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Abstract
The present paper introduces a new approach to the dynamics of a particle system, split into two distinct microstates dif-
fusing in a homogeneous medium. The particles belonging to the main microstate spread according to the classical Fick’s 
law and the complementary set moves excited by a new potential. Each set is associated with a particular energy level. The 
particles can move between the two sets, introducing a third flux which is internal to the system. The governing equation 
is a fourth-order PDE containing two new parameters, which can be time-dependent functions, in addition to the classical 
diffusion constant. It is shown that the solutions can avoid violations of the mass conservation requirements.

Keywords Diffusion · Energy microstates · Fourth-order PDE · Bi-flux theory · Entropy

1 Introduction

Almost all diffusion processes are focused on the motion 
of a single class of particles or components that may move 
in a certain substratum excited by a single potential. Dif-
fusion processes have shown to be adequate for modeling 
several types of phenomena ranging from physicochemical 
processes to socioeconomic behaviors. The most popular 
potential used to excite the motion of the elements in the 
process was proposed by Fick in the XIX century. Many 
experimental and theoretical works have contributed to con-
firm the adequacy of this type of process to simulate real 
events. Particularly important are the works focusing on the 
determination of the diffusion parameters in the governing 
equations.

Recently, with the improvement of observation meth-
ods, it has been possible to go deeper into physicochemical 
mechanisms and to explain more precisely certain peculiar 
behaviors. Particularly important are processes where par-
ticles may interact modifying internal properties that could 
interfere in the flux behavior. Diffusion processes involving 
two or more components spreading with different diffusion 
coefficients and responsive to intrinsic chemical reactions 
have been extensively studied. Reaction–diffusion equa-
tions are nonlinear second-order partial differential equa-
tions leading to remarkably interesting phenomena with very 
impressive pattern formations.

Despite the extraordinary development of new models 
to simulate physicochemical phenomena, most of the new 
theories are second-order linear or nonlinear differential 
equations. The same is valid for other type of phenomena 
in socioeconomics and population dynamics, knowledge 
diffusion and disease transmission making use of diffusion 
models.

Fourth-order diffusion equations have been used to model 
the behavior of several physicochemical phenomena. Most 
of the models are nonlinear, comprising reaction–diffusion 
terms. The evolution of the density distribution may pre-
sent fluctuations leading to violations of thermodynamic 
principles and mass conservation requirements. A detailed 
analysis of such equations can be found in [1, 2]. A similar 
type of phenomenon can appear in the solution of the bi-flux 
equation introduced here. However, the phenomenological 
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interpretation and the solution to solve the violations referred 
above follow a different orientation, as will be seen in the 
following sections. Particularly important is the effect of 
the time dependence of the new physical parameters on the 
behavior of the solution.

The purpose of the present paper is to introduce a new 
class of fourth-order diffusion equation. The new governing 
equation shows that the particles are divided into two sets 
excited by two different potentials Ψ1 and Ψ2. Therefore, it 
is possible to say that the particles are split into two distinct 
energy states moving simultaneously according to two dis-
tinct diffusion processes. The diffusion parameters appearing 
in the derivation of the new equation require the secondary 
flow to be subsidiary to the primary flow. The primary flow 
is consistent with classical diffusion law.

The institution of the diffusion equation as proposed here 
does not require neither artificial inclusions of extra terms 
nor higher-order expansion of the classical Fick’s potential. 
It is only necessary to impose that a fraction of the particles 
is delayed as compared with the main set following the clas-
sical diffusion theory. Both terms in the governing equation 
appear naturally in the derivation and are equally important 
since they play specific complementary roles. The bi-flux 
process is consistent with the progressive formation of a 
sequence of distinct microstates required by the proposed 
evolution law. In the particular universe that will be defined 
in the next sections, this means that the system initially 
excited in an ideal active energy state progressively collapses 
toward an ideal unrecoverable energy state.

Particularly important in this new theory is that it shows 
that it is always possible to avoid violation of physical 
requirements, provided that proper choices of the diffusion 
parameters are introduced.

2  The new diffusion equation

Let us take the discrete approach to model the diffusion pro-
cess with particles spreading in a homogeneous substratum. 
Consider the corresponding one-dimensional space divided 
into a sequence of elementary cells with length Δx as shown 
in Fig. 1. The process consists of transferring a fraction β < 1 
of the content of each cell in equal parts to the left and to the 
right neighboring cells. The complementary fraction (1 − β) 
is retained in the cell for the time interval Δt. At each time 
step Δt, the process is repeated. The mathematical represen-
tation of this procedure is given by:

qt
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 and after some 

algebraic operations, the following difference equation is 
obtained:

where Δx2
/
2Δt = D and Δx4

/
4Δt = R are scale fac-

tors corresponding to the positions of the mean values 
of the associated density distributions βqn and (1 − β)qn 
at a given time t. For the classical case, it is well-known 
that 

⟨
x
⟩
∝ t1∕2 , and for the new flux, the mean value of 

the corresponding density distribution is related to time 
as 

⟨
x
⟩
∝ t1∕4 . The parameters D and R are therefore finite 

and independent.
Let q(x,t) belong to the class  C4 with respect to the 

variable x and  C1 with respect to the variable t, taking the 
limits Δx → 0, Δt → 0 and Δq → 0, and the new governing 
equation may be written as:

The main characteristic of this new equation is to put in 
evidence the existence of two simultaneous fluxes. The par-
ticles scattering in the system are split into two sets. The first 
set corresponding to the fraction β moves according to the 
classical Fick’s law. The complementary set (1 − β) moves 
according to a new law derived from the second term on the 
right-hand side of Eq. (1). That is, Eq. (1) applies provided 
that there are two sets of particles sensitive to two distinct 
potentials, namely the classical Fick’s potential Ψ1 = q(x, t) 
and a new potential given by Ψ2 = −��2q

/
�x

2 . The respec-
tive fluxes, for a homogeneous media, are �� = −D�q∕�x�� 
and by �2 = R��3q

/
�x3��.

It is remarkable that while the classical flux depends 
only on a material constant, namely the diffusion 
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Fig. 1  Distribution with partial retention. The fraction (1-β) remains 
trapped in the cell in the time interval Δt
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coefficient D, the secondary flux depends on a new param-
eter R that we call reactivity factor and also on β which 
represents the fraction of particles diffusing according to 
the classical law. This means that the secondary flux is 
subsidiary to the main flux, it exists if and only if the main 
flux is activated. Consequently, if there are no particles in 
the main flux, β = 0, then �q∕�t = 0 the system becomes 
stationary [3, 4].

The new parameters are clearly associated with a new 
particle dynamic process intrinsic to the bi-flux phenom-
enon, namely the internal flow of particles between two dif-
ferent energy states. Each flux is associated with a particular 
energy state and the particles tend to move from the upper 
energy to the lower energy state. Therefore, the equation 
proposed here introduces a new phenomenon, namely the 
excitation of an internal flux. This third flux is expected 
to depend on the density q(x,t) which means that the new 
parameters can also be density-dependent functions, that 
is, in general, we have R = R(q(x,t) and β = β(q(x,t). In this 
paper, we will assume as a first approximation R = R(t) and 
β = β(t) as mean values in the space domain. The problem 
is therefore homogenized in the theory developed here. 
First, the behavior of solutions with R and β constant will 
be briefly examined and then a more detailed exploration for 
the case with time-dependent parameters.

3  The hard bi‑flux equation. Diffusion 
with time‑independent parameters.

Consider Eq. (1) defined in a homogeneous medium with 
time-independent coefficients. Let us call the fourth-order 
diffusion equation with D, R and β constant the hard bi-
flux diffusion equation. The solution to this equation with 
homogeneous boundary conditions may fail to represent real 
physical phenomenon introducing fluctuations in the density 
distribution leading to negative values of the density which 
is not possible for real diffusion processes [5]. Therefore, 
solutions of Eq. (1) with arbitrary choices of D, R and β 
may lead to violations of physic laws as observed by other 
authors. It is however possible to solve this problem with the 
proper interpretation of the new parameters.

The solution of the classical diffusion equation corre-
sponding to an initial distribution q(x,0) highly concentrated 
at x = 0 is always well-behaved. This is not always true for 
Eq. (1). The disturbance introduced by the secondary flux 
may lead to solutions which violate the mass conservation 
principle. The ill-behaved evolution of the concentration 
introducing fluctuations in the solution is to be attributed 
to the presence of the secondary flux in the diffusion pro-
cess. Consequently, the new parameters, R and β, play a 
fundamental role in the behavior of the bi-flux process. The 

critical parameter is the reactivity coefficient R that controls 
the secondary flux intensity.

Consider the diffusion process defined in the domain 
[0,1] subjected to homogeneous boundary conditions. The 
initial condition is given by q(x, 0) = (��)−1∕2 exp

(
−x2

/
�
)
 , 

�= 0.01 . Let us take D =  10–3 for all cases. Consider first the 
solutions for a constant reactive factor R =  10–8. The solu-
tions are shown in Fig. 2 for β = 0.2, β = 0.5 and β = 0.9. 
All the solutions, irrespectively of the values of β, do not 
violate the mass conservation principle. The concentration 
q(x,t) remains positive for all x and t. The distribution factor 
β controls the speed but do not introduces fluctuations in the 
process. The higher the value of β, the faster the spreading 
of the solution in the medium.

Now if for β = 0.2, we take the reactivity coefficient high 
enough, R =  10–4, the solution becomes incompatible with 
the mass conservation requirement. It would be only pos-
sible if an initial layer of particles were available to provide 
extra material necessary to supply the gaps created by the 
fluctuations in the process.

Solutions evolving at extremely high speeds display 
consistently at least one minimum as shown in Fig. 2d. For 
those cases, the concentration becomes negative for some 
subinterval [x1, x2] ⊂ [0,1]. This behavior has already been 
reported for several classes of fourth-order parabolic equa-
tions. If the consideration of a secondary flux concomitant 
with the primary flux is missing, it is difficult to find a plau-
sible explanation.

The violation of the mass conservation law may be 
explained by the variations of the primary and secondary 
fluxes along the x-axis. For large values of R, the distur-
bances introduced in the primary and secondary fluxes are 
disruptive, both in intensity and direction. It is possible to 
induce reversal of primary flux recruiting particles from 
regions with low density, and therefore not able to provide 
the number of particles required by the theory. It is not the 
purpose of the present paper to discuss this complex behav-
ior that is left for future analysis.

4  The soft bi‑flux equation. Diffusion 
with time‑dependent parameters.

The method used to derive the fundamental equation above 
does not incorporates possible time variations in the physi-
cal parameters. However, particularly for adiabatic process, 
it is expected R and β to be functions of time. Indeed, if the 
process occurs in an isolated environmental, it is expected 
a progressive transfer of particles from the main flux to 
the secondary flux. Particles in the main Fickian process 
migrate progressively to the secondary energy state reduc-
ing the effective active energy and increasing the rotational 
kinetic energy. This process is admissible since the theory 
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leads to the steady state as β → 0 corresponding to the maxi-
mum rotational energy level. Therefore, consistently with 
this process, both β and R must be functions of time. Note 
that β and R are interrelated as can be shown by solving the 
inverse problem [6, 7].

Let us take β(t) = G(R(t)/R0) where R0 is a normalizing 
constant. The reactivity coefficient R must be positive since 
the flux orientation is determined by the sign of �3q

/
�x3 in 

the expression of Ψ2. Now since 0 ≤ β ≤ 1 and G(0) = 1, it is 
reasonable to assume G(R/R0) as a decreasing function of R/

Fig. 2  Evolution of the concentration profiles for different values of 
the reactivity coefficient R and the fraction β of particle in the pri-
mary flux: a: β = 0.2 R =  10–8;b: β = 0.5, R =  10–8; c: β = 0.9, R =  10–8; 
d: β = 0.2, R =  10–4; t is the time interval. For R small, the solution 

does not display no extremal (a), (b) and (c) irrespectively of the val-
ues of β. For large values of R, the solution presents extremal values 
and violates the mass conservation principle (d)
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R0, or equivalently, the fraction of particles belonging to the 
secondary state (1 − β) increases with R up to a maximum 
value when the system reaches the steady state or more pre-
cisely freezes.

Now, it is possible to highlight the most significant contri-
bution characterizing the diffusion equation introduced here:

• The dynamics of the particle motion given by Eq. (1) rep-
resents a twofold process, namely the diffusion of two 
sets of particles excited by two distinct potentials and the 
simultaneous transfer of particles from the main energy 
state to the secondary degraded energy state.

• For irreversible processes—as assumed in this paper—
the new parameters R and β are interrelated time-
dependent functions. The reactivity coefficient R controls 
the intensity of the secondary flux, and the parameter β, 
the transfer process between the two energy states.

Equation (1) can now be written under a more appropri-
ated form considering the diffusion process of two micro-
states interacting with each other in an isolated system:

The fraction of particles in any of the two states does not 
affect the main flux intensity, but the fraction of particles 
β in the main state is crucial to determine the secondary 
flux intensity. It is therefore easy to see that according to 
the present theory, an irreversible diffusion process tends 
to the freezing point, β → 0, corresponding to the maximum 
rotational energy state where the active energy vanishes. All 
particles occupy a fixed position in the space domain.

We will explore the energy evolution in an ideal universe 
in the next section to explain the theory presented in this 
section.

5  Energy exchanges in a particular universe.

Let us assume an ideal universe consisting of a large number 
of particles, divided into two distinct energy microstates E1 
and E2 scattering in an isolated system, interacting with each 
other and therefore exchanging energy. In our universe, the 
total energy consists of kinetic energy divided into the two 
fundamentals forms, namely translational energy, and rota-
tional energy. Any particle may be moving with linear 
momentum p and angular momentum L, the total energy 
e = �2

/
2m + �2

/
2md , however remains constant, that is, 

e = ep + eω = constant. The active or observable energy con-
sists of the translational energy. The rotational energy 
P� ∝

(
�2

/
2md

)
 cannot be detected in our universe.

(2)
�q

�t
= �(t)D

�2q

�x2
− (1 − �(t))�(t)R0G

−1(�(t))
�4q

�x4

The hypothesis above is consistent with Eq.  (2) with 
the particles split into two sets β and (1 − β), requiring the 
secondary flux Ψ2 to be subsidiary to the primary flux Ψ1. 
Indeed, assume that all particles excited in the state E1 do 
not rotate, all kinetic energy is stored as active energy, while 
the kinetic energy corresponding to the state E2 is stored as 
active energy associated with the flux Ψ2 and the rotational 
energy Pω(β) as well.

The diffusion process introduced here assumes that at the 
very beginning, all particles belong to the energy state E1 
where all particles are excited exclusively with translational 
motion associated with the flux Ψ1, that is, E1 =  f1(|Ψ1|). As 
the process progresses, the particles interact with each other 
exchanging energy and exciting other energy states consist-
ing of translational and rotational energies. The translational 
observable energy corresponding to the second energy state 
is given by the secondary flux Ψ2. The hidden energy is the 
rotational energy Pω(β). Therefore, the total energy corre-
sponding to the secondary flux is given by E2 =  f2(|Ψ2|,Pω).

Suppose that we have a system consisting of N particles 
divided into two subsets, N1 = βN and N2 = (1 − β)N. The 
energy density or specific energy (energy/volume) corre-
sponding to N1 and N2 can be defined, respectively, as:

and

Now, let U1 and U2 be the specific energies corresponding 
to the energy states E1 and E2, respectively. Let us introduce 
the following rules that apply to our particular universe.

1. In an isolated system, the total specific kinetic energy is 
given by U1 + U2 = �||�1

||
2
/
2q + (1 − �)

(
||�2

||
2
/
2q + P�(�)

)
 

which is a time-independent function.
2. In an isolated system, the active energy component in U1 

and U2 corresponding to the flux potentials Ψ1 and Ψ2 
decreases steadily as time increases, consequently the 
fraction β necessarily decreases such that lim

t→∞
�(t) → 0

3. Since the system preserves the total kinetic energy, trans-
lational and rotational, from the first two rules, it is pos-
sible to write, U1 + U2 = Pω(0)

Consider now the diffusion process active in the interval 
x ∈ [a, b]. The system is isolated, and according to the sec-
ond rule, the total active energy tends to zero as t → ∞ con-
sistent with lim

t→∞
�(t) → 0 . Therefore, the linear momentum 

tends uniformly to zero for all x as t → ∞, that is, 
lim
t→∞

�(x, t) → 0 . Consistently with the conditions above, let 

U1 = �||�1
||
2
/
2q

U2 = (1 − �)
(
||�2

||
2
/
2q + Pw(�)

)
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us find an expression for the variation of the fraction β with 
the expected Pω(β), the rotational energy production.

Clearly, the probability of interaction among particles 
inducing a reduction in particles in state E1 is proportional to 
β. That is, the variation δβ is proportional to β. This means 
that the decay of translational or active energy into rotational 
energy (p → L) is more intense when the number of particles 
in state E1 is large, β >  > 0. The variable Pω vanishes for 
β = 1 and grows steadily as β → 0 similarly to the reactive 
factor R controlling the secondary flux intensity. Therefore, 
it is admissible to take R also as measure of the rotational 
energy.

Let T be a variable that measures the intensity of the 
active energy, such that as T increases, the active energy 
also increases. Given that the active energy is a function 
of time, then T = T(t) is also a function of time. Since the 
system is isolated and the total energy is constant, T(t) is 
also an indirect measure of the rotational energy R ≈ Pω 
which is complementary to the active energy and therefore 
a decreasing function of T (Fig. 3).

At large active energy levels T >  > 0, the rate of variation 
of the rotational energy R(T) with respect to the variable 
T is low. However, for T small, big variations of the rota-
tional energy occurs for relatively low decrease in the energy 
parameter T. Therefore, it is reasonable to assume that:

where R0 and T0 are normalizing constants. Let us take 
n = 1. The variation δβ depends therefore on two determi-
nant parameters:

(1) The fraction of particles in the main energy state given 
by β.

(3)R(T) =

(
T0

T

)n

R0

(2) The variation of the rotational energy given 
by − δ(R(T)). The negative sign meaning that δβ 
decreases as δR increases.

With the hypotheses above, it is possible to define the 
variation of β:

From which follows:

Therefore, G(R/R0) = exp(− R/R0) or R = −R0 ln � . The 
reactivity coefficient R is a measure of the distribution of 
the particles between the two fundamental energy states 
E1 and E2. For R equal zero and consequently vanishing 
rotational energy, the active energy reaches the maximum 
possible level. This state corresponds to the maximum 
fraction of the active energy that can be converted into 
work. For R → ∞, the system approaches a “dead state,” 
maximum degradation, with the active energy being pro-
gressively transferred to an unrecoverable hidden energy 
state. Therefore, the hidden energy state consists of parti-
cles whose active energy is progressively and permanently 
reduced in the process. The relative distances among all 
particles tend to remain fixed and the system approaches 
a stationary state. All the energy is stored as rotational 
energy, the system is at rest meaning that xi = constant, 
i = 1,2…N, in a given reference frame. If it would only 
be possible to measure the active energy, that is, transla-
tion, then for very large values of R, an external observer 
would assume that the system is inactive or “dead.” Maybe 
only the mass could be detected, and the rotational energy 
stored in the system would be hidden, it would be a kind of 
“non-observable energy.” The reactivity coefficient R is a 
measure of the rotational energy amount introduced in this 
paper, and it is the counterpart of the entropy as defined in 
classical thermodynamics. Let

For n = 0, we have δR = 0, and the rotational energy 
does not come into play. This hypothesis corresponds to 
the classical Fick’s theory with active energy preserved. 
For n = 1, the rotational energy is different from zero and 
refers to the energy state E2 steadily growing over time. 
For T0/T >  > 1, small variations of T imply very large 
variation of δR. That is, for T close to zero, the rotational 
energy varies extremely fast with small variations δT.

�� = �
(−�R)

R0

(4)� = exp

(
−

R

R0

)

�R

R0

= −n

(
T0

T

)n+1
�T

T0

Fig. 3  Variation of the rotational energy with the parameter T
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6  The fundamental equation 
for the simultaneous diffusion of two 
sets of particles interchanging energy 
in an irreversible process.

According to the previous section, the fourth-order Eq. (2) 
may be written in a more consistent manner regarding the 
energy distribution in the different microstates. Indeed, 
the partitions β and (1 − β) are the probabilities p1 and p2 
that particles belong to the energy state E1 or E2, respec-
tively. The reactive coefficient R is intrinsically associated 
with β = p1 as proposed in the precedent section. Rewriting 
Eq. (2) with the help of the new parameters, we have:

With S1 = R0

(
−p1 ln

(
p1
))
, Eq. (5) reads:

Note that S1
/
R0 = −p1 ln p1 is the definition of the Shan-

non entropy.
Recall that the flux intensity corresponding to the 

degraded microstate for a given variation of the density dis-
tribution �q3

/
�x3 is determined by βR = p1R = − R0p1lnp1.

Therefore, the variable S1 may be associated with the 
rate of degradation characterizing the evolution toward the 
extinction of the active energy. The physical role of S1 in the 
diffusion equation helps the understanding of the rotational 
energy evolution according to the statistic mechanics defi-
nition and information theory principles. Equation (6) says 
that the transfer of particles from the main energy state to the 
secondary energy developing in an isolated system follows 
an optimum path.

Closing this section, let us assume that R increases expo-
nentially with time and R(0) = 0, that is, the system is ini-
tially at the maximum possible active energy state:

where α is a constant characteristic of the dissipation pro-
cess. The distribution parameter or the probability of the 

(5)
�q

�t
= p1D

�2q

�x2
+ p2R0p1 ln p1

�4q

�x4

(6)
�q

�t
= p1D

�2q

�x2
− p2S1

�4q

�x4

(7)R(t) = R0(exp (�t) − 1)

system to be in the maximum convertible energy state, β = p1 
is then given by:

and

The process reaches its maximum degradation rate, max 
S1, for t = ln2/α, as shown in Fig. 4. The smaller the constant 
α, the later the process reaches its maximum activity. The 
time variation assumed for R is compatible with the expected 
evolution of the rotational energy in the system. The reac-
tivity coefficient R is an increasing function of time, and 
the exponential function is flexible enough to match most 
of the regular physicochemical reactions. The variable S1 
derives directly from the definition of R and is also compat-
ible with the expected evolution behavior of the correspond-
ing reaction. The process starts with a negligible activity 
and evolves gradually till a maximum when the degradation 
speed reaches a maximum. Thereafter, the speed decreases 
gradually approaching eventually the frozen state.

7  Examples of diffusion processes governed 
by the soft diffusion equation.

Let us show that the introduction of the correct formula-
tion to solve the bi-flux diffusion where the total internal 
energy is conserved is consistent with the mass preservation 
requirements. Consider the diffusion problem in the interval 
x ∈ [−1, 1] and t > 0. The system is isolated from the sur-
roundings; therefore, the boundary conditions correspond 
to no flux, primary and secondary, at both ends, �1

||±1 = 0  
and �2

||±1 = 0 . The initial condition is given by:

Now, consider two cases corresponding to distinct physi-
cal properties. For the first one, the parameters β and R are 
constants: D = 0.2, R = 0.02 and β = 0.5. For the second case, 
the diffusion coefficient is constant as in the first case D = 0.2 
but the fraction β = p1 and the reactivity coefficient R are 

(8)p1 = exp (1 − exp (�t))

(9)S1 = −R0(1 − exp (�t))
[
exp (1 − exp (�t))

]

(10)q(x.0) = 5 exp
(
−100x2

)

Fig. 4  a Time evolution of the 
reactivity coefficient R and b 
rate of degradation S1 for a 
given constant α
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time-dependent functions as given in Eqs. (8) and (9). The 
solutions are shown in Fig. 5 for R0 = 0.02 and α = 1.

The solution for the first case exhibits negative values of 
the concentration as shown in Fig. 5a. Therefore, this case 
would only be meaningful with the presence of an external 
source providing a sufficient number of particles to avoid 
flux disruption. This is equivalent to say that the system 
could not be isolated, for the prescribed initial conditions, 
violating the basic assumptions.

For isolated systems as considered above, the solution to 
be consistent requires R and p1 to be functions of time since 
the rotational energy is not stationary. The solution for R 
given by Eq. (7) is displayed in Fig. 5b. Negative values 
are avoided in the interval x ∈ [− 1,1], and therefore, Eq. (1) 

applies. Figure 6-c shows the time variation of the concen-
tration q(0,t) for three cases. For the first case with R and β 
constant, the process develops faster as compared with the 
classical Fick’s diffusion, R = 0. For the case where R and β 
are functions of time, the diffusion rate slightly decreases. 
The solutions show that irreversible physicochemical pro-
cesses can be consistently represented by the bi-flux equa-
tion provided that the reactivity coefficient increases gradu-
ally with time. This means, according to our proposal, that 
particles in the primary flux, microstate E1, are steadily 
migrating to the secondary flux, microstate E2, and conse-
quently increasing the rotational energy active in the system.

The reactivity factor R as given by Eq. (7) and the corre-
sponding fraction p1 are also displayed. The solution for the 

Fig. 5  Time variation of the concentration distribution on [− 1,1] for three cases; a R and p1 constants, b R function of time R = R0(exp(αt) − 1) 
and p1 = exp (− R/R0), c Classical Fick’s diffusion process (a)
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bi-flux equation is particularly sensitive to the ratio R/D for 
initial conditions consisting of particles highly concentrated at 
x = 0. Negative values of the concentration are associated with 
high values of R/D. With R = R(t) taken as function of time, 
starting with R(0) = 0, it is possible to control the time varia-
tion for R such that the solution behaves within the required 
positivity conditions. We may say that nature optimizes this 
process.

8  Conclusion

This paper introduces a new diffusion equation represent-
ing the concomitant flux of two sets of particles of the 
same nature but moving under the action of two distinct 
potentials. The process develops in a particular universe 
where the kinetic energy prevails stored into two main 

Fig. 6  a and b Time variation of R and β for the case of time-depend-
ent parameters. c Time variation of the concentration at x = 0 for the 
representative cases: classical Fick’s diffusion, diffusion process with 
R and β constants and diffusion processes with β and R functions of 

time as given by Eqs. (8) and (9). d Time variation of S1 for the case 
of time-dependent parameters associated with the speed of the degra-
dation process
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states, namely translational and rotational states. The 
translational energy can produce work and was called 
active energy, but the rotational energy corresponds to an 
idle state. Particles storing exclusively rotational energy 
are fixed in a static configuration unable to produce work. 
With the theory introduced here, for adiabatic processes, 
where the total energy is preserved, it is possible to con-
sider the transfer of active energy to rotational energy, 
leading eventually to a stationary state with the rotational 
energy reaching a maximum possible value. Even though 
the theory concerns an ideal universe, it is adequate and 
frequently necessary to model several real cases where 
change of state is an important factor in the process. Par-
ticles may switch fluxes particularly in models simulating 
population dynamics and capital flow. The classical theory 
cannot describe properly these complex phenomena.

The problem posed by the violation of the mass conser-
vation principle can be solved by the proper definition of 
the new parameters introduced in the new formulation. The 
fundamental hypothesis supporting the discrete approach 
used to derive the new equation leads clearly to the split 
of the flux into two streams dispersing at different rates. 
The main flux follows the classical Fick’s law, whereas the 
second flux is clearly dependent on the particle density in 
the primary flux. It is remarkable that this important correla-
tion helps understanding the energy exchange taking place 
in the process.

The outbreak of fluctuations in the solution is due to the 
interference of the secondary flux in the process together 
with perturbations in the primary flux. For highly concen-
trated initial distributions close to x = 0, the primary and the 
secondary fluxes, both contributes to the dispersion process 
leading to an accelerated reduction in particles close to the 
origin. But the secondary flux inverts sign at a relatively 
short distance from x = 0 recruiting particles toward the ori-
gin. But since the initial removal of particles close to the 
origin is very intense at the beginning, there are not enough 
particles to comply with the demand imposed by the sec-
ondary flux leading to negative values of the concentration.

To avoid disruptions in the density distribution, it is nec-
essary to interfere in the secondary flux. Since the secondary 
flux intensity depends on the product βR, the proper choice 
of these parameters may avoid formation of fluctuations 
and growth of negative values of the density function as 
well. With the proper choices of β(t) and R(t), the second-
ary flux develops slowly, and the density distribution allows 
for recruiting particles, inverting the flux direction, without 
disruption of the particle distribution. It is observed that for 
compatible bi-flux processes, the value of q(0,t) decreases 
slowly than for the classical Fick’s diffusion process.

It was shown that the secondary flux intensity for the 
bi-flux soft equation, with R and β = p1 both suitable 
functions of time, depends on S1 (S1 = − R0p1lnp1). This 

parameter controls the secondary flux intensity and indi-
rectly the rotational energy growth in the system. Since 
S1 is the Shannon entropy, it is possible to say that the 
diffusion process with change of energy states follows 
an optimum path. Nature optimizes the rotational energy 
growth in adiabatic processes. This is a remarkable out-
come disclosed by the present development.

The approach proposed in this paper may be particu-
larly useful in dissipation processes of living particles 
that could change states due to the liberation of internal 
energy [8]. The interaction with the surroundings with the 
interference of sources or sinks opens a large spectrum 
for applications. Besides physicochemical phenomena, the 
new equation may be helpful for the analysis of complex 
problems in population dynamics [9–12], socioeconom-
ics dynamics [13–15], capital flow, knowledge flow [16] 
spreading of contagious diseases [17], and other fields 
where the hypothesis of a single flux is not satisfactory. 
Interaction with the surroundings, spreading in nonhomo-
geneous media and inclusion of reactive terms are nec-
essary to deal with a large range of problems requiring 
coupling effects with other agents.

The bi-flux equation opens a very appropriate channel 
to deal with interactions between the particles in the dif-
fusion process and external factors. Several cases of par-
ticles sensitive to particular disturbances in the dispersing 
medium can be solved with the bi-flux equation. The pres-
ence of a pheromone in a restrict region of the dispersing 
medium is a typical example [18]. The fourth-order term is 
introduced to take into account the disturbance introduced 
by the external player in a restrict region. This type of 
problem can be modeled with the generalized equation:

where R = R(x) represents the presence of the external dis-
turbance in the corresponding domain [x1,x2].

Problems related to capital flow are also best modeled 
by using the present approach. In fact, the bi-flux process 
allows capital to flow in and out simultaneously in a given 
industrial complex as the result of selling products and 
buying supplies. The process represented by the bi-flux 
equation is controlled particularly by the R/D ratio and 
the capital fraction β at the entrance. If β is small, which 
means that the volume of capital (not the flux intensity) 
in the inflow is less than the complementary fraction in 
the outflow, even so it is possible to have a positive result 
with the increase in capital accumulation. The necessary 
condition is to reduce R, which means improving the tech-
nology by reducing the internal transfer of capital from 
the inflow to the outflow needed to import expensive 
products. Although this is a well-recognized correlation, 
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it is a primary test of the equation applied to quite simple 
problems. It simply says do not buy knowledge; internally 
generate the knowledge you need.

The bibliography was restricted to a relatively small 
number given that the present approach is very recent, and 
it was avoided introducing artificial references. In sum-
mary, we are proposing a new tool that certainly needs 
improvements and adaptations regarding each application 
but open a wide window for more complete analysis of 
complex phenomena.

Appendix

Symmetric distribution with retention

Consider the symmetric distribution with retention as shown 
in Fig. 7. The distribution scheme can be written as:

Reduction in the right-hand side of Eq. (A1-b) to time t-1 
leads successively to:

Subtracting pt
n
 given by (A1-a), it is obtained successively:
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The term pt+1
n

− pt
n
 on the left-hand side is the first-order 

difference with respect to the variable t. Assign this differ-
ence with the notation:

There is one term on the right-hand side of Eq. (A2) of 
the form pt

n−1
− 2pt

n
+ pt

n+1
 and another one of the form 

pt
n−2

− 4pt
n−1

+ 6pt
n
− 4pt

n+1
+ pt

n+2
 . These expressions are 

the second- and fourth-order differences, respectively, with 
respect to the space variable, centered at the cell n. Assign 
those differences with the notation:

and

Equation (A2) can now be written in terms of the first- 
and second-order differentials:
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Fig. 7  Contents distributions 
process with partial retention 
and symmetric redistribution
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For p(x) sufficiently differentiable, the first-order dif-
ferences referred to xn and xn+1, respectively, differ by a 
quantity of order Δx2 where Δx = ||xn+1 − xn

|| . Certainly for 
p(x,t), the previous calculation is true provided that time 
is kept constant, that is:

In a similar way, it can be shown that the deviation of 
the second-order differences centered at points  xn-1 and  xn, 
respectively, is of the order of Δx3 , that is O

(
Δx2

)
 . That is:

Introducing these expressions in (A3), we obtain after 
some simple operations:

Or:

where Δ2pn and Δ4pn are the second- and fourth-order dif-
ference expressions. Define:

Substituting the above relations in (A5):

Taking the limits Δx → 0  and Δt → 0 and assuming 
p(x,t) sufficiently smooth, the fourth-order diffusion equa-
tion is obtained:
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