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Abstract
Currently, there is not an extensive literature dedicated to the presentation of the diffusive modeling applied to the momentum 
equation of incompressible and isothermal Newtonian fluid flows solved by the smoothed-particle hydrodynamics (SPH) 
method. This paper aims to present the most common viscosity modelings and the LES (Large Eddy Simulation) method 
applied to the solution of the Navier–Stokes (N–S) equations. A comparative study showing different modelings of the dif-
fusive terms has been carried out. Two incompressible free surface flows were simulated: the generation and propagation of 
waves on a flat beach and the collapse of a water column. In the first case study, the SPH results were compared to the results 
provided by the Eulerian modeling (Boussinesq-type nonlinear wave equations solved by the finite difference method and 
validated from laboratory data). It was verified that the laminar shear stress modeling is the most adequate in the wave period 
and wave amplitude simulated, although great divergences have not been noticed in relation to the other models used. In the 
collapse of the water column study, the SPH results obtained after implementation of different approaches for the diffusive 
terms of the N–S equations presented good agreement with experimental or literature data.

Keywords SPH simulations · Turbulence · Large eddy simulation · SGS shear stresses · Artificial viscosity

List of symbols
a   Superscript that refers to the fixed 

particle
b   Superscript that refers to the neighbor 

particle
B   Coefficient related to the fluctuations 

of density
c   Sound velocity in the fluid

Cl   Constant in the sub-grid scale (SGS) 
shear stress tensor calculus

Cs   Smagorinsky constant
d

dt
   Material or substantive derivative

f̃    Favre average of the function f
�   Gravity in vectorial notation
gi   Gravity in Einstein notation
h   Smoothing length
h   Mean sea level
H   Total depth
i   Subscript that refers to the Cartesian 

directions
j   Subscript that refers to the Cartesian 

directions
k   Scale factor that depends on the ker-

nel employed in the interpolations
kh   Support radius
m   Mass
n   Number of neighboring particles
P   Pressure
P�

dyn
   Dynamic pressure acting on the fixed 

particle
S̃ij   Strain rate tensor
t   Time
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uj   Fluid velocity in Einstein notation
�   Fluid velocity in vectorial notation
�max   Maximum fluid velocity in the 

simulation
�   Spatial position in vectorial notation
�
a   Spatial position of the fixed particle

�
b   Spatial position of the neighbor 

particle
xi   Spatial position in Einstein notation
|� − �

�|   Distance between the position of 
a fixed and a variable point at the 
domain

W(� − �
�, h)   Smoothing function (kernel

Greek symbols
��   Coefficient used in the calculation of 

the artificial viscosity
γ  Exponent in the Tait equation
Δx   Initial particle spacing
�ij   Kronecker delta function
η   Surface elevation
k   Turbulence kinetic energy
�   Dynamic fluid viscosity
�   Kinematic fluid viscosity
�a   Kinematic viscosity of the fixed 

particle
�t   Eddy viscosity
Πab   Artificial viscosity
�   Fluid density
�   Spatial filtered density
�0   Density of the fluid in rest
�∗   Sub-grid scale (SGS) shear stress 

tensor
�ij   Elements of the sub-grid scale (SGS) 

shear stress tensor
Ψa   Diffusive terms of the fixed particle 

related to the viscosity and turbulence 
effects

�2   Factor that prevents numerical differ-
ences when two particles approach 
one another

∇   Vector differential mathematical 
operator(

�a∇2
�
a
)
LAMINAR

   Laminar shear stresses of the fixed 
particle

1 Introduction

In principle, Navier–Stokes equations can be used to sim-
ulate both laminar and turbulent flows without averaging 
or approximations other than the necessary numerical dis-
cretizations [1]. Theoretically, with the employment of an 

adequate numerical model, the conservation equations that 
describe physical phenomena involved in the sciences/ engi-
neering problems could be solved.

There is the scarce literature dedicated to the study and 
implementation of approximations for the diffusive viscous 
terms and turbulence in the momentum equation (when 
solved using the incompressible SPH Lagrangian method). 
[2] is the recent and rare literature that deals with diffusive 
viscous terms in particle methods, which can be cited.

There are other references dedicated to the study of dif-
fusive terms (numerical) in the SPH method, as [3–5], for 
example. The introduction of an additional diffusive term 
in the continuity equation (to reduce the numerical noise 
inside the density field obtained from the SPH interpola-
tions) is proposed. Considering that the pressure field is 
evaluated from the density field, from a state equation, a 
smoother density field leads to a more accurate pressure 
field.

This paper is dedicated to the presentation of common 
modelings for the diffusive viscous terms in the momen-
tum equation and turbulence used in particle simulations 
of incompressible and isothermal Newtonian fluid flows, 
with analysis of the results. Besides, a brief literature 
review on the turbulence models implemented in the 
momentum equation in SPH simulations is presented. 
Particular attention is given to the large eddy simulation 
(LES) turbulence model—utilized in this work with the 
application of the sub-grid scale (SGS) model.

In this work, four different approaches have been 
applied in the modeling of the diffusive terms in the 
momentum equation: (a) artificial viscosity, (b) laminar 
shear stress, (c) laminar shear stresses + turbulence model 
(LES) and (d) laminar shear stresses + artificial viscosity. 
Simulations have been performed for the generation and 
propagation of waves on a flat beach and the collapse of 
a water column.

In the first case studied, Lagrangian and Eulerian 
numerical models were applied in simulations. Numeri-
cal codes based on the Lagrangian SPH method (SPHys-
ics) and Boussinesq-type nonlinear wave equations 
(FUNWAVE2D) were used. A detailed description of the 
SPHysics and FUNWAVE2D can be found in [6] and [7, 
8], respectively.

In the collapse of a water column, two Lagrangian 
codes were used in the numerical simulations: SPHysics 
and the computational tool presented in [9, 10]. SPHys-
ics code were validated for use in this specific problem 
from laboratory experiments [11, 12]. [13] brings some 
simulation results provided by SPHysics to this problem, 
using different viscosity treatments. The computational 
tool presented in [9, 10] employed a modeling of viscosity 
(laminar shear stresses + artificial viscosity) unavailable 
in SPHysics and validated from experimental data.
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The remainder of this scientific work is organized as fol-
lows. In Sect. 2, the physical–mathematical modeling and 
the SPH method are presented. A brief literature review of 
turbulence models applied in SPH Method is provided to 
the reader in Sect. 3. Section 4 presents the viscosity and 
turbulence modelings employed in the simulations of this 
work. The numerical simulations performed and discussions 
are in Sect. 5. Finally, conclusions are presented in Sect. 6.

2  Physical–mathematical modeling

This section brings the physical–mathematical modeling 
used in this paper as well as a brief presentation of the 
smoothed-particle hydrodynamics method. A more com-
plete presentation of the SPH method can be found in the 
literature [14].

2.1  Lagrangian particle modeling and the SPH 
method

The physical conservation equations (mass and momentum) 
employed in this paper to a Newtonian, incompressible and 
isothermal fluid flow are presented in Table 1 along with the 
respective SPH approximations.

The SPH method is employed in the solution of the partial 
differential equations used to express the physical conserva-
tion equations mathematically.

According to the Lagrangian approach, the continuum 
domain is discretized into a finite number of particles to 
obtain the physical properties from interpolations of the 
physical properties of the neighboring particles (inside 
a domain of influence with a support radius equal to kh ). 
These interpolations employ smoothing functions (or ker-
nels) that have to satisfy some properties: convergence, 
smoothness, positivity, symmetry, normalization within the 
support domain and compact support.

Figure 1 shows the disposition of the particles within 
the domain of influence. The fixed particle is located in 
the center of the local domain and its physical properties 
are obtained from the interpolation of the properties of the 
neighboring particles. The kernel guarantees the greatest 

contribution of the nearest neighboring particles to the value 
of the physical quantity in the reference (fixed) particle.

Reprinted by permission from Springer: Springer Nature 
Switzerland AG. Smoothed Particle Hydrodynamics: Funda-
mentals and Basic Applications in Continuum Mechanics by 
Carlos Alberto Dutra Fraga Filho. Copyright 2019.

The cubic spline kernel, presented below, has been used 
in this work for 2-D simulations. Other kernels used in SPH 
interpolations could be found in [14].

SPH provides approximations of the physical proper-
ties (such as density and temperature), gradients (such as 
the pressure gradients), divergences (such as the veloc-
ity divergences) and Laplacians (such as the Laplacian of 

(3)

W(� − �
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Table 1  Physical conservation equations and the SPH approximations

Partial differential equations (continuum domain) SPH approximations (domain discretized by particles)

Continuity equation:d�
dt

= −�∇.� d�a

dt
=

n∑
b=1

m
b
(
�
a − �

b
)
.∇W(�a − �

b, h)
(1)

Momentum equation:d�
dt

= −
∇P

�
+ �∇2

� + � d�a

dt
= −

n∑
b=1

m
b

[
Pa

(�a)2
+

Pb

(
�b
)2

]
∇W(�a − �

b, h)

+ Ψa + � (2)

Fig. 1  Graphical representation of the domain of influence. The refer-
ence particle has as neighbors all particles within the domain defined 
by the circumference with support radius equal to kh
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temperature and Laplacian of velocities), with a second-
order error [14].

In this method, in simulations for incompressible fluids, a 
state equation is used for the prediction of the pressure field. 
In this paper, the Tait equation was used:

where � = 7, for incompressible fluid simulations.
In order for the Tait equation to be applied in the predic-

tion of the pressure field of the fluid, the maximum value of 
the Mach number must be 0.10. Thus, c = 10||�max

|| , where 
�max is the maximum velocity of the fluid in the simulation.

The next section brings a brief explanation of turbulence 
concepts and especially of the LES turbulence model.

3  Brief literature review of turbulence 
models applied to the SPH method

Direct numerical simulation (DNS) is the first and most 
intuitive method employed in an attempt to capture the 
turbulence effects in fluid flows. The whole spectrum of 
turbulence scales from solving Navier–Stokes equations 
(no other modeling is required) is resolved. The discre-
tization of the domain must capture all the dissipation of 
kinetic energy in the numerical solution of the conserva-
tion equations in a high number of spatial points defined 
in the domain (from the smallest dissipative scales—Kol-
mogorov microscales, up to the integral scale, associated 
with the motions containing most of the kinetic energy). 
DNS requires an extremely refined spatial and temporal 
discretization (with a great computational effort) lead-
ing to good results for low Reynolds numbers, which is 
a small fraction of the problems in the universe of fluid 
dynamics [14]. The literature presents successful applica-
tions of DNS in the particle simulation of decaying tur-
bulence in a nonslip square box [15] and laminar periodic 
hill flow [16].

In most realistic turbulent flows, which present mod-
erate to high Reynolds numbers, it is necessary to carry 
out the implementation of a turbulence model. The 
traditional closure turbulence models to the Reynolds-
averaged Navier–Stokes (RANS) equations—using the 
Boussinesq eddy viscosity assumption, the mixing-length 
� − Lm model, the two-equation � − ε model and the 
explicit algebraic Reynolds stress (EARSM) models—
as well as the large eddy simulation (LES) model—are 
presented in [16], when applied to the smoothed-particle 

(4)Pa
dyn

= B

((
�a

�0

)�

− 1

)

(5)B =
c2�0

�

hydrodynamics (SPH) method. Validation tests have been 
performed in the following cases: (a) open-channel tur-
bulent steady flow ( � − Lm , � − ε and EARSM), (b) 2-D 
collapse of a water column ( � − Lm , � − ε and EARSM) 
(c) 3-D turbulent open-channel flow (LES) and (d) 3-D 
collapse of a water column (LES).

Large eddy simulation is a technique for turbulence 
modeling employed in various areas of fluid dynamics. 
Some important applications are presented in the litera-
ture: gas turbines [17]; atmospheric boundary layer [18]; 
wind tunnel simulations [19]; aeronautics, aeroacoustics 
and wall layer modeling [20, 21]; simulations of closed 
turbulent channel flow [22]; simulation of a near-shore 
solitary wave mechanics [23]; wave interaction with a 
floating breakwater [24]; breaking of plunging waves 
[25], among others.

LES is used in the simulation of large scales of turbu-
lent motions. Using a spatial filter, LES divides turbu-
lence flow into large-scale and small-scale (grid scale) 
motions. The large eddies contain most of the turbulent 
kinetic energy and are retained, and solved for directly 
from the averaged equations. The smaller scales of the 
turbulent motion extract and dissipate energy from the 
larger scales, and are removed from LES using a low-pass 
filter [6, 20, 21, 26–29]. As a consequence, in the result-
ing filtered equations, additional terms, called sub-grid 
scale (SGS) shear stresses, appear and will be solved by 
a closure turbulence model. When the grid size is suffi-
ciently small, the impact from the sub-grid scale models 
on the flow motion will be small.

Favre-averaged filter is commonly used in the process 
of separation of the turbulence scales [6, 20, 26]. For a 
physical property f  , the Favre-averaging is f̃ =

(
𝜌f
)/

𝜌 , 

where − denotes a spatial filtering.
After passing the filter, the mass and momentum con-

servation equations for a Newtonian and incompressible 
fluid flow can be written (in Einstein notation) as follows:

where:
�∗ is the sub-grid scale (SGS) shear stress tensor which 

has the following elements:

(6)
𝜕𝜌

𝜕t
+

𝜕(𝜌ũi)

𝜕xi
= 0

(7)

𝜕(𝜌ũi)

𝜕t
+

𝜕(𝜌ũiũj)

𝜕xj
= −

𝜕P

𝜕xi
+

𝜕
(
2𝜇S̃ij −

2

3
𝜇𝛿ijS̃ij

)

𝜕xj
+ 𝜌gi −

𝜕𝜏∗

𝜕xj

(8)𝜏ij = −𝜌(ũiũj −�uiuj), (i, j) = 1, 2, 3
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�ij  i s  t h e  K r o n e c k e r  d e l t a  f u n c t i o n 
( �ij = 1, if i = j; �ij = 0, if i ≠ j ) and (i, j) = (1, 2, 3) rep-
resent the Cartesian directions.

To solve the LES equations using the SPH method, 
Eqs. (6)-(7) were writen in the Lagrangian form:

The effects of the unresolved scales are contained in the 
SGS shear stress tensor and represent the motion that occurs 
on a scale smaller than the grid spacing Δx . In the SPH 
method, the SGS stress tensor represents the turbulent eddies 
smaller than the particle size [6]. There are different SGS 
models and most of them employ an eddy viscosity assump-
tion (based on Boussinesq’s hypothesis) to model the shear 
stress tensor [21, 27, 29]. The formulation presented below 
for the components of the SGS stress tensor—according to 
[13]—was used in the simulations performed in this work:

where S̃ij is the strain rate tensor, i and j are subindexes that 
refer to the Cartesian directions.

Eddy viscosity models are used to determine �t . Using the 
equilibrium assumption (that the turbulence in a grid with 
small-scale eddies is in equilibrium, and the dissipated energy 
is implemented from the large-scale eddies), the Smagorinsky 
model [30] can be used to calculate the eddy viscosity:

 where 
|S| = (

2Sij Sij
)0.5 and Cs is the Smagorinsky constant 

(0.1–0.2) [31]. In the simulation of this work, C
s
 was used 

as 0.12.

(9)S̃ij =
1

2

(
𝜕ũi
𝜕xj

+
𝜕ũj

𝜕xi

)
, (i, j) = 1, 2, 3

(10)
d�̄�

dt
= −�̄�

𝜕ũj

𝜕xj

(11)dũi

dt
= −

1

�̄�

𝜕P̄
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+

1
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2𝜇 �Sij −

2

3
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)
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1
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𝜕𝜏∗

𝜕xj

(12)
𝜏ij

𝜌
= 𝜐t

(
2S̃ij −

2

3
k𝛿ij

)
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2

3
ClΔ

2𝛿ij
|||S̃ij
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2
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3
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2
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0.5

Δ =
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2Δx2
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2

(14)�t =
(
CsΔ

)2|S|

4  Viscosity and Turbulence Models

Some different proposals are presented in the literature 
to model the diffusive terms in the SPH approximation of 
the momentum conservation equation. The approaches to 
the diffusive terms ( Ψa ) used in this work are presented 
below.

4.1  Artificial viscosity ( 5ab)

The artificial viscosity formulation [32, 33] is used in 
fluid flow simulation instead of the diffusive viscous 
terms in the momentum equation. It is commonly applied 
because of its simplicity. However, it is important to note 
that employed this way, the artificial viscosity becomes 
only a computational solution tool. For an adequate 
choice of some coefficients it is necessary to achieve the 
satisfactory simulation results. The form proposed in this 
article is shown in Eq. (15):

The diffusive terms of the fixed particle modeled using 
the artificial viscosity is presented below.

Instabilities occur with the use of artificial viscosity. To 
reduce these undesirable effects arising from the use of this 
numerical correction, the use of conservative smoothing was 
proposed in the literature. However, the validated results 
were not presented for fluid flows in two or three dimen-
sions [34–36].

4.2  Laminar shear stresses

The diffusive terms Ψa are the laminar shear stresses of the 
fixed particle, 

(
�a∇2

�
a
)
LAMINAR

 , which can be obtained from 
Eqs. (17) and (18), presented in [6] and [10], respectively:

(15)Πab =

⎧⎪⎨⎪⎩

−𝛼𝜋𝜇
abcab

𝜌ab

, if
�
�
a − �

b
�
.
�
�
a − �

b
�
< 0,

0, if
�
�
a − �

b
�
.
�
�
a − �

b
�
≥ 0.

�ab =
hab

(
�
a − �

b
)
.
(
X
a − X

b
)

|||X
a − X

b|||
2

+ �2

,

c
ab =

ca + cb

2
, �ab =

�a + �b

2
, h

ab =
ha + hb

2
.

(16)Ψa = −

n∑
b=1

mbΠab∇W(�a − �
b, h)
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The first proposal for laminar shear stresses—Eq. (17)—
is used in the SPHysics code [6] and the second one in the 
computer code presented in [9, 10] utilized in the simulation 
of the collapse of a water column.

4.3  Laminar shear stresses + sub‑grid scale (SGS) 
turbulence model

In this model, the diffusive terms Ψa are composed of two 
parcels, related to laminar shear stresses (Eqs. (17)–(18)) and 
sub-grid scale (SGS) shear stresses, as shown in Eq. (19):

where �∗ is the sub-grid scale (SGS) shear stress tensor—
defined in Eq. (7).

The last term on the right hand side of Eq. (19) is pre-
sented in [6, 13, 23, 26].

4.4  Laminar shear stresses + artificial viscosity

In this approach, proposed in [38], the term related to lami-
nar shear stresses is implemented as well as the term related 
to the artificial viscosity as shown in Eq. (20):

The last term on the right-hand side of Eq. (20) is pre-
sented in Eq. (16) and works as a numerical correction to 
avoid numerical instabilities and the interpenetration among 
particles.

From the physical point of view, in problems involving 
mainly shock waves there is conversion of kinetic energy 
into heat. That energy transformation can be represented as a 
form of viscous dissipation and needs to be measured; which 
is carried out with the artificial viscosity. It should be noted 
that in [37] the objective of the authors when applying the 
artificial viscosity was different from that presented in sub-
sect. 4.1 (in which the artificial viscosity directly replaced 
the viscous terms in the momentum equation).

This modeling was implemented by the authors of this 
paper. It was utilized, and the results analyzed, in the second 

(17)
Ψa =

(
�a∇2

�
a
)
LAMINAR

=

n∑
b=1

m
b

[
4�a(

�a + �b
)
(
�
a − �

b
)

||�a − �b||2
.∇W(�a − �

b
, h)

](
�
a − �

b
)

(18)
Ψa =

(
�a∇2

�
a
)
LAMINAR

=

n∑
b=1

m
b

[
2�a

�b

(
�
a − �

b
)

||�a − �b||2
.∇W(�a − �

b
, h)

](
�
a − �

b
)

(19)

Ψa =
(
�a∇2

�
a
)
LAMINAR

+

n∑
b=1

mb

[
�

∗a

(�a)2
+

�
∗b

(
�b
)2
]
.∇W(�a − �

b, h)

(20)Ψa =
(
�a∇2

�
a
)
LAMINAR

−

n∑
b=1

mbΠab∇W(�a − �
b, h)

case studied (presented in Sect. 5.2: the collapse of a water 
column).

5  Numerical simulations

In this paper, simulations have been performed for the gen-
eration and propagation of waves on a flat beach and collapse 
of a water column, presented below.

5.1  Generation and propagation of waves on a flat 
beach

Three zones can be delimited in a beach: wave breaking 
zone, surf zone and swash zone. In the breaking zone the 
dissipation of the wave energy occurs. The surf zone is the 
region in which the wave propagates after the break. The 
swash zone, located immediately, is important because a 
substantial part of the total coastal sediment transport occurs 
in this region. On the coast line, the movement of the wave 
is forward, climbing the beach (run-up), and backward, 
descending the beach (run-down), delimiting the swash zone 
[38]. The action of breaking waves and run-up results in a 
highly complex movement, comprising medium and orbital 
movements and fluctuations (turbulence).

The Lagrangian simulations were performed with and 
without the use of a turbulence model.

5.1.1  Software

The computational tools employed in the wave simulations 
were the SPHysics and FUNWAVE2D non-commercial 
software.

The first software is an open computer code developed in 
FORTRAN programming language and based on smoothed-
particle hydrodynamics (SPH) for the study of free surface 
flows [6, 13]. It is the result of collaboration by research-
ers from Johns Hopkins University (USA), the University 
of Vigo (Spain) and the University of Manchester (UK). 
SPHysics presents the options to use artificial viscosity, 
laminar shear stresses or laminar shear stress + SGS shear 
stresses (for turbulence modeling) in simulations.

FUNWAVE2D is a non-commercial FORTRAN soft-
ware, produced by the Center for Applied Coastal Research 
(CACR, Delaware, USA). This code employs the numerical 
method of finite differences to solve the Boussinesq-type 
nonlinear wave equations and to simulate surface waves in 
coastal areas including internal and external surf zones. The 
wave breaking is treated using a formulation of artificial tur-
bulent viscosity. A simple eddy viscosity-type formulation 
is used to calculate the wave energy dissipation caused by 
the wave breaking [39]. A validation study of this software 
(from laboratory data) applied to the simulation of wave 
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propagation in deep waters and shoaling zones up to the 
breaking region is in [40].

5.1.2  Simulated domain, initial and boundary conditions

It was simulated a beach domain with 2.75 m in exten-
sion in the inclined region (with an angle of 4.2364°). The 
amplitude and period of the wave were 0.01 m and 1.40 s, 
respectively, and the water level 0.18 m. The water was con-
sidered a viscous, incompressible and isothermal fluid. The 
kinematic viscosity was 1.0 ×  10–6  m2/s.

In the SPHysics simulations, the Lagrangian SPH 
method was employed to solve the conservation equations 
of mass and momentum, Eqs. (1) and (2). Considering an 
isothermal flow of water, the energy conservation equa-
tion does not need to be solved. In the discretization of 
the domain, 4,221 water particles were employed from 
0.00 to 3.75 m. The lateral distance between the centers of 
mass of two neighboring particles was 0.01 m. The sup-
port radius was defined as 0.013 m (approximately 1.30 
times the initial spacing between the centers of mass of 
the particles). Dynamic boundary particles—described in 
[6]—were disposed on the contours (fixed bottom of the 
beach and paddle). An amount of 387 fixed particles was 
used to represent the bottom of the beach and 31 mobile 
particles were fixed initially at the position 0.13 m of the 
domain to represent the motion of the flap-type wave-
maker. The search for neighboring particles was made 
using the linked list technique [41]. Two link lists were 
used in the search for neighboring particles. The first one 
tracked the boundary particles of the wavemaker and the 
second one tracked the fluid particles. The wave ampli-
tude was 0.02 m. In the Tait equation, the coefficient B 
was 7.175 ×  105 kg/ms2 and �0 was 1,000 kg/m3. Shepard 
filter was used in the density renormalization every 30 
time steps. Kernel correction or kernel gradient correc-
tion [6] were not applied. A time step of 4.5 ×  10–5 s was 
used to simulate the generation and propagation of the 
waves over a time simulation of 30.00 s. Figure 2 shows 
the geometry, the particles disposed inside the domain (in 
blue), on the paddle (mobile, in red) and on the bottom of 
the channel (immobile, in black).

In the Eulerian simulations carried out aiming to verify 
the SPH results, the FUNWAVE2D software was used. A 
domain mesh with 156 nodes in the horizontal direction 
and 21 nodes in the vertical direction was used. The spac-
ing between dots in the horizontal direction was 0.05 m 
with a total horizontal distance of 7.75 m. Vertically, the 
spacing varied with the total depth, given by H = h + � , 
where h is the mean sea level and � is the surface eleva-
tion, defining a sigma-type mesh.

The dimensions of the Eulerian domain ranged 
from − 4.00 to 3.75 m. The time simulated was 30.0 s, 
with a time increment of 1.0 ×  10–3 s during the simula-
tions. The wave breaking was treated by an artificial tur-
bulent viscosity formulation, which can promote a more 
realistic description of the beginning and the end of the 
wave breaking in quantitative terms (in terms of the dis-
sipated energy) [40, 42, 43]. For the time integration, 
in both Eulerian and Lagrangian simulations, the pre-
dictor–corrector method was used and the CFL number 
assumed a value of 0.20.

5.1.3  Results and discussion

SPH simulations were performed for three different treat-
ments of the diffusive terms present in Eq. (2): (a) lami-
nar shear stresses; (b) laminar shear stresses + SGS shear 
stresses; and (c) artificial viscosity, with �� = 0.05, 0.20 
and 0.30.

The wave period was 1.40 s and the wave amplitude 
was 0.01 m in all cases. The simulation results were plot-
ted and the wave elevations can be shown in Figs. 3, 4, 
5, 6. The reaching of the wave over the beach and its 
elevation are shown in the time instants 10.0, 15.0, 20.0 
and 28.0  s, for different modelings of viscosity and 
turbulence.

The results are present in Tables 2, 3, 4, 5, 6, 7, 8, 9 
and Figs. 3, 4, 5, 6. They can be divided into two groups. 
The first is composed by the results provided by the 
physical modelings for the diffusive terms, that is, lami-
nar shear stresses and laminar shear stresses + SGS shear 
stresses (in the first two lines of Figs. 3, 4, 5, 6). The sec-
ond group has as elements the SPH results achieved when 

Fig. 2  Simulated geometry and 
initial setup of the fluid and 
boundary particles
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Fig. 3  SPH and Eulerian (red line) simulation results at t = 10.0 s. From the top of the page: laminar shear stresses + SGS shear stresses, laminar 
shear stresses and artificial viscosity modelings (with �� = 0.05, 0.20 and 0.30, respectively)
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Fig. 4  SPH and Eulerian (red line) simulation results at t = 15.0 s. From the top of the page: laminar shear stresses + SGS shear stresses, laminar 
shear stresses and artificial viscosity modelings (with �� = 0.05, 0.20 and 0.30, respectively)
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Fig. 5  SPH and Eulerian (red line) simulation results at t = 20.0 s. From the top of the page: laminar shear stresses + SGS shear stresses, laminar 
shear stresses and artificial viscosity modelings (with �� = 0.05, 0.20 and 0.30, respectively)
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Fig. 6  SPH and Eulerian (red line) simulation results at t = 28.0 s. From the top of the page: laminar shear tresses + SGS shear stresses, laminar 
shear stresses and artificial viscosity modelings (with �� = 0.05, 0.20 and 0.30, respectively)
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the artificial viscosity was solely employed as a purely 
computational modeling to the diffusive terms present in 
Eq. (2)—in the third and fourth lines of Figs. 3, 4, 5, 6.

From the results presented in Table 2, the percentage 
relative errors between the modelings 2–6 and 1 (defined as 
standard) were calculated, as shown in Table 3. The last line 
in the table presents the average of the relative errors along 
the points in the domain where the free surface elevations 
were measured.

From the results presented in Table 4, the percentage 
relative errors between the modelings 2–6 and 1 (defined as 
standard) were calculated, as shown in Table 5. The last line 
in the table presents the average of the relative errors along 
the points in the domain where the free surface elevations 
were measured.

From the results presented in Table 6, the percentage 
relative errors between the modelings 2–6 and 1 (defined as 
standard) were calculated, as shown in Table 7. The last line 
in the table presents the average of the relative errors along 
the points in the domain where the free surface elevations 
were measured.

From the results presented in Table 8, the percentage 
relative errors between the modelings 2–6 and 1 (defined 
as standard) were calculated, as shown in Table 9. The last 
line in Table presents the average of the relative errors along 
the points in the domain where the free surface elevations 
were measured.

Analyzing the free surface elevation results, in the first 
group, it was verified that the laminar shear stresses mod-
eling resulted in wave elevations more adjusted to those 
provided by the Eulerian modeling—the Boussinesq-type 
nonlinear wave equations, used as standard of comparison 
and presented in Appendix, mainly from t = 20.0 s. However, 

the results obtained from the laminar shear stresses + SGS 
shear stresses approach showed, in general, a good agree-
ment with the Eulerian modeling, according to the previous 
results shown in [44]. In particular, at t = 28.0 s, higher dif-
ferences in wave elevations were noted, when comparing 
this last modeling with the reference Eulerian results. In 
conclusion, in the physical modeling of the diffusive terms, 
the effects of the turbulence were not significant—due to 
the low Reynolds number in the period and wave amplitude 
simulated.

The second group of results (in last three lines of Figs. 3, 
4, 5, 6 and modelings 4 to 6 in Tables 2, 3, 4, 5, 6, 7, 8, 9) 
showed that the application of the artificial viscosity in the 

Table 2  Free surface elevation 
at t = 10.0 s (in meters)

*1-Boussinesq-type nonlinear wave equations; 2-Laminar + SGS Shear Stresses; 3-Laminar Shear Stresses; 
4-Artificial Viscosity (with �� = 0.05); 5-Artificial Viscosity (with �� = 0.20); 6-Artificial Viscosity (with 
�� = 0.30)

Modeling applied

Position at the 
domain (m)

1* 2 3 4 5 6

0.25 0.174 0.193 0.186 0.193 0.186 0.192
0.50 0.179 0.196 0.194 0.196 0.193 0.196
0.75 0.192 0.201 0.199 0.199 0.197 0.196
1.00 0.191 0.187 0.194 0.199 0.197 0.196
1.25 0.182 0.182 0.190 0.194 0.193 0.191
1.50 0.173 0.182 0.186 0.190 0.188 0.186
1.75 0.173 0.186 0.186 0.193 0.188 0.186
2.00 0.177 0.186 0.186 0.189 0.184 0.190
2.25 0.190 0.186 0.182 0.189 0.188 0.190
2.50 0.190 0.185 0.177 0.184 0.188 0.190
2.75 0.169 0.178 0.177 0.179 0.180 0.185
3.00 0.176 0.171 0.169 0.178 0.179 0.184

Table 3  Percentage relative error between the results achieved from 
the modelings 2–6 and Boussinesq-type nonlinear wave equations at 
t = 10.0 s

Position at the 
domain (m)

2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

0.25 10.92 6.90 10.92 6.90 10.34
0.50 9.50 8.38 9.50 7.82 9.50
0.75 4.69 3.65 3.65 2.60 2.08
1.00 2.09 1.57 4.19 3.14 2.62
1.25 0.00 4.40 6.59 6.04 4.95
1.50 5.20 7.51 9.83 8.67 7.51
1.75 7.51 7.51 11.56 8.67 7.51
2.00 5.08 5.08 6.78 3.95 7.34
2.25 2.11 4.21 0.53 1.05 0.00
2.50 2.63 6.84 3.16 1.05 0.00
2.75 5.33 4.73 5.92 6.51 9.47
3.00 2.84 3.98 1.14 1.70 4.55
Average of 

the relative 
errors

4.89 4.91 6.26 5.00 6.14
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momentum equation can lead to the reasonable numerical 
results (depending on the best choice of the coefficient �� , 
which is a function of the problem studied) although a purely 
computational term is applied in the substitution of the dif-
fusive terms Ψa.

Regarding the maximum wave elevations (at the end of 
the wet region, on the sloping area of the beach), the Bouss-
inesq-type nonlinear wave equations provided the highest 
values in the simulations (18.8, 19.0, 19.4 and 19.6 cm in the 
time instants 0.10, 0.15, 0.20 and 0.28 s, respectively). The 

maximum differences between the wave elevations provided 
by the Eulerian and Lagrangian models were: + 0.8 cm at 
t = 10.0 s (comparing 1st and 4th modelings), + 0.5 cm at 
t = 15.0 s (comparing 1st and 5th modelings), + 1.4 cm at 
t = 20.0 s (comparing 1st and 5th modelings) and + 1.4 cm 
at t = 28.0 s (comparing 1st and 4th modelings).

Reference [33] is a study that presents an analysis of the 
effects of the artificial viscosity in simulations of propaga-
tion of regular waves.

5.2  Collapse of a water column

5.2.1  SPHysics simulations (using artificial viscosity, 
laminar shear stresses and laminar + SGS shear 
stresses)

SPHysics software has been used to simulate the collapse 
of the water column. Laboratory experiments shown in [11, 
12] have been used in the validation of this computational 
tool for utilization in this case. The software has been used 
in simulations presented in this subsection.

5.2.1.1 Simulated domain, initial and  boundary condi-
tions The dimensions of the tank were 4.00 m × 4.00 m and 
the water column had a width of 1.00 m and an initial height 
of 2.00 m. The particles were arranged with an initial sepa-
ration between their centers of mass of 3.00 cm. The time 
step started at 1.00 ×  10−4 s, varying, and it was calculated 
by the criterion presented in [6].

The continuity and momentum equations were solved. 
The Tait equation was used to predict the particle pressure 
field. The coefficient B was equal to 2.803 ×  105 kg/ms2 and 

Table 4  Free surface elevation 
at t = 15.0 s (in meters)

*1-Boussinesq-type nonlinear wave equations; 2-Laminar + SGS Shear Stresses; 3-Laminar Shear Stresses; 
4-Artificial Viscosity (with �� = 0.05); 5-Artificial Viscosity (with �� = 0.20); 6- Artificial Viscosity (with 
�� = 0.30)

Modeling applied

Position at the 
domain (m)

1* 2 3 4 5 6

0.25 0.197 0.193 0.191 0.189 0.189 0.197
0.50 0.189 0.184 0.182 0.189 0.190 0.187
0.75 0.176 0.188 0.186 0.189 0.185 0.187
1.00 0.171 0.183 0.181 0.184 0.185 0.187
1.25 0.175 0.183 0.185 0.189 0.185 0.187
1.50 0.184 0.191 0.194 0.193 0.190 0.191
1.75 0.197 0.191 0.189 0.189 0.190 0.190
2.00 0.189 0.178 0.180 0.189 0.190 0.186
2.25 0.171 0.182 0.180 0.188 0.185 0.180
2.50 0.176 0.181 0.180 0.184 0.185 0.185
2.75 0.184 0.185 0.188 0.184 0.185 0.189
3.00 0.197 0.189 0.188 0.193 0.180 0.185

Table 5  Percentage relative error between the results achieved from 
the modelings 2–6 and Boussinesq-type nonlinear wave equations at 
t = 15.0 s

Position at the 
domain (m)

2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

0.25 2.03 3.05 4.06 4.06 0.00
0.50 2.65 3.70 0.00 0.53 1.06
0.75 6.82 5.68 7.39 5.11 6.25
1.00 7.02 5.85 7.60 8.19 9.36
1.25 4.57 5.71 8.00 5.71 6.86
1.50 3.80 5.43 4.89 3.26 3.80
1.75 3.05 4.06 4.06 3.55 3.55
2.00 5.82 4.76 0.00 0.53 1.59
2.25 6.43 5.26 9.94 8.19 5.26
2.50 2.84 2.27 4.55 5.11 5.11
2.75 0.54 2.17 0.00 0.54 2.72
3.00 4.06 4.57 2.03 8.63 6.09
Average of 

the relative 
errors

3.93 4.67 4.30 4.59 4.46
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�0 was 1,000 kg/m3. The treatment of boundaries occurred 
through the dynamic contour particles. In order to avoid the 
tensile instability and the interpenetration between particles, 
SPHysics applied the artificial pressure proposed in [45]. 
The density correction was done with the Shepard filter 
every 30 time steps. Kernel correction or kernel gradient 
correction were not utilized. The XSPH method was used 

for a more ordered movement of the particles during the 
simulation time. A description of these numerical correc-
tions is in [6].

5.2.1.2 Results and discussion Different modelings of vis-
cosity and turbulence were applied in the simulations. Fig-
ure 7 shows the graphical results obtained using (a) artificial 
viscosity ( �� = 0.10), (b) laminar shear stresses and (c) lami-
nar shear stresses + SGS shear stresses. The modeling (a), 
using artificial viscosity and �� = 0.10, whose results were 
presented in [13], was taken as reference in the comparison 
of the results.

Differences were observed between the simulation results. 
The behavior of the waves has shown agreement at the time 
instant 0.38 s—the vertical line in Fig. 7 shows that the wave 
fronts presented abscissas near 2.20 m in all simulations.

In t = 0.86 s, the heights of the waves over the tank wall 
were different: (a) 1.46 m; (b) 1.69 m and (c) 1.58 m. The 
separation among particles, after the impact against the tank 
wall, were observed. The final heights of 1.92 and 1.86 m 
were achieved by the detached particles in the simulations 
(b) and (c), respectively. In t = 1.30 s, the detachment of 
particles was more visible in the modelings (b) and (c).

The model that employed the laminar shear stress treat-
ment for the viscosity (c) presented a result with a reason-
able agreement with the validated simulation (a)—which 
used the artificial viscosity, with �� = 0.10. The waveforms 

Table 6  Free surface elevation 
at t = 20.0 s (in meters)

*1-Boussinesq-type nonlinear wave equations; 2-Laminar + SGS Shear Stresses; 3-Laminar Shear Stresses; 
4-Artificial Viscosity (with �� = 0.05); 5-Artificial Viscosity (with �� = 0.20); 6-Artificial Viscosity (with 
�� = 0.30)

Modeling applied

Position at the 
domain (m)

1* 2 3 4 5 6

0.25 0.175 0.179 0.177 0.177 0.183 0.186
0.50 0.175 0.184 0.182 0.186 0.187 0.191
0.75 0.184 0.188 0.186 0.191 0.192 0.195
1.00 0.191 0.185 0.191 0.191 0.191 0.200
1.25 0.191 0.188 0.191 0.191 0.191 0.200
1.50 0.179 0.188 0.182 0.191 0.191 0.195
1.75 0.175 0.184 0.178 0.186 0.186 0.191
2.00 0.175 0.184 0.182 0.186 0.186 0.191
2.25 0.184 0.188 0.182 0.186 0.190 0.191
2.50 0.197 0.193 0.191 0.191 0.194 0.195
2.75 0.179 0.188 0.182 0.195 0.189 0.195
3.00 0.179 0.184 0.182 0.186 0.184 0.195

Table 7  Percentage relative error between the results achieved from 
the modelings 2–6 and Boussinesq-type nonlinear wave equations at 
t = 20.0 s

x(m) 2 (%) 3 (%) 4(%) 5 (%) 6 (%)

0.25 2.29 1.14 1.14 4.57 6.29
0.50 5.14 4.00 6.29 6.86 9.14
0.75 2.17 1.09 3.80 4.35 5.98
1.00 3.14 0.00 0.00 0.00 4.71
1.25 1.57 0.00 0.00 0.00 4.71
1.50 5.03 1.68 6.70 6.70 8.94
1.75 5.14 1.71 6.29 6.29 9.14
2.00 5.14 4.00 6.29 6.29 9.14
2.25 2.17 1.09 1.09 3.26 3.80
2.50 2.03 3.05 3.05 1.52 1.02
2.75 5.03 1.68 8.94 5.59 8.94
3.00 2.79 1.68 3.91 2.79 8.94
Average of the 

relative errors
2.97 1.68 3.86 4.46 7.61
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were qualitatively similar in all modelings applied during 
the simulated time.

5.2.2  (Laminar shear stresses + artificial viscosity) SPH 
Simulations

The literature [46] presented a model in which the viscous 
terms were modeled using laminar shear stresses + arti-
ficial viscosity, and RBC. When the artificial viscosity is 
applied in direct substitution of the diffusive terms of the 

Navier–Stokes equations (often used in SPH simulations) 
it is a purely computational model for the fluid viscosity 
without physical meaning. According to the approach of 
this subsection, the physical viscosity is implemented in 
conjunction with the artificial viscosity (which in this case 
works as a numerical correction to avoid numerical instabili-
ties and the interpenetration between particles). A complete 
presentation of the simulations performed is in [46]. The 

Table 8  Free surface elevation 
at t = 28.0 s (in meters)

*1-Boussinesq-type nonlinear wave equations; 2-Laminar + SGS Shear Stresses; 3-Laminar Shear Stresses; 
4-Artificial Viscosity (with �� = 0.05); 5-Artificial Viscosity (with �� = 0.20); 6-Artificial Viscosity (with 
�� = 0.30)

Modeling applied

Position at the 
domain (m)

1* 2 3 4 5 6

0.25 0.179 0.189 0.188 0.191 0.193 0.197
0.50 0.192 0.200 0.187 0.199 0.197 0.201
0.75 0.195 0.200 0.191 0.195 0.197 0.197
1.00 0.186 0.192 0.182 0.191 0.193 0.193
1.25 0.174 0.188 0.178 0.186 0.189 0.189
1.50 0.169 0.192 0.182 0.191 0.189 0.189
1.75 0.173 0.195 0.181 0.191 0.189 0.189
2.00 0.185 0.199 0.189 0.199 0.193 0.193
2.25 0.197 0.203 0.189 0.191 0.189 0.182
2.50 0.176 0.195 0.181 0.186 0.189 0.189
2.75 0.172 0.190 0.180 0.186 0.189 0.189
3.00 0.176 0.202 0.188 0.191 0.185 0.189

Table 9  Percentage relative 
error between the results 
achieved from the modelings 
2–6 and Boussinesq-type 
nonlinear wave equations  
at t = 28.0 s

Position at the 
domain (m)

2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

0.25 5.59 5.03 6.70 7.82 10.06
0.50 4.17 2.60 3.65 2.60 4.69
0.75 2.56 2.05 0.00 1.03 1.03
1.00 3.23 2.15 2.69 3.76 3.76
1.25 8.05 2.30 6.90 8.62 8.62
1.50 13.61 7.69 13.02 11.83 11.83
1.75 12.72 4.62 10.40 9.25 9.25
2.00 7.57 2.16 7.57 4.32 4.32
2.25 3.05 4.06 3.05 4.06 7.61
2.50 10.80 2.84 5.68 7.39 7.39
2.75 10.47 4.65 8.14 9.88 9.88
3.00 14.77 6.82 8.52 5.11 7.39
Average of the rela-

tive errors
7.81 3.45 6.80 6.25 7.50
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computer code in which this approach was implemented is 
presented in [9, 10].

5.2.2.1 Results and discussion Figures 8 and 9 present the 
comparison of the positions of the wave fronts, based on the 
SPH simulations and experimental data provided by [47].

In the simulation using laminar shear stresses + artificial 
viscosity ( �� = 0.20), the differences between the numerical 
results and experimental data were 13.64% and 2.78% at 

the time instants 0.10 and 0.20, respectively. When using 
laminar shear stresses + artificial viscosity ( �� = 0.30), those 
differences were 17.86% and 2.33%.

From the comparison between the numerical results and 
experimental data, it can be concluded that the formulation 
using laminar shear stresses + artificial viscosity and reflec-
tive boundary conditions [48] provides a consistent solution 
to the collapse of the wave column.

Fig. 7  SPH simulation results. a Artificial viscosity, with �� = 0.10 (according to the results validated from laboratory data), presented in [13], b 
Laminar viscosity + SGS shear stresses modeling and c Laminar shear stresses modeling
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5.2.3  SPHysics (artificial viscosity) vs. (Laminar shear 
stresses + artificial viscosity) SPH simulations

The literature [37] presents a comparison between the simu-
lations performed by SPHysics and the numerical code in 
which (laminar shear stresses + artificial viscosity) were 
implemented—described in [9, 10].

In that study, SPHysics used the artificial viscosity in sub-
stitution to the diffusive terms Ψa , dynamic particles were 
applied to the boundary treatment, and corrections of the 
pressure gradients near the contours were not carried out.

(Laminar shear stresses + artificial viscosity) modeling 
and reflective boundary conditions [48] were employed in 
the second computational simulation tool [9, 10]. A coef-
ficient of restitution of kinetic energy equal to 1.00 (elas-
tic collisions of the water particles against the tank walls) 
and density and pressure gradient corrections (CSPM) were 
employed in this numerical model.

5.2.3.1 Simulated domain, initial and  boundary condi-
tions The simulated geometry was a tank whose dimen-
sions were 4.00 × 4.00 m. The water column had a width of 
1.00 m and a height of 2.00 m.

In the SPHysics, the particles were arranged with an ini-
tial separation between their centers of mass of 3.00 cm. 

In the Tait equation, the coefficient B was 2.803 ×  105 kg/
ms2 and �0 was 1,000 kg/m3. Shepard filter was used in the 
density correction every 30 time steps. Kernel correction 
and kernel gradient correction were not applied. Dynamic 
boundary particles were employed in the treatment of con-
tours. The time step started at 1.00 ×  10−4 s, varying, and it 
was calculated by the criterion presented in [6].

In the simulations performed using laminar shear stresses 
and artificial viscosity—in the code presented in [9, 10], 
the discretization of the fluid volume employed 2,556 par-
ticles with an initial lateral separation between the centers 
of mass of 2.86 cm. A cubic spline kernel was used in SPH 
interpolations. In the Tait equation, the coefficient B was 
0.85 ×  105 Pa and �0 was 1,000 kg/m3. The time step was 
1.0 ×  10–4 s (kept constant during the simulations). The coef-
ficient of restitution of kinetic energy—in the implementa-
tion of the reflective boundary conditions [48]—was equal 
to 1.00. The density correction was applied by the Shepard 
filter every 30 time steps. The pressure gradients obtained 
by the SPH interpolations were corrected (using the CSPM 
method) at each numerical iteration.

Figure 10 presents, graphically, the simulation results at 
the time instants 0.40 s and 0.80 s. The simulations were 
performed employing �� = 0.30.

Fig. 8  Simulations employing 
(Laminar shear stresses + arti-
ficial viscosity, with �� = 0.20). 
At the first line, the experimen-
tal results are presented. The 
vertical dashed line is used to 
allow the comparison between 
the positions of the wave fronts
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From the results found, it is possible to verify an agree-
ment between the positions of the wave fronts and wave 
heights in both simulations. Additionally, it is possible to 
state that it is possible to achieve the physical result through 
the employment of different modelings of Ψa , different 
boundary treatments and numerical corrections in the simu-
lations. The results provided by the second modeling were 
physically consistent (using laminar shear stresses) and the 
numerical corrections (necessary due to the errors of the 
SPH method) were performed by the artificial viscosity 
implementation.

The achievement of the consistent results depends, there-
fore, on the adjustment of parameters in the simulations per-
formed by different numerical codes.

6  Conclusions

This work presents an analysis of the modeling of the diffu-
sive terms in the momentum equation of an incompressible 
and isothermal Newtonian fluid, according to the Lagrangian 
modeling and solution provided by the SPH method. Two 
cases were studied: propagation of waves on the beach and 
collapse of a water column.

In the first case study—which used SPHysics software 
in simulations, it was verified that the physical modeling of 
the diffusive viscous terms and turbulence, employing the 
laminar shear stresses, provided more adjusted wave eleva-
tions when compared to the Boussinesq-type nonlinear wave 
equations (Eulerian results provided by FUNWAVE code, 
whose validation is in [40]) in the wave period and wave 
amplitude simulated. However, the implementation of the 
artificial viscosity in the momentum equation led to the rea-
sonable results for the wave elevations (due to the insignifi-
cance of the turbulence effects in the problem simulated), 
depending on the best choice of the coefficient ��.

In the SPHysics simulations of the collapse of the water 
column (subsect. 5.2.1), the modeling that employed the 
laminar shear stresses presented results with reasonable 
agreement with the validated results of the literature with 
�� = 0.10 [13]. In the modeling using laminar + SGS shear 
stresses, the separation among particles was observed, from 
t = 0.86 s. The waveforms were similar in all modelings 
applied in the subsection in the simulated time.

Fig. 9  Simulations employing 
(laminar shear stresses + artifi-
cial viscosity, with �� = 0.30). 
At the first line, the experimen-
tal results are presented. The 
vertical dashed line is used to 
allow the comparison between 
the positions of the wave fronts
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In subsect. 5.2.3, the simulation results provided by 
the computer code, presented [9, 10], which was imple-
mented using laminar shear stresses + artificial viscos-
ity (with �� = 0.30) and reflective boundary conditions, 
and SPHysics simulations (using artificial viscosity 
treatment, with �� = 0.30, and dynamic boundary parti-
cles in the boundary treatment) were compared. Good 
agreement has been achieved between the results of the 
simulations. In the Tait equation, the coefficient B was 
2.803 ×  105 in SPHysics and equal to 0.85 ×  105 Pa in 
the computer code implemented by the author, show-
ing that is possible to reach good results through both 
computational tools, depending on the adjustment of 
different parameters in the diffusive models.

Appendix

Boussinesq‑type nonlinear wave equations

These equations are obtained after integration of mass and 
momentum conservation equations in the vertical direction 
[49].

Continuity equation:

where the flux Mi is:

Momentum equation:
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Fig. 10  At the top: graphical results of the SPHysics simulations—
using artificial viscosity, �� = 0.30. At the second line: the simula-
tion results performed by the code presented in [9, 10], with laminar 
shear stresses + artificial viscosity ( �� = 0.30) Fraga Filho, CAD, Cha-

caltana, JTA. Revista Interdiscisplinar de Pesquisa em Engenharia, 
2(11), 2016; licensed under a Creative Commons Attribution (CC 
BY) license



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:479

1 3

479 Page 20 of 22

where the nonlinear terms Ji and  Ki are given as
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