 
as per face-centered central composite design (FCCCD). To 
perform the laser welding experiments, the three parameters 
such as laser current, pulse width and welding speed are 
varied at three different levels as explained in above section 
using RSM-FCCCD.

2.3 � RSM

Response surface methodology (RSM) is a statistical 
approach embedded with mathematical technique used for 
strategizing, refining and optimizing procedure in a sequen-
tial way. In this process, it engages with different situation, 
in which a large number of input parameters possibly influ-
ence the output process or quality of product or performance 
measures. The output process or quality of product or per-
formance measures are also known as response. The second-
order model is widely used in response surface methodology 
due to its flexibility, and it can take a wide variety of func-
tional forms (Eq. 1) [52].

Where Y is the corresponding response of input variables Xi; 
Xi

2 and XiXj are the square and interaction terms of factors, 
respectively. β0, βi, βii and βij are the unknown regression 
coefficients and ε is statistical error.

2.4 � ANFIS

Adaptive neuro-fuzzy inference system (ANFIS) is a com-
bination of two different AI methodologies known as ANN 
and FIS. ANN and FIS are complementary to each other. 
ANN has the potential of adapting knowledge from both 
the process such as feedback and data without involving in 
considerate the pattern of data sets, whereas FIS methodol-
ogy has an adaptability to understand the pattern of data sets 
because they use linguistic terms in the form of IF-THEN 
rules. ANNs have an excellent learning proficiency and can 
adapt and learn the fuzzy decision rules. Fuzzy inference 
system in ANFIS offers decision-based expert knowledge 
to be used in ANN system. The integration of these two 
intelligent techniques leads to develop a hybrid artificial 

(1)Y = �0 +

k
∑

i=1

�iXi +

k
∑

i=1

�ijX
2
i
+

k
∑

i,j=1,i≠j

�ijXiXj + �

Table 2   Normalized performance measures for laser welding of stainless steel workpieces

Input parameters Output parameters

Exp. No Laser current
(A)

Pulse width 
(B)

Scanning speed 
(C)

Bead width (BW) Heat-
affected 
zone 
(HAZ)

Surface 
roughness 
(SR)

Welding 
strength 
(WS)

Training Data 1 − 1.00 − 1.00 − 1.00 0.7892 0.9 0.7456 0.4179
2 1.00 − 1.00 − 1.00 0.5037 0.6584 0.7598 0.7385
3 − 1.00 1.00 − 1.00 0.4914 0.4237 0.1 0.6383
4 1.00 1.00 − 1.00 0.1 0.4509 0.6283 0.5568
5 − 1.00 − 1.00 1.00 0.9 0.8718 0.9 0.1
6 1.00 − 1.00 1.00 0.676 0.1 0.541 0.8522
7 − 1.00 1.00 1.00 0.5013 0.6274 0.5777 0.5499
8 1.00 1.00 1.00 0.2502 0.3859 0.4974 0.9
9 − 1.00 0.00 0.00 0.6562 0.6629 0.8157 0.2973

Testing data 10 1.00 0.00 0.00 0.3068 0.5467 0.7387 0.6326
11 0.00 − 1.00 0.00 0.6932 0.5779 0.7672 0.3725
12 0.00 1.00 0.00 0.5185 0.5541 0.5346 0.5065
13 0.00 0.00 − 1.00 0.3821 0.8634 0.3492 0.8316
14 0.00 0.00 1.00 0.5382 0.7072 0.5048 0.8443
15 0.00 0.00 0.00 0.3166 0.6742 0.6043 0.5741
16 0.00 0.00 0.00 0.4387 0.7571 0.5844 0.6368
17 0.00 0.00 0.00 0.4519 0.6476 0.6179 0.4716
18 0.00 0.00 0.00 0.4249 0.7842 0.6762 0.526
19 0.00 0.00 0.00 0.4435 0.7501 0.6176 0.6075
20 0.00 0.00 0.00 0.4112 0.7066 0.6242 0.6138
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intelligence (AI) network adaptive neuro-fuzzy inference 
system (ANFIS). The ANFIS network system consists of 
five different layers such as (1) fuzzification of input data, 
(2) product of fuzzified data, (3) normalization of fuzzified 
data, (4) defuzzification of fuzzified results and (5) output of 
responses. The ANFIS model consists of five layers and each 
of the layers consists of some nodes like ANN model [52, 
53]. The detailed structure of ANFIS is shown in Fig. 4. The 
past literature has already discussed the working principle 
and implementation details of ANFIS [53–59]. ANFIS is 
widely used for predicting performance measures in machin-
ing and welding area [53–59].

2.5 � MGGP

MGGP is a new and advanced version of genetic program-
ming (GP) for predicting the responses. MGGP is effectively 
used as predictive tool in artificial intelligence, and in the 

Table 3   Normalized performance measures for laser welding of titanium alloy workpieces

Input parameters Output parameters

Exp. No Laser current
(A)

Pulse width 
(B)

Scanning speed 
(C)

Bead width (BW) Heat-
affected 
zone 
(HAZ)

Surface 
roughness 
(SR)

Welding 
strength 
(WS)

Training data 1 − 1.00 − 1.00 − 1.00 0.2907 0.1 0.7536 0.5746
2 1.00 − 1.00 − 1.00 0.2104 0.3998 0.351 0.3845
3 − 1.00 1.00 − 1.00 0.9 0.5115 0.7849 0.4936
4 1.00 1.00 − 1.00 0.1 0.5535 0.2682 0.8992
5 − 1.00 − 1.00 1.00 0.5887 0.6264 0.3921 0.3932
6 1.00 − 1.00 1.00 0.8948 0.3793 0.5359 0.1
7 − 1.00 1.00 1.00 0.5632 0.9 0.9 0.8709
8 1.00 1.00 1.00 0.2826 0.3946 0.8964 0.7708
9 − 1.00 0.00 0.00 0.6364 0.8532 0.6095 0.8095

Testing data 10 1.00 0.00 0.00 0.4259 0.7345 0.4199 0.9
11 0.00 − 1.00 0.00 0.4082 0.4218 0.1824 0.3641
12 0.00 1.00 0.00 0.3399 0.7063 0.4828 0.8247
13 0.00 0.00 − 1.00 0.2985 0.5234 0.3862 0.4074
14 0.00 0.00 1.00 0.5094 0.595 0.6488 0.1852
15 0.00 0.00 0.00 0.5621 0.7144 0.1 0.7755
16 0.00 0.00 0.00 0.5127 0.6901 0.1819 0.6198
17 0.00 0.00 0.00 0.5912 0.6147 0.3228 0.5803
18 0.00 0.00 0.00 0.5056 0.6427 0.2362 0.8921
19 0.00 0.00 0.00 0.4642 0.6331 0.2171 0.8521
20 0.00 0.00 0.00 0.5038 0.5949 0.3095 0.7215

Table 4   Tuning parameters for 
MGGP

Parameters Values

Population size 270
Timeout 10 s
Iterations 3
Tournament size 25
Maximum genes 6

Fig. 10   Multi-gene regression for population heat-affected zone of 
stainless steel workpiece
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present study, MGGP is used for estimation of quality of 
weldments in laser welding process. GP was introduced in 
early 1990s by J.R. Koza [60–62] and became an effective 

technique of evolutionary computational algorithms, used 
for solving problems of any degree of complexity in all types 
of engineering problems [63].

MGGP is an updated and modified robust version of GP 
algorithm. The standard genetic programming is effectively 
integrated with the model structure adaptability technique 
and classical regression process [63]. MGGP can easily 
understand the import information patterns inside the multi-
dimensional information domain with high speed by exclud-
ing the typical and complex mathematical procedure [63, 
64]. The steps included in MGGP model are stated by the 
pseudocode in Fig. 5. The comprehensive descriptions and 
understanding on MGGP can be found in [35, 50, 63, 64].

3 � Results and discussion

The weldments of stainless steel and titanium alloy are 
analyzed by means of optical microscope, scanning elec-
tron microscope, surface profile meter and universal testing 
machine to determine the performance measures such as 
bead width (BW) (Fig. 6) [52], heat-affected zone (HAZ) 
(Fig. 7) [52], surface roughness (SR) (Figs. 8 and 9) and 
welding strength (WS), respectively.

The normalized values of the performance measures 
are considered for developing prediction models using 
the artificial intelligence techniques known as ANFIS and 

MGGP. The normalization of data of performance meas-
ures is made using Eq. 2 for lower-the-better and Eq. 3 for 

Fig. 11   Predicted vs actual data using MGGP model (training and 
testing) for heat-affected zone during laser welding of stainless steel

Table 5   Actual vs predicted performance measures of laser welding of stainless steel

Exp. No.: Experiment number, Exp. Val.: Experimental value

Exp. No. BW HAZ SR WS

Exp. val ANFIS MGGP Exp. val ANFIS MGGP Exp. val ANFIS MGGP Exp. val ANFIS MGGP

1 0.7892 0.2907 0.3945 0.9 0.1000 0.2870 0.7456 0.7536 0.7745 0.4179 0.5746 0.4192 Training data
2 0.5037 0.2104 0.0247 0.6584 0.3998 0.1790 0.7598 0.3510 0.3585 0.7385 0.3845 0.5036
3 0.4914 0.9000 0.7964 0.4237 0.5115 0.8828 0.1 0.7849 0.7487 0.6383 0.4936 0.5383
4 0.1 0.1000 0.2855 0.4509 0.5535 0.1192 0.6283 0.2683 0.3328 0.5568 0.8992 0.8909
5 0.9 0.5887 0.6665 0.8718 0.6264 0.5582 0.9 0.3921 0.4639 0.1 0.3932 0.3969
6 0.676 0.8948 0.8525 0.1 0.3793 0.8963 0.541 0.5359 0.4924 0.8522 0.1000 0.0599
7 0.5013 0.5632 0.4856 0.6274 0.9000 0.5821 0.5777 0.9000 0.8982 0.5499 0.8709 0.8734
8 0.2502 0.2826 0.3246 0.3859 0.3946 0.2645 0.4974 0.8964 0.9267 0.9 0.7708 0.8047
9 0.6562 0.6365 0.5897 0.6629 0.8532 0.6347 0.8157 0.6095 0.5547 0.2973 0.8095 0.7780
10 0.3068 0.4259 0.3800 0.5467 0.7345 0.4220 0.7387 0.4199 0.3610 0.6326 0.9000 0.7859 Testing data
11 0.6932 0.4082 0.5008 0.5779 0.4218 0.4751 0.7672 0.1824 0.1824 0.3725 0.3641 0.5098
12 0.5185 0.2430 0.4892 0.5541 0.3321 0.4571 0.5346 0.3265 0.3866 0.5065 0.3962 0.9417
13 0.3821 0.2154 0.3694 0.8634 0.2639 0.3836 0.3492 0.2478 0.3803 0.8316 0.3199 0.5599
14 0.5382 0.2754 0.5678 0.7072 0.3132 0.6249 0.5048 0.2945 0.5220 0.8443 0.3057 0.4494
15 0.3166 0.2473 0.4848 0.6742 0.3426 0.5138 0.6043 0.2120 0.2845 0.5741 0.3515 0.7257
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higher-the-better characteristics. In Eqs. 2 and 3, Xij denotes 
jth performance measure in ith trial, and Xmin and Xmax, 
respectively, are the maximum and minimum values of jth 
performance measures. For laser welding process, higher-
the-better characteristic is used for performance measures 
such as BW and WS. Lower-the-better characteristic is used 
for performance measures such as HAZ and SR. The perfor-
mance measures are normalized (as detailed in Eqs. 2 and 3) 
according to their desired results such as higher-the-better 
and lower-the-better for BW and WS, and HAZ and SR, 
respectively. The normalization of performance measures 
helps in executing the methodology in an effective manner. 
It is clearly observed that normalized values of performance 
measures ranges between 0.1 and 0.9, which is very helpful 
in handling the training and testing inputs in the proposed 
methodology. This will be very helpful in providing uniform 
data sets for executing all the output values in a predictive 

model. The normalized values of the performance measures 
are listed in Tables 2 and 3.

Normalization

3.1 � Prediction of performance measures using 
MGGP

To predict the quality characteristics of the weldments of 
stainless steel and titanium alloy work pieces obtained via 
Nd:YAG laser welding, multi-gene genetic programming is 
implemented in MATLAB 2017b. The experimental data 
are divided into two parts namely training data and testing 
data. Seventy percent of experimental data (nine data) is 
selected for training while remaining thirty percent (six data) 
for testing. Trial and error methodology has been adopted to 
decide the parameters on MGGP. The parameters are shown 
in Table 4. The following tuning parameters (Table 4) are 
considered as per literature [21, 63, 64].

The steps of MGGP model applied to weldments are pre-
sented through Figs. 10 and 11. Figure 10 shows the multi-
gene regression model for the population in proposed MGGP 
model. The residual plot suggests the adequacy of the pro-
posed model based on root-mean-square error. Figure 11 
compares the actual and predicted data during training and 
testing phase. Since root-mean-square error of 0.09572 is 

(2)Lower the Better =
xmax − xij

xmax − xmin

(3)Higher the Better =
xij − ximin

xmax − xmin

Table 6   Actual vs predicted performance measures of laser welding of titanium alloy

Exp. No. BW HAZ SR WS

Exp. val ANFIS MGGP Exp. val ANFIS MGGP Exp. val ANFIS MGGP Exp. val ANFIS MGGP

1 0.2907 0.7892 0.8003 0.1 0.9000 0.8880 0.7536 0.7456 0.6167 0.5746 0.4179 0.4742 Training data
2 0.2104 0.5037 0.4955 0.3998 0.6584 0.6700 0.351 0.7598 0.7947 0.3845 0.7385 0.7298
3 0.9 0.4914 0.4803 0.5115 0.4237 0.4245 0.7849 0.1000 0.2113 0.4936 0.6383 0.6023
4 0.1 0.1000 0.1082 0.5535 0.4509 0.4520 0.2682 0.6283 0.5726 0.8992 0.5568 0.5902
5 0.5887 0.9000 0.8914 0.6264 0.8718 0.8753 0.3921 0.9000 0.9171 0.3932 0.1000 0.1442
6 0.8948 0.6760 0.6875 0.3793 0.1000 0.0979 0.5359 0.5411 0.5073 0.1 0.8522 0.8182
7 0.5632 0.5013 0.5099 0.9 0.6274 0.6116 0.9 0.5777 0.6252 0.8709 0.5499 0.4934
8 0.2826 0.2502 0.2387 0.3946 0.3859 0.3999 0.8964 0.4975 0.4630 0.7708 0.9000 0.9661
9 0.6364 0.6562 0.6619 0.8532 0.6629 0.6866 0.6095 0.8157 0.7257 0.8095 0.2973 0.2812
10 0.4259 0.3068 0.3126 0.7345 0.5467 0.5230 0.4199 0.7387 0.7613 0.9 0.6326 0.5845 Testing data
11 0.4082 0.6932 0.6817 0.4218 0.5779 0.5767 0.1824 0.7672 0.8766 0.3641 0.3725 0.3720
12 0.3399 0.1869 0.3420 0.7063 0.2579 0.5315 0.4828 0.2808 0.6356 0.8247 0.2980 0.4934
13 0.2985 0.2501 0.4637 0.5234 0.3018 0.6593 0.3862 0.3264 0.5362 0.4074 0.2611 0.5992
14 0.5094 0.2835 0.5532 0.595 0.2711 0.5468 0.6488 0.3460 0.6156 0.1852 0.2647 0.6056
15 0.5621 0.2793 0.4905 0.7144 0.2983 0.6048 0.1 0.3872 0.7435 0.7755 0.2172 0.4328

Table 7   Root-mean-square error (RMSE) for testing data during laser 
welding

Performance measures Stainless steel Titanium alloy

ANFIS MGGP ANFIS MGGP

Bead width 0.2063 0.0761 0.2200 0.1307
Heat-affected zone 0.3260 0.0957 0.4286 0.1348
Surface roughness 0.2131 0.1219 0.1853 0.1356
Welding strength 0.3105 0.1652 0.4561 0.1196
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obtained during testing phase, the model is considered to 
be adequate. Similarly, the analysis is performed for other 
performance measures of the weldments for both the work-
pieces. Tables 5 and 6 present the predicted performance 
measure of weldments for stainless steel and titanium alloy 
work pieces, respectively.

3.2 � Comparison of prediction techniques

To analyze the effectiveness of both the predictive models, 
the predicted values obtained from MGGP and ANFIS for 
performance measures of weldments are compared with 
actual experimental values in Tables 5 and 6 for stainless 
steel and titanium alloy, respectively. From the study, it is 
observed that both the methods are quite adequate in predict-
ing the performance measures during training phase because 
a maximum relative error of 6.3% and 6% is obtained for 
ANFIS and MGGP, respectively. These error values are 
well below the 10% limit indicated by the industrial partner 
involved in this research.

3.3 � Experimental validation

To check the adequacy of the developed models, testing of 
each predictive model has been carried out. The unexamined 
experimental data have been used for testing and valida-
tion of the proposed ANFIS and MGGP models (Tables 5 
and 6, respectively). The maximum relative errors of 11.2% 
and 9% are, respectively, obtained for ANFIS and MGGP 
in the testing phase. It is noted that MGGP model shows 
minimum root-mean-square error in comparison to ANFIS 
model for all the performance measures in testing phase both 
for stainless steel and titanium alloy workpieces (Table 7). 
Comparison of predicted values from ANFIS and MGGP 
with experimental data for testing data is made in Figs. 12 
and 13 for stainless steel and titanium alloy, respectively. 
It is observed from the graphs that the values predicted by 
MGGP always match the experimental value. These results 
indicate that MGGP is superior over ANFIS in predicting 
the performance measures during laser welding.
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Fig. 12   Comparative graphs for experimental and predicted values for testing data using stainless steel as workpiece
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4 � Conclusions

Two advanced AI techniques, namely ANFIS and MGGP, 
were implemented in this research to estimate the best weld-
ing responses and reduce the costly experimental verifica-
tion. The following outcomes were obtained from the pre-
sent study:

–	 A comparative study was conducted between the two 
techniques to analyze the adequacy of the predictive 
models for the prediction of performance measures of 
the weldments. It can be concluded that both the AI 
techniques are quite effective in predicting performance 
measures of weldments in the training phase. The root-
mean-square error (RMSE) is below 10% for both the 
weldments.

–	 To determine the effectiveness of proposed AI models, 
it is required to correlate the findings on test data of 
both the models. The MGGP model shows an RMSE of 

only 0.1652 while the ANFIS model shows an RMSE of 
0.4286 during prediction of the performance measures 
for both the processes and workpieces.

–	 The results obtained in this study indicate that MGGP 
is an adequate model for predicting the performance 
measures of laser drilling and laser welding process 
among competing artificial intelligence techniques. It 
is observed that the maximum mean relative error of 
11.2% and 9% was obtained for ANFIS and MGGP, 
respectively, in the testing phase. From this study, it can 
be concluded that the MGGP model achieves a higher 
prediction accuracy than the ANFIS model.
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Fig. 13   Comparative graphs for experimental and predicted values for testing data using titanium alloy as workpiece
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