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Abstract
This study presents a methodology using the correlation of numerical diffusion with the standard two-fluid model to simulate 
the separated two-phase flow (gas–liquid) in a pipe. Firstly, different numerical schemes are examined to investigate the 
flow characteristics through the water faucet problem. For this, the shock-capturing method is developed to an algorithm 
scripted in Fortran; and the Force (first-order centred) scheme is selected for the models used in this work, due to the higher 
accuracy and less computations. For validation of the simulations, the results of instability range are compared to the calcu-
lations using the classic Kelvin–Helmholtz instability equation; and then, the methodology is used to evaluate the slug flow 
initiation and growth in a horizontal pipe. The results showed that the instability range is affected by the wavelengths as a 
decrease in the wavelengths led to inconsistency of the range. It is found that the short-wavelength perturbations induce the 
unbounded growth rates, and this halts the convergence of results. To remedy this deficiency, the methodology introduced 
in this study showed an excellent ability to damp the unbounded growth of instabilities, where the standard model is not 
well-posed. Indeed, comparing the flow property diagrams for the two studied conditions showed that the wavelengths below 
the specified cut-off are stabilized, and the converged results are achieved for the flow properties. Finally, for the slug flow 
initiation, a very good agreement is achieved between the results from the introduced approach and the experimental results.

Keywords Multiphase flow · Two-phase flow · Two-fluid model · Slug flow · Numerical diffusion

1 Introduction

Multiphase flow has become increasingly significant in 
a wide variety of engineering systems for their optimum 
design and safe operation. It can be observed in many engi-
neering sectors, such as marine, aerospace, power stations, 
nuclear power plants, oil and gas; or in many biological sec-
tors including cardiovascular and breathing systems; or in 
natural phenomena, such as ocean waves, river flood, and 
fermentation devices [1–5]. Accurate prediction of mul-
tiphase flow properties is an outstanding challenge for the 
industry. The two-phase flow of gas and liquid is a simulta-
neous transfer of gas and liquid [6, 7]. Extensive usages in 
various engineering systems and their complicated behavior 

indicate the necessity of studying the concept of two-phase 
flows. It is important to note that the mathematical model 
chosen for the simulation is one of the fundamental chal-
lenges in predicting the flow dynamics [8].

In general, there are two different types of formulations 
called mixed fluid model (MFD) and two-fluid model (TFM) 
[9]. In fact, these formulations represent fundamentally dif-
ferent viewpoints about such flows. The first consists of a 
dispersed phase and a continuous phase. It is convenient 
for the two-phase flows, where phases are coupled strongly 
[10, 11]. The second formulation is based on two types of 
conservation equations. Each phase has its own pressure, 
velocity, and temperature [10, 12, 13]. The TFM is conveni-
ent for the flows, where phases are coupled together weakly, 
and the wave propagates at different velocities in each phase 
[12, 14]. The TFM presents more accurate details of flow 
properties and therefore, is the most complete model. For the 
reasons stated, this study used and focused on TFM.

Due to the existence of the changeable interface and 
compressibility of the gas phase, separated two-phase flow 
modeling is complicated [15]. The interface between the gas 
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and liquid can arrange itself into a large variety of forms, and 
this deformability causes the fluid properties to change in the 
interface discontinuously [16, 17]. Shock interaction as a 
discontinuity in fluid properties, and interface discontinuity 
cause complexity in simulating and instabilities capturing 
in the interface [18, 19]. Consequently, although solving 
two-phase flows using the classic Navier–Stokes equations 
is possible theoretically, it is too complicated and impossible 
practically [12, 18].

Various forms of TFM have been developed, according 
to the performance of phase pressures: Pressure-Free Model 
(PFM) that the pressure does not appear in the equations, 
Single-Pressure Model (SPM), which both of the phase pres-
sures are equal, and Two-Pressure Model (TPM) that the 
pressures are different and interactions between the phases 
are calculated by structural relations that have significant 
effects on the solution field [20–23]. The governing equa-
tions, coupled with numerical methods, should prepare a 
tool for investigating and predicting the mean flow features, 
with an understanding of the uncertainties and limitations in 
their specifications [10, 24]. Thus, building an appropriate 
physical model is the most important part of a simulation 
process. A numerical model developed from an inappropri-
ate physical model can have large uncertainties, and lead 
to results that are clearly different from physics. Based on 
Hadamard’s well-posed theory, mathematical analysis and 
the well-posedness of the model’s equations is another chal-
lenge of a simulation [25]. Previous studies show two-fluid 
models are sensitive to the roots of the characteristic equa-
tion [9, 26]. According to the results, TPM is always hyper-
bolic and PFM and SPM are hyperbolic within a specified 
range [12, 27, 28]. However, one of the features of the TPM 
and SPM is the non-conservative aspect of their governing 
equations [19, 29]. Thus, the efficient and developed numeri-
cal methods that are suited for single-phase flows, are not 
applicable to them. Therefore, an additional method must 
be introduced for calculations of the non-conservative term, 
and this increases the complexity of the simulation. On the 
other hand, PFM equations are in the conservative form, but 
to determine a well-posed range, a hyperbolic analysis is 
required [9, 27]. Hyperbolic analysis shows ill-posedness is 
related to the unbounded growth of short-wavelength pertur-
bations [15, 27]. Surface tension, which appears as a source 
term in the governing equations introduces a cut-off wave-
length [24, 28]. This is suitable for short-wavelengths and on 
the contrary with long-wavelength assumptions, because of 
the wavelengths above the cut-off experience non-physical 
high growth rates [30, 31]. The grid diffusivity was used 
to annihilate the growth of short-wavelengths, but the grid 
independence verification was not achieved for all the con-
ditions [27]. According to the non-physical nature of these 
instabilities, it seems a mathematical approach can lead to a 
convergent solution.

In the computational fluid dynamics, the words "numeri-
cal dissipation\dispersion" and "numerical diffusion", are 
frequently used interchangeably, and generally connote the 
diffusive behavior (which is purely numerical in origin) 
of a numerical solution. Numerical dissipation is a direct 
result of the even-order derivatives, and numerical disper-
sion is a result of the odd-order derivatives of the governing 
equations [32, 33]. Although numerical diffusion decreases 
the accuracy of a solution, on the contrary, it increases the 
stability [34]. Indeed, for many flow problems with strong 
gradients, such as shock waves, where shocks are captured 
within the flow by using a shock-capturing method, the addi-
tion of numerical diffusion is an appropriate approach to 
achieve a stable and smooth solution, whereas, without it, no 
solution would be attainable [32, 35]. Numerical diffusion, 
which is the result of even-order derivative terms in the Tay-
lor expansion reduces strong gradients in the solution field, 
and provides a convenient termination to the existing model 
in the short-wavelength limit. The present study aims to 
explore the effects and possibility of adding a second-order 
numerical diffusion term to the two-fluid model. The matrix 
� is added to the original equations as numerical diffusion, 
and its effects on stability will investigate. A comparison 
of the numerical results with analytical and experimental 
results is done on the benchmark problems and showing a 
good agreement.

This paper is organized as follows: Sect. 2 presents gov-
erning equations and mathematical models; Sect. 3 describes 
the numerical calculation methods, giving special care to the 
scheme developed. Section 4 shows the comparison of the 
numerical results with analytical and experimental results 
and discussion; finally, Sect. 5 reports some conclusions.

2  Governing equations and mathematical 
models

In this paper, the TPM, SPM, and PFM have been chosen 
as the physical models, governing on the solution field. 
One dimensional form of TFM was obtained from surface 
integration (area averaging) of the three-dimensional equa-
tions of fluid properties over cross section of the flow [27]. 
Momentum transmission between the fluids and the pipe, 
and also dynamic interactions of phases at the interface, is 
calculated as a source term obtained from empirical rela-
tions [15, 27].

The present study is based on the transport equations for 
an isothermal flow, and therefore consists of conservation of 
mass and momentum for the gas and liquid. Figure 1 illus-
trates the schematic of the separated two-phase flow in a 
pipe.uk , si and sk are velocities, wetted perimeters of inter-
face and phases (k = l, g, and i are defined as the liquid, gas, 
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and interface notations), respectively. �i and �k are the shear 
stresses of the interface and phase-wall, respectively.

2.1  TPM

The governing equations of TPM pioneered by Saurel and 
Abgrall include five equations and are expressed for a com-
pressible two-phase model [23]:

Gas volume fraction evaluation equation:

Mass conservation equations for gas and liquid phases:

Momentum conservation equations for gas and liquid 
phases:

�k , ak and,D are density, cross-section area, and pipe 
diameter. G is the acceleration of gravity,hl is liquid height 
and � is pipe inclination (is required for inclined pipe).A 
is the area of the whole cross-section of the pipe (gas and 
liquid). + and – of the �ISIA−1 denote the flow direction as 
shown in Fig. 1. P and Pi are pressures of each phase and 
interface. ui  is average interfacial velocity was suggested by 
Saurel and Abgrall [23]:

rp and rv are the pressure and velocity relaxation terms, 
and are defined by equations recommended by Bestion [4], 
Munkejord [36, 37], and Ansari [16].

2.2  SPM

In the SPM, the pressure of both phases is equal, as well 
as the pressure of phases at the interface is the same. The 
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governing equations are included two series of continuity 
and momentum equations are stated as follows:

Mass conservation equations for gas and liquid phases:

Momentum conservation equations for gas and liquid 
phases:

2.3  PFM

The PFM consists of two differential equations that include 
a hybrid mass and a hybrid momentum equation. Hybrid 
mass conservation equation is obtained by summing the 
gas and liquid mass equations of SPM with the incom-
pressibility assumption of phases:

Hybrid continuity equation:

Hybrid momentum conservation equation is obtained 
by combining (some mathematical operations) the gas and 
liquid momentum equations of the SPM:

In the PFM equations system �l ، �g ، ug and ul are 
unknowns. To find the primitive unknowns, Eqs. (7) and 
(8) must be supplemented by two more equations. The first 
is obtained by primary mass conservation equations. Since 
the fluids are assumed to be incompressible, algebraic con-
straint C(t) , which is a time-dependent function obtained 
by the relations suggested by Wallis [10, 27]:
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Fig. 1  Schematic of the sepa-
rated two-phase flow
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Another relation is obtained by the geometric constraint 
[10]:

2.4  Shear stress

The shear stresses are comprised of wall-phase shear stresses 
and shear stress at the interface of gas and liquid. Their dis-
tribution on the wall has a vital role in determining the tur-
bulence structure inside the pipe as well as the flow resist-
ance [38, 39]. Shear stresses are modeled, using single-phase 
friction equations, based on the Fanning friction factors and 
phase hydraulic diameter [30, 40]:

fk and fi represent phases and interface friction factors, 
respectively:

in which hydraulic diameter Dhk is applied for calcula-
tion of Reynolds number Rek in each phase instead of inner 
diameter:

�k is dynamic viscosity. To calculate the wetted perimeter 
of each phase, geometric variables are used, which can be 
found in previous works [26, 41].

2.5  Hyperbolic analysis

The present study does not intend to scrutinize the method-
ologies of hyperbolic analysis and their validation. However, 
the result of the present approach will affect the analysis and 
improve its stability range.

Generally, there are two kinds of hyperbolic analysis 
methods, depending on the presence\absence of conserva-
tive terms in the governing equations [26]. To determine 
the stability range of interface waves, various relations are 
offered based on the classic Kelvin–Helmholtz relation [14, 
28, 29]. SPM (as a non-conservative form) and PFM (as a 
conservative form) are sensitive whether their characteristic 
values are real or complex [26, 27]. If the values are char-
acterized as complex, the model will be an ill-posed. Con-
siderable basic work has been undertaken in the literature in 
measuring hyperbolicity shows that although approximate 
eigenvalues are always real, the true eigenvalues can be 
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complex, and a numerical evaluation reveals that the con-
dition of hyperbolicity or limit of validity of the SPM is 
similar to the PFM [9]. Previous studies are demonstrated 
that challenges are directly related to the velocity difference 
between the phases as follows:

If Eq. (14) is not satisfied, the roots of the characteristic 
equation are imagined and the model is ill-posed, and the 
interface is physically unstable as well. It means that limit 
of physical instability at the interface is equal to the well-
posing of the model. Ill-posing causes the results not to show 
realistic physics. In Eq. (14), for the inviscid assumption 
K = 1  and for the viscous assumption K is obtained by sug-
gested equation [27, 34]:

where CIV and CV are critical wave velocities from the invis-
cid and viscous stability analyses, respectively.

3  Numerical calculation methods

The transport equations were mentioned in the previous sec-
tion can be rewritten in a compact generic form:

The generic form helps to simplify and organize the logi-
cal algorithm in a computer code. Φ , �  and Ψ are, vector 
field of conservative variables, vector including all source 
terms, and conservative flux vector, respectively. On the 
other hand, ��x(Φ) contains all the non-conservative terms, 
which present in the selected model. If �  is zero, the model 
is conservative and appropriate for PFM, and otherwise, is 
non-conservative and is appropriate for SPM and TPM.

3.1  Methods and discretization

By applying the shock capturing method algorithm to dis-
cretize the generic form, a forward approximation is used 
for time derivative, and central approximation is used for 
the spatial derivative [42]:
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n , n + 1 , Δt , and Δx are the old time and new time values, 
time step, and mesh size, respectively and j denotes cell 
position. Ψn

j+1∕2
 is a numerical flux that is an approximation 

of physical flux. Depending on the scheme that has been 
chosen for Ψn

j+1∕2
 , various Riemann numerical solvers are 

achieved. In this study, various schemes, which are popular 
in multiphase simulations, are chosen and compared. 
Schemes are grouped into two categories, namely central 
schemes and characteristics-based schemes [32, 43]. Force 
and Richtmyer from the central schemes, and Rusanov and 
TVD Lax-Friedrichs from the characteristics-based schemes, 
are selected and implemented. They are selected, because 
they use a variety of approximations, and cover a wide range 
of resolutions.

3.1.1  Richtmyer method

Richtmyer method is a second-order explicit scheme in time 
and space, and calculated in two steps. In the first step, Lax-
Friedrichs method is used and in the second step, Leap-Frog 
method is used [32, 44]. Flux expression can be calculated 
in the following form [42]:

where Φj+1∕2 and Φn
j+1∕2

 are intermediate vector solution, and 
average vector, respectively.

3.1.2  Force method

Richtmyer method is dispersive and induces numerical spu-
rious waves, and on the other hand Lax-Friedrichs method 
(where is a step of Richtmyer method) is diffusive and will 
damp most flow features [32]. Toro proposed a new first-
order centered method to avoid the bad effects of Richt-
myer and Lax-Friedrichs methods [35]. In Force method, 
the intercell flux is an arithmetic mean of the Richtmyer and 
Lax-Friedrichs fluxes, and calculated by [42, 45]:
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3.1.3  TVD Lax‑Friedrichs method

In computational fluid dynamics, total variation diminish-
ing schemes are used to capture sharper shock predictions 
without any spurious oscillations [32]. In order to improve 
Lax-Friedrichs method, which generates extreme diffusion 
in the solution field, a high-resolution TVD approach is used 
as follows [9, 32]:

TVD Lax-Friedrichs method is a characteristic based flux 
method, where ΦLeft , ΦRight , Φn+1∕2,ΩLR
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 , and Φ

n
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and right state vectors, predictor step value, dissipative limiter, 
and the limited differences, respectively. The predictor step 
value is given by:

Dissipative limiter is obtained by using the maximum 
eigenvalue or characteristic of the model:

where:

In the present work one of the acceptable methods are used 
to calculate the flux limiter [9]:

3.1.4  Rusanov method

Rusanov method is a characteristic-based flux scheme that 
is appropriate for one-dimensional non-linear systems. This 
explicit first-order scheme uses the maximum value of the 
characteristic model to produce the flux as follows [9]:
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Neq and �k
j+1

 are number of equations in the model, and 
average wave velocity, suggested by Hornung and Trangen-
stein [46].

3.1.5  Non‑Conservative Terms

The numerical schemes described above are implemented for 
conservative models. In order to discretize the non-conserv-
ative term in Eq. (16) (for SPM and TPM), a second-order 
upwind discretization is used [9]:

The Min-mod in above equation is defined as following:

3.1.6  Numerical diffusion

As discussed in the previous section, the present study 
focuses on the implementation of numerical diffusion to reg-
ulate instabilities. Simulation results in Sect. 4 demonstrate 
that PFM is more convenient to use than the two others, 
in terms of process time and implementation of numerical 
methods in the benchmark problems. But this model still has 
spurious oscillations on the points with severe gradients on 
the solution field. To solve the deviance, matrix � is coupled 
with the original transport equation as a coefficient for sec-
ond order derivative, as following:

In fact, Eq. (32) is a rewritten form of Eq. (16) with a 
second-order tensor. Therefore, by reusing equations, the 
conservative part of the equation can be discretized. But for 
the newly added part of the equation, a new method must be 
used. Non-conservative second order tensor of  ���(Φ)�xx(�) 
complicates the solution, which cannot be solved by the 
methods mentioned above. In the present study, equations 
are solved using an alternating two-step mathematical tech-
nique, which consists of an implicit method and a finite vol-
ume method that are coupled together strongly [47]:

Step one: solving diffusion part of Eq. (32) by an implicit 
method:

It can be solved by using an implicit method like 
Crank–Nicholson in step one, such as following [43]:
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Variables are calculated by integration on the first half-
time at time step n . The output data is used as the input data 
for step two.

Step two: solving advection–source term part of Eq. (32) 
by an explicit method in step two:

where is the optimum method that has been chosen based 
on the results of simulation in Sect. 4. Updated variables are 
calculated by integration on the full-time step, and output 
data of this step is used as the input data of step one, but on 
the last half-time step at time step n . This alternating tech-
nique is a semi-implicit method, and the time step must be 
controlled to achieve convergence results.

3.2  Calculation Time Step

In the mentioned alternating technique, the first step is an 
implicit method, then is always stable. But the second step is 
explicit, and the size of the time step needs to be controlled 
and can be estimated from the following equation [48]:

In order to calculate time step, value of the Courante-
Friedrichs-Levy number is assumed 0.5 and �n

c,max
 is the 

maximum eigenvalue of the Jacobian of the Eq. (36) which 
is equal to:

where �k
j
 is wave velocity in each computational cell [26].

3.3  Boundary conditions

The schematic of the computing domain of an internal flow 
can be illustrated by Fig. 2. Domain is discretized into M 
cells, and special conditions are at the boundary positions 
x = 0 and x = L , where provide numerical fluxes Ψ1∕2 and 
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forj = 1,2,… ,Mk = 1,Neq

Fig. 2  Schematic of the computational domain of an internal flow
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Ψm+1∕2

 to advance the extreme cells 1 and M to the next time 

level in Eq. (16). For this purpose, an artificial grid will be 
considered at the input and output, and zeroth-order extrapo-
lation for the virtual points will be used for the flux in entry 
and outlet, which is denoted 0 and M + 1.

4  Results and discussion

In this section, the results of the simulation are presented, 
in order to demonstrate whether the addition of numerical 
diffusion renders it possible to have converging numerical 
solutions. Obviously, they are consistent with the long-wave-
length assumption also for flow properties outside the clas-
sic Kelvin–Helmholtz range. Inviscid Burgers' equation and 
water faucet problem are used as benchmark cases to evalu-
ate the accuracy and robustness of the numerical schemes, 
with the known analytical solutions. Then, the water faucet 
problem is used to test the role of numerical diffusion in the 
well-posedness of two-fluid models and stability analysis. 
Finally, the enhanced model is used to model the slug flow.

4.1  Problem geometry and validation of methods

4.1.1  Inviscid Burgers' equation

The classical Burgers equation is a non-linear partial differ-
ential equation [49]. This equation is one of the most helpful 
equations to investigate the behavior of the shock waves, 
fluid dynamics, turbulent flows, and gas dynamics, in which 
non-linear advection and diffusion can be observed [50]. On 
the other hand, it allows researchers to compare the quality 
of the numerical scheme applied to a non-linear equation [9]. 
For a fluid velocity field u(x, t) and diffusion coefficient ∈ , 
the general form of Burgers' equation in one space dimen-
sion is the dissipative system [35, 51]:

If the diffusion term is absent, Burgers' equation becomes 
the inviscid Burgers' equation, which is given in the con-
servative form, and is a very useful model for flows, where 
severe gradients are anticipated [9]:

In the present work the pipe length is 2m and the number 
of cells is set to 100.

(38)�u

�t
+ u

�u

�x
=∈

�2u

�x2

(39)�u

�t
+

�(
u2

2
)

�x
= 0

4.1.2  Water faucet problem

This benchmark problem was stated by Ransom [52].The 
schematic of the water faucet problem is illustrated in Fig. 3 
which is comprised of a free fall of a column of water in a 
pipe, where has a height of 12 m and a diameter of 1 m. 
At time t = 0 , the velocity of water is10m∕s , the velocity 
of air is0m∕s , and the volume fraction of water is assumed 
0.8. The pressure in the pipe is equal to  105 Pascal. Inlet 
conditions are equal to the initial values and for the outlet 
of the pipe, a fully developed condition is assumed. The 
density of air is 1.16Kg∕m3 and density of water is consid-
ered1000Kg∕m3 . In order to validate modeling accuracy, dif-
ferent types of numerical methods mentioned in the previ-
ous section are used, and the results are compared with the 
analytical solution.

4.2  Analytical solution

4.2.1  Inviscid Burgers' equation

An exact analytical solution for the inviscid Burgers' equation 
can be found in numerical books [35, 53]. The initial data for 
the inviscid Burgers' equation are given by [35]:

where xd , uR , and uL are the location of the discontinuity, 
constant right and left velocities. If the left velocity is greater 
than the right velocity, the Riemann problem is called shock 
wave, and for xd = 0 in Eq. (40), Toro has suggested an exact 
analytical solution as described in his book [35]:

(40)u(x, 0) =

{

uLx < xd
uRx > xd

Fig. 3  Schematic of the water faucet problem
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where, W  is the shock wave velocity. uL = 1m∕s and 
uR = 0.5m∕s are considered at 1.5sec for this problem.

4.2.2  Water faucet problem

Evje and Flatten proposed an analytical solution using the 
assumption that the gas phase pressure changes are insignifi-
cant [54]:

where G is the acceleration of gravity. �inlet
l

 is the liquid frac-
tion at the pipe inlet and is equal to 0.8 . uinlet

l
 is the liquid 

phase velocity at the pipe inlet and is equal to 10m∕s.

(41)

u(x, t) =

�

uLifx < Wt

uRifx > Wt

�

W =
1

2

�

uL + uR
�

⎫

⎪

⎬

⎪

⎭

ifuL > uR

u(x, t) =

⎧

⎪

⎨

⎪

⎩

uLif
x

t
≤ uL

x

t
ifuL <

x

t
< uR

uRif
x

t
≥ uL

⎫

⎪

⎬

⎪

⎭

ifuL ≤ uR

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(42)
𝛼l(x, t) =

⎧

⎪

⎨

⎪

⎩

𝛼inlet
l

uinlet
l

√

(uinletl )
2
+2Gx

x ≤ uinlet
l

t + 0.5Gt2

𝛼inlet
l

x > uinlet
l

t + 0.5Gt2

𝛼g(x, t) = 1 − 𝛼l(x, t)

(43)ul(x, t) =

{ √

(

uinlet
l

)2
+ 2Gx x ≤ uinlet

l
t + 0.5Gt2

uinlet
l

+ Gt x > uinlet
l

t + 0.5Gt2

4.3  Simulation results

In order to observe the effects of schemes, the results of 
two simulation problems are presented, then the optimized 
model is used to simulate slug flow. The aim is to substanti-
ate that the inclusions of numerical diffusion to the selected 
model can improve numerical solutions consistent with the 
long-wavelength assumption. All the simulations and algo-
rithms are implemented in Fortran language, and results are 
compared with the analytical solution. In order to evaluate 

Fig. 4  Inviscid Burgers' equation: comparison of numerical schemes 
with exact solution for velocity profile, cells 100

Fig. 5  Inviscid Burgers' equation: mesh refinement for Force scheme

Fig. 6  Water faucet problem: comparison of liquid volume fraction 
of TPM, SPM and PFM models of Richtmyer scheme with analytical 
solution for computational cells = 100 and CFL = 0.5
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the performance of numerical schemes, the Burgers' equa-
tion problem is first investigated as a single-phase flow. Fig-
ure 4 shows the comparative results for the two central and 
two characteristic-based schemes with the exact solution. 
The Richtmyer results appear dispersive behavior and spuri-
ous oscillations near the discontinuity. It does not seem to 
be a suitable method for longer or more complex simulation 
cases. The TVD Lax-Friedrichs scheme, then the Rusanov 
and Force schemes are more accurate than the Richtmyer. 

The results show that the TVD Lax-Friedrichs and the Rusa-
nov are less diffusive, and more accurate than the Force; 
however, they take a lot longer in the same meshes for simu-
lation and are more complicated. Figure 5 shows the mesh 
refinement for the Force scheme.

Figures 6, 7, 8, and 9 show the liquid volume fraction 
profiles obtained from the water faucet problem by using 
the schemes, previously described. In order to evaluate vari-
ous numerical effects on each model, the numerical schemes 
have been applied to TPM, SPM, and PFM, and compare 
with the analytical solution. All the results reported are 
obtained with a CFL value of 0.5 and using 100 cells. The 
results of Richtmyer scheme presented in Fig. 6 have disper-
sive behavior and oscillatory nature near the discontinuity. 
This is a second-order scheme and has a third-order error, 
where leads to numerical dispersion near the discontinuity 
in the solution field. Figures 7, 8, and 9 show the results 
of the Force, TVD Lax-Friedrichs, and Rusanov schemes, 
respectively. They are in accordance with our anticipation 
extracted from the inviscid Burgers' equation. Simulations 
indicated TVD Lax-Friedrichs is the most consistent with 
the exact solution. The results of Rusanov and Force are 
almost the same, and they are in the next position of accu-
racy in the simulation. A comparison between the perfor-
mance of the TPM, SPM and PFM indicates that SPM and 
PFM models have higher accuracy than the TPM, and they 
are almost consistent in a same mesh. As already mentioned, 
the present study attempts to refine the simulation by adding 
the numerical diffusion to the original equation. TVD Lax-
Friedrichs and Rusanov are characteristic-based schemes 
and require algebraic manipulation of the Jacobian of the 

Fig. 7  Water faucet problem: comparison of liquid volume fraction of 
TPM, SPM and PFM models of Force scheme with analytical solu-
tion for computational cells = 100 and CFL = 0.5

Fig. 8  Water faucet problem: comparison of liquid volume fraction 
of TPM, SPM and PFM models of TVD Lax-Friedrichs scheme with 
analytical solution for computational cells = 100 and CFL = 0.5

Fig. 9  Water faucet problem: comparison of liquid volume fraction 
of TPM, SPM and PFM models of Rusanov scheme with analytical 
solution for computational cells = 100 and CFL = 0.5
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flux vector, and information of the characteristics of the 
model. The processing time is another important criterion 
in any simulation, and it is obvious that a conservative form 
of a model takes less time than a non-conservative [32, 35]. 
With an overview on models that have been implemented in 
the present study, Force-PFM scheme is chosen as the most 
appropriate model for this case study, and adding diffusion 
term to the equation. Figure 10 shows the flowchart of the 
algorithm for developed numerical simulation.

Figure 11 shows the mesh refinement for the liquid vol-
ume fraction at time = 0.5 s, using the Force-PFM scheme. 

Mesh refinement indicates a very small and almost invis-
ible overshoot appears for finer meshes (i.e., 250 cells). 
The results obtained by finer mesh produce clearly visible 
overshoots before and after the front of the discontinuity, 
resulting in a code crash for fine mesh simulations. These 
oscillatory spikes are related to the ill-posedness and the 
non-hyperbolicity of the model. In other words, the defect 
has a numerical nature, and is due to the limitations of the 

Fig. 10  Flowchart that describes the numerical algorithm

Fig. 11  Water faucet problem: Mesh Refinement for the liquid vol-
ume fraction at time = 0.5 sec, using the Force-PFM scheme.

Fig. 12  Water faucet problem: Comparison of presence and absence 
of numerical diffusion for liquid volume fraction for computational 
cells = 850, CFL = 0.5, time = 0.5 s

Fig. 13  Water faucet problem: Comparison of presence and 
absence of numerical diffusion for liquid velocity for computational 
cells = 850, CFL = 0.5, time = 0.5 s
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model used for this case. To improve and eliminate the 
defection, a new regulation must be used to the model.

Figure 12 and 13 indicate the effects of adding numeri-
cal diffusion to the original equations for the water faucet 
problem. Comparative diagrams of liquid volume fraction 
and liquid velocity, are clearly indicating the effect of pres-
ence and absence of numerical diffusion in the conser-
vation equations. It is evident that the simulations with 

numerical diffusion provide converging solutions as the 
grid is refined. According to this effectiveness, the opti-
mized model has been used in the simulation of slug flow.

Figure 14 shows the initiation points of the slug flow 
map for different meshes using PFM-Force scheme. 
Despite the mesh independence in 6400 cells, for finer 
meshes, non-physical instabilities are appeared. Figure 15 
shows the liquid volume fraction in both the presence and 
absence of the numerical diffusion in the mathematical 
model for computational cells 12,800. It clearly shows the 
effectiveness of adding numerical diffusion in slug flow 
simulation.

Figure 16 indicates the comparison of the initiation point 
of slug flow simulation with experimental results obtained 
by Ansari and Nariai [55]. They carried out a detailed 
investigation of the wave growth, and slug formation were 
analyzed by using a video camera. The experimental pro-
cedure was performed on a pipe with the length of 5 m , 
and the diameter of 0.078 m . The inlet superficial air veloc-
ity is 6.532 m∕s , inlet superficial water velocity is 0.532 
m∕s , and the liquid volume fraction at the initial condition 
is 0.526. The densities of air and water are 1.14Kg∕m3 and 
1000 Kg∕m3 , respectively. Because of the vast variety of dif-
ferent factors in empirical data, initiation point of slugging 
have occurred between 1.75 and 2.00 m , were called lower 
and upper limits. The results have demonstrated that achiev-
ing the grid-independent occurs at 1000 mesh number, the 
model is well-posed, and there are no unphysical instabilities 
that form, as the mesh number is increased. Furthermore, 

Fig. 14  Slug flow simulation: The initiation points of the slug flow 
for different computational cells using PFM-Force, CFL = 0.2

Fig. 15  Slug flow simulation: Comparison of presence and absence 
of numerical diffusion using PFM-Force scheme for computational 
cells = 12,800, CFL = 0.2

Fig. 16  Slug flow simulation: Comparison experimental data with 
numerical solution using PFM-Force scheme with adding numerical 
diffusion for computational cells = 12,800, CFL = 0.2
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the slug initiation position was verified by comparing it with 
upper and lower experimental limits plotted.

5  Conclusions

It has been demonstrated that achieving grid-independent 
solutions is very important in any numerical simulation. 
In this work, an algorithm for two benchmark problems 
was developed and implemented in Fortran code. The 
developed model is used to simulate the slug flow. Results 
indicate the Force-PFM scheme is the most appropriate 
method for simulating the cases, but the use of fine meshes 
would lead to the growth of non-physical instabilities in 
the discontinuities. The ill-posedness of the original model 
emanates from the extrapolation of the long-wavelength 
assumption into the short-wavelength domain. Short-
wavelength perturbations induce unbounded growth rates, 
and make it impossible to achieve converging numerical 
solutions. The approach taken in this article has been to 
adding numerical diffusion as a CFD technique that is used 
to remedy this deficiency. For the simulation containing 
a new approach, the short-wavelength perturbations have 
damped, while the larger wave grows softly and goes 
downstream. On the other hand, for the simulation with-
out numerical diffusion, the short-wavelength disturbances 
have grown severely and created high-frequency and high-
amplitude oscillations, and therefore make it an ill-posed 
problem. Diagrams of the flow parameters are compared 
for two conditions: with and without numerical diffusion, 
and results show that wavelengths below the specified cut-
off are stabilized, and converging solutions are achieved 
for flow conditions that were ill-posed without adding the 
numerical diffusion.
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